xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15 
16 #ifdef CONFIG_HIGHPTE
17 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
18 #else
19 #define PGTABLE_HIGHMEM 0
20 #endif
21 
22 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
23 
24 pgtable_t pte_alloc_one(struct mm_struct *mm)
25 {
26 	return __pte_alloc_one(mm, __userpte_alloc_gfp);
27 }
28 
29 static int __init setup_userpte(char *arg)
30 {
31 	if (!arg)
32 		return -EINVAL;
33 
34 	/*
35 	 * "userpte=nohigh" disables allocation of user pagetables in
36 	 * high memory.
37 	 */
38 	if (strcmp(arg, "nohigh") == 0)
39 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
40 	else
41 		return -EINVAL;
42 	return 0;
43 }
44 early_param("userpte", setup_userpte);
45 
46 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
47 {
48 	pgtable_page_dtor(pte);
49 	paravirt_release_pte(page_to_pfn(pte));
50 	paravirt_tlb_remove_table(tlb, pte);
51 }
52 
53 #if CONFIG_PGTABLE_LEVELS > 2
54 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
55 {
56 	struct page *page = virt_to_page(pmd);
57 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
58 	/*
59 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
60 	 * entries need a full cr3 reload to flush.
61 	 */
62 #ifdef CONFIG_X86_PAE
63 	tlb->need_flush_all = 1;
64 #endif
65 	pgtable_pmd_page_dtor(page);
66 	paravirt_tlb_remove_table(tlb, page);
67 }
68 
69 #if CONFIG_PGTABLE_LEVELS > 3
70 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
71 {
72 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
73 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
74 }
75 
76 #if CONFIG_PGTABLE_LEVELS > 4
77 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
78 {
79 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
80 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
81 }
82 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
83 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
84 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
85 
86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 	struct page *page = virt_to_page(pgd);
89 
90 	list_add(&page->lru, &pgd_list);
91 }
92 
93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 	struct page *page = virt_to_page(pgd);
96 
97 	list_del(&page->lru);
98 }
99 
100 #define UNSHARED_PTRS_PER_PGD				\
101 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102 #define MAX_UNSHARED_PTRS_PER_PGD			\
103 	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
104 
105 
106 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107 {
108 	virt_to_page(pgd)->pt_mm = mm;
109 }
110 
111 struct mm_struct *pgd_page_get_mm(struct page *page)
112 {
113 	return page->pt_mm;
114 }
115 
116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117 {
118 	/* If the pgd points to a shared pagetable level (either the
119 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120 	   references from swapper_pg_dir. */
121 	if (CONFIG_PGTABLE_LEVELS == 2 ||
122 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123 	    CONFIG_PGTABLE_LEVELS >= 4) {
124 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126 				KERNEL_PGD_PTRS);
127 	}
128 
129 	/* list required to sync kernel mapping updates */
130 	if (!SHARED_KERNEL_PMD) {
131 		pgd_set_mm(pgd, mm);
132 		pgd_list_add(pgd);
133 	}
134 }
135 
136 static void pgd_dtor(pgd_t *pgd)
137 {
138 	if (SHARED_KERNEL_PMD)
139 		return;
140 
141 	spin_lock(&pgd_lock);
142 	pgd_list_del(pgd);
143 	spin_unlock(&pgd_lock);
144 }
145 
146 /*
147  * List of all pgd's needed for non-PAE so it can invalidate entries
148  * in both cached and uncached pgd's; not needed for PAE since the
149  * kernel pmd is shared. If PAE were not to share the pmd a similar
150  * tactic would be needed. This is essentially codepath-based locking
151  * against pageattr.c; it is the unique case in which a valid change
152  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153  * vmalloc faults work because attached pagetables are never freed.
154  * -- nyc
155  */
156 
157 #ifdef CONFIG_X86_PAE
158 /*
159  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160  * updating the top-level pagetable entries to guarantee the
161  * processor notices the update.  Since this is expensive, and
162  * all 4 top-level entries are used almost immediately in a
163  * new process's life, we just pre-populate them here.
164  *
165  * Also, if we're in a paravirt environment where the kernel pmd is
166  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167  * and initialize the kernel pmds here.
168  */
169 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170 #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
171 
172 /*
173  * We allocate separate PMDs for the kernel part of the user page-table
174  * when PTI is enabled. We need them to map the per-process LDT into the
175  * user-space page-table.
