xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision a8a28aff)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (!pte)
29 		return NULL;
30 	if (!pgtable_page_ctor(pte)) {
31 		__free_page(pte);
32 		return NULL;
33 	}
34 	return pte;
35 }
36 
37 static int __init setup_userpte(char *arg)
38 {
39 	if (!arg)
40 		return -EINVAL;
41 
42 	/*
43 	 * "userpte=nohigh" disables allocation of user pagetables in
44 	 * high memory.
45 	 */
46 	if (strcmp(arg, "nohigh") == 0)
47 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 	else
49 		return -EINVAL;
50 	return 0;
51 }
52 early_param("userpte", setup_userpte);
53 
54 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 {
56 	pgtable_page_dtor(pte);
57 	paravirt_release_pte(page_to_pfn(pte));
58 	tlb_remove_page(tlb, pte);
59 }
60 
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 {
64 	struct page *page = virt_to_page(pmd);
65 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 	/*
67 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 	 * entries need a full cr3 reload to flush.
69 	 */
70 #ifdef CONFIG_X86_PAE
71 	tlb->need_flush_all = 1;
72 #endif
73 	pgtable_pmd_page_dtor(page);
74 	tlb_remove_page(tlb, page);
75 }
76 
77 #if PAGETABLE_LEVELS > 3
78 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79 {
80 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 	tlb_remove_page(tlb, virt_to_page(pud));
82 }
83 #endif	/* PAGETABLE_LEVELS > 3 */
84 #endif	/* PAGETABLE_LEVELS > 2 */
85 
86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 	struct page *page = virt_to_page(pgd);
89 
90 	list_add(&page->lru, &pgd_list);
91 }
92 
93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 	struct page *page = virt_to_page(pgd);
96 
97 	list_del(&page->lru);
98 }
99 
100 #define UNSHARED_PTRS_PER_PGD				\
101 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102 
103 
104 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105 {
106 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107 	virt_to_page(pgd)->index = (pgoff_t)mm;
108 }
109 
110 struct mm_struct *pgd_page_get_mm(struct page *page)
111 {
112 	return (struct mm_struct *)page->index;
113 }
114 
115 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116 {
117 	/* If the pgd points to a shared pagetable level (either the
118 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
119 	   references from swapper_pg_dir. */
120 	if (PAGETABLE_LEVELS == 2 ||
121 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122 	    PAGETABLE_LEVELS == 4) {
123 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 				KERNEL_PGD_PTRS);
126 	}
127 
128 	/* list required to sync kernel mapping updates */
129 	if (!SHARED_KERNEL_PMD) {
130 		pgd_set_mm(pgd, mm);
131 		pgd_list_add(pgd);
132 	}
133 }
134 
135 static void pgd_dtor(pgd_t *pgd)
136 {
137 	if (SHARED_KERNEL_PMD)
138 		return;
139 
140 	spin_lock(&pgd_lock);
141 	pgd_list_del(pgd);
142 	spin_unlock(&pgd_lock);
143 }
144 
145 /*
146  * List of all pgd's needed for non-PAE so it can invalidate entries
147  * in both cached and uncached pgd's; not needed for PAE since the
148  * kernel pmd is shared. If PAE were not to share the pmd a similar
149  * tactic would be needed. This is essentially codepath-based locking
150  * against pageattr.c; it is the unique case in which a valid change
151  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152  * vmalloc faults work because attached pagetables are never freed.
153  * -- nyc
154  */
155 
156 #ifdef CONFIG_X86_PAE
157 /*
158  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159  * updating the top-level pagetable entries to guarantee the
160  * processor notices the update.  Since this is expensive, and
161  * all 4 top-level entries are used almost immediately in a
162  * new process's life, we just pre-populate them here.
163  *
164  * Also, if we're in a paravirt environment where the kernel pmd is
165  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166  * and initialize the kernel pmds here.
167  */
168 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
169 
170 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171 {
172 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173 
174 	/* Note: almost everything apart from _PAGE_PRESENT is
175 	   reserved at the pmd (PDPT) level. */
176 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177 
178 	/*
179 	 * According to Intel App note "TLBs, Paging-Structure Caches,
180 	 * and Their Invalidation", April 2007, document 317080-001,
181 	 * section 8.1: in PAE mode we explicitly have to flush the
182 	 * TLB via cr3 if the top-level pgd is changed...
183 	 */
184 	flush_tlb_mm(mm);
185 }
186 #else  /* !CONFIG_X86_PAE */
187 
188 /* No need to prepopulate any pagetable entries in non-PAE modes. */
189 #define PREALLOCATED_PMDS	0
190 
191 #endif	/* CONFIG_X86_PAE */
192 
193 static void free_pmds(pmd_t *pmds[])
194 {
195 	int i;
196 
197 	for(i = 0; i < PREALLOCATED_PMDS; i++)
198 		if (pmds[i]) {
199 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200 			free_page((unsigned long)pmds[i]);
201 		}
202 }
203 
204 static int preallocate_pmds(pmd_t *pmds[])
205 {
206 	int i;
207 	bool failed = false;
208 
209 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
210 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211 		if (!pmd)
212 			failed = true;
213 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214 			free_page((unsigned long)pmd);
215 			pmd = NULL;
216 			failed = true;
217 		}
218 		pmds[i] = pmd;
219 	}
220 
221 	if (failed) {
222 		free_pmds(pmds);
223 		return -ENOMEM;
224 	}
225 
226 	return 0;
227 }
228 
229 /*
230  * Mop up any pmd pages which may still be attached to the pgd.
231  * Normally they will be freed by munmap/exit_mmap, but any pmd we
232  * preallocate which never got a corresponding vma will need to be
233  * freed manually.
234  */
235 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236 {
237 	int i;
238 
239 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
240 		pgd_t pgd = pgdp[i];
241 
242 		if (pgd_val(pgd) != 0) {
243 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244 
245 			pgdp[i] = native_make_pgd(0);
246 
247 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248 			pmd_free(mm, pmd);
249 		}
250 	}
251 }
252 
253 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254 {
255 	pud_t *pud;
256 	int i;
257 
258 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259 		return;
260 
261 	pud = pud_offset(pgd, 0);
262 
263 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
264 		pmd_t *pmd = pmds[i];
265 
266 		if (i >= KERNEL_PGD_BOUNDARY)
267 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268 			       sizeof(pmd_t) * PTRS_PER_PMD);
269 
270 		pud_populate(mm, pud, pmd);
271 	}
272 }
273 
274 pgd_t *pgd_alloc(struct mm_struct *mm)
275 {
276 	pgd_t *pgd;
277 	pmd_t *pmds[PREALLOCATED_PMDS];
278 
279 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280 
281 	if (pgd == NULL)
282 		goto out;
283 
284 	mm->pgd = pgd;
285 
286 	if (preallocate_pmds(pmds) != 0)
287 		goto out_free_pgd;
288 
289 	if (paravirt_pgd_alloc(mm) != 0)
290 		goto out_free_pmds;
291 
292 	/*
293 	 * Make sure that pre-populating the pmds is atomic with
294 	 * respect to anything walking the pgd_list, so that they
295 	 * never see a partially populated pgd.
296 	 */
297 	spin_lock(&pgd_lock);
298 
299 	pgd_ctor(mm, pgd);
300 	pgd_prepopulate_pmd(mm, pgd, pmds);
301 
302 	spin_unlock(&pgd_lock);
303 
304 	return pgd;
305 
306 out_free_pmds:
307 	free_pmds(pmds);
308 out_free_pgd:
309 	free_page((unsigned long)pgd);
310 out:
311 	return NULL;
312 }
313 
314 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315 {
316 	pgd_mop_up_pmds(mm, pgd);
317 	pgd_dtor(pgd);
318 	paravirt_pgd_free(mm, pgd);
319 	free_page((unsigned long)pgd);
320 }
321 
322 /*
323  * Used to set accessed or dirty bits in the page table entries
324  * on other architectures. On x86, the accessed and dirty bits
325  * are tracked by hardware. However, do_wp_page calls this function
326  * to also make the pte writeable at the same time the dirty bit is
327  * set. In that case we do actually need to write the PTE.