176  */
177 #define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
178 					KERNEL_PGD_PTRS : 0)
179 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
180 
181 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182 {
183 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184 
185 	/* Note: almost everything apart from _PAGE_PRESENT is
186 	   reserved at the pmd (PDPT) level. */
187 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188 
189 	/*
190 	 * According to Intel App note "TLBs, Paging-Structure Caches,
191 	 * and Their Invalidation", April 2007, document 317080-001,
192 	 * section 8.1: in PAE mode we explicitly have to flush the
193 	 * TLB via cr3 if the top-level pgd is changed...
194 	 */
195 	flush_tlb_mm(mm);
196 }
197 #else  /* !CONFIG_X86_PAE */
198 
199 /* No need to prepopulate any pagetable entries in non-PAE modes. */
200 #define PREALLOCATED_PMDS	0
201 #define MAX_PREALLOCATED_PMDS	0
202 #define PREALLOCATED_USER_PMDS	 0
203 #define MAX_PREALLOCATED_USER_PMDS 0
204 #endif	/* CONFIG_X86_PAE */
205 
206 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
207 {
208 	int i;
209 
210 	for (i = 0; i < count; i++)
211 		if (pmds[i]) {
212 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
213 			free_page((unsigned long)pmds[i]);
214 			mm_dec_nr_pmds(mm);
215 		}
216 }
217 
218 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
219 {
220 	int i;
221 	bool failed = false;
222 	gfp_t gfp = GFP_PGTABLE_USER;
223 
224 	if (mm == &init_mm)
225 		gfp &= ~__GFP_ACCOUNT;
226 
227 	for (i = 0; i < count; i++) {
228 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
229 		if (!pmd)
230 			failed = true;
231 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
232 			free_page((unsigned long)pmd);
233 			pmd = NULL;
234 			failed = true;
235 		}
236 		if (pmd)
237 			mm_inc_nr_pmds(mm);
238 		pmds[i] = pmd;
239 	}
240 
241 	if (failed) {
242 		free_pmds(mm, pmds, count);
243 		return -ENOMEM;
244 	}
245 
246 	return 0;
247 }
248 
249 /*
250  * Mop up any pmd pages which may still be attached to the pgd.
251  * Normally they will be freed by munmap/exit_mmap, but any pmd we
252  * preallocate which never got a corresponding vma will need to be
253  * freed manually.
254  */
255 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
256 {
257 	pgd_t pgd = *pgdp;
258 
259 	if (pgd_val(pgd) != 0) {
260 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261 
262 		pgd_clear(pgdp);
263 
264 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
265 		pmd_free(mm, pmd);
266 		mm_dec_nr_pmds(mm);
267 	}
268 }
269 
270 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
271 {
272 	int i;
273 
274 	for (i = 0; i < PREALLOCATED_PMDS; i++)
275 		mop_up_one_pmd(mm, &pgdp[i]);
276 
277 #ifdef CONFIG_PAGE_TABLE_ISOLATION
278 
279 	if (!boot_cpu_has(X86_FEATURE_PTI))
280 		return;
281 
282 	pgdp = kernel_to_user_pgdp(pgdp);
283 
284 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
285 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
286 #endif
287 }
288 
289 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
290 {
291 	p4d_t *p4d;
292 	pud_t *pud;
293 	int i;
294 
295 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
296 		return;
297 
298 	p4d = p4d_offset(pgd, 0);
299 	pud = pud_offset(p4d, 0);
300 
301 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
302 		pmd_t *pmd = pmds[i];
303 
304 		if (i >= KERNEL_PGD_BOUNDARY)
305 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
306 			       sizeof(pmd_t) * PTRS_PER_PMD);
307 
308 		pud_populate(mm, pud, pmd);
309 	}
310 }
311 
312 #ifdef CONFIG_PAGE_TABLE_ISOLATION
313 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
314 				     pgd_t *k_pgd, pmd_t *pmds[])
315 {
316 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
317 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
318 	p4d_t *u_p4d;
319 	pud_t *u_pud;
320 	int i;
321 
322 	u_p4d = p4d_offset(u_pgd, 0);
323 	u_pud = pud_offset(u_p4d, 0);
324 
325 	s_pgd += KERNEL_PGD_BOUNDARY;
326 	u_pud += KERNEL_PGD_BOUNDARY;
327 
328 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
329 		pmd_t *pmd = pmds[i];
330 
331 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
332 		       sizeof(pmd_t) * PTRS_PER_PMD);
333 
334 		pud_populate(mm, u_pud, pmd);
335 	}
336 
337 }
338 #else
339 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
340 				     pgd_t *k_pgd, pmd_t *pmds[])
341 {
342 }
343 #endif
344 /*
345  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
346  * assumes that pgd should be in one page.