328  */
329 int ptep_set_access_flags(struct vm_area_struct *vma,
330 			  unsigned long address, pte_t *ptep,
331 			  pte_t entry, int dirty)
332 {
333 	int changed = !pte_same(*ptep, entry);
334 
335 	if (changed && dirty) {
336 		*ptep = entry;
337 		pte_update_defer(vma->vm_mm, address, ptep);
338 	}
339 
340 	return changed;
341 }
342 
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 int pmdp_set_access_flags(struct vm_area_struct *vma,
345 			  unsigned long address, pmd_t *pmdp,
346 			  pmd_t entry, int dirty)
347 {
348 	int changed = !pmd_same(*pmdp, entry);
349 
350 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351 
352 	if (changed && dirty) {
353 		*pmdp = entry;
354 		pmd_update_defer(vma->vm_mm, address, pmdp);
355 		/*
356 		 * We had a write-protection fault here and changed the pmd
357 		 * to to more permissive. No need to flush the TLB for that,
358 		 * #PF is architecturally guaranteed to do that and in the
359 		 * worst-case we'll generate a spurious fault.
360 		 */
361 	}
362 
363 	return changed;
364 }
365 #endif
366 
367 int ptep_test_and_clear_young(struct vm_area_struct *vma,
368 			      unsigned long addr, pte_t *ptep)
369 {
370 	int ret = 0;
371 
372 	if (pte_young(*ptep))
373 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374 					 (unsigned long *) &ptep->pte);
375 
376 	if (ret)
377 		pte_update(vma->vm_mm, addr, ptep);
378 
379 	return ret;
380 }
381 
382 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
383 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384 			      unsigned long addr, pmd_t *pmdp)
385 {
386 	int ret = 0;
387 
388 	if (pmd_young(*pmdp))
389 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390 					 (unsigned long *)pmdp);
391 
392 	if (ret)
393 		pmd_update(vma->vm_mm, addr, pmdp);
394 
395 	return ret;
396 }
397 #endif
398 
399 int ptep_clear_flush_young(struct vm_area_struct *vma,
400 			   unsigned long address, pte_t *ptep)
401 {
402 	/*
403 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
404 	 * doesn't cause data corruption. [ It could cause incorrect
405 	 * page aging and the (mistaken) reclaim of hot pages, but the
406 	 * chance of that should be relatively low. ]
407 	 *
408 	 * So as a performance optimization don't flush the TLB when
409 	 * clearing the accessed bit, it will eventually be flushed by
410 	 * a context switch or a VM operation anyway. [ In the rare
411 	 * event of it not getting flushed for a long time the delay
412 	 * shouldn't really matter because there's no real memory
413 	 * pressure for swapout to react to. ]
414 	 */
415 	return ptep_test_and_clear_young(vma, address, ptep);
416 }
417 
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 			   unsigned long address, pmd_t *pmdp)
421 {
422 	int young;
423 
424 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
425 
426 	young = pmdp_test_and_clear_young(vma, address, pmdp);
427 	if (young)
428 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
429 
430 	return young;
431 }
432 
433 void pmdp_splitting_flush(struct vm_area_struct *vma,
434 			  unsigned long address, pmd_t *pmdp)
435 {
436 	int set;
437 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
438 	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
439 				(unsigned long *)pmdp);
440 	if (set) {
441 		pmd_update(vma->vm_mm, address, pmdp);
442 		/* need tlb flush only to serialize against gup-fast */
443 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
444 	}
445 }
446 #endif
447 
448 /**
449  * reserve_top_address - reserves a hole in the top of kernel address space
450  * @reserve - size of hole to reserve
451  *
452  * Can be used to relocate the fixmap area and poke a hole in the top
453  * of kernel address space to make room for a hypervisor.
454  */
455 void __init reserve_top_address(unsigned long reserve)
456 {
457 #ifdef CONFIG_X86_32
458 	BUG_ON(fixmaps_set > 0);
459 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
460 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
461 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
462 #endif
463 }
464 
465 int fixmaps_set;
466 
467 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
468 {
469 	unsigned long address = __fix_to_virt(idx);
470 
471 	if (idx >= __end_of_fixed_addresses) {
472 		BUG();
473 		return;
474 	}
475 	set_pte_vaddr(address, pte);
476 	fixmaps_set++;
477 }
478 
479 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
480 		       pgprot_t flags)
481 {
482 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
483 }
484