347  *
348  * But kernel with PAE paging that is not running as a Xen domain
349  * only needs to allocate 32 bytes for pgd instead of one page.
350  */
351 #ifdef CONFIG_X86_PAE
352 
353 #include <linux/slab.h>
354 
355 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
356 #define PGD_ALIGN	32
357 
358 static struct kmem_cache *pgd_cache;
359 
360 void __init pgd_cache_init(void)
361 {
362 	/*
363 	 * When PAE kernel is running as a Xen domain, it does not use
364 	 * shared kernel pmd. And this requires a whole page for pgd.
365 	 */
366 	if (!SHARED_KERNEL_PMD)
367 		return;
368 
369 	/*
370 	 * when PAE kernel is not running as a Xen domain, it uses
371 	 * shared kernel pmd. Shared kernel pmd does not require a whole
372 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
373 	 * During boot time, we create a 32-byte slab for pgd table allocation.
374 	 */
375 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
376 				      SLAB_PANIC, NULL);
377 }
378 
379 static inline pgd_t *_pgd_alloc(void)
380 {
381 	/*
382 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
383 	 * We allocate one page for pgd.
384 	 */
385 	if (!SHARED_KERNEL_PMD)
386 		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
387 						 PGD_ALLOCATION_ORDER);
388 
389 	/*
390 	 * Now PAE kernel is not running as a Xen domain. We can allocate
391 	 * a 32-byte slab for pgd to save memory space.
392 	 */
393 	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
394 }
395 
396 static inline void _pgd_free(pgd_t *pgd)
397 {
398 	if (!SHARED_KERNEL_PMD)
399 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
400 	else
401 		kmem_cache_free(pgd_cache, pgd);
402 }
403 #else
404 
405 void __init pgd_cache_init(void)
406 {
407 }
408 
409 static inline pgd_t *_pgd_alloc(void)
410 {
411 	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
412 					 PGD_ALLOCATION_ORDER);
413 }
414 
415 static inline void _pgd_free(pgd_t *pgd)
416 {
417 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
418 }
419 #endif /* CONFIG_X86_PAE */
420 
421 pgd_t *pgd_alloc(struct mm_struct *mm)
422 {
423 	pgd_t *pgd;
424 	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
425 	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
426 
427 	pgd = _pgd_alloc();
428 
429 	if (pgd == NULL)
430 		goto out;
431 
432 	mm->pgd = pgd;
433 
434 	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
435 		goto out_free_pgd;
436 
437 	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
438 		goto out_free_pmds;
439 
440 	if (paravirt_pgd_alloc(mm) != 0)
441 		goto out_free_user_pmds;
442 
443 	/*
444 	 * Make sure that pre-populating the pmds is atomic with
445 	 * respect to anything walking the pgd_list, so that they
446 	 * never see a partially populated pgd.
447 	 */
448 	spin_lock(&pgd_lock);
449 
450 	pgd_ctor(mm, pgd);
451 	pgd_prepopulate_pmd(mm, pgd, pmds);
452 	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
453 
454 	spin_unlock(&pgd_lock);
455 
456 	return pgd;
457 
458 out_free_user_pmds:
459 	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
460 out_free_pmds:
461 	free_pmds(mm, pmds, PREALLOCATED_PMDS);
462 out_free_pgd:
463 	_pgd_free(pgd);
464 out:
465 	return NULL;
466 }
467 
468 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
469 {
470 	pgd_mop_up_pmds(mm, pgd);
471 	pgd_dtor(pgd);
472 	paravirt_pgd_free(mm, pgd);
473 	_pgd_free(pgd);
474 }
475 
476 /*
477  * Used to set accessed or dirty bits in the page table entries
478  * on other architectures. On x86, the accessed and dirty bits
479  * are tracked by hardware. However, do_wp_page calls this function
480  * to also make the pte writeable at the same time the dirty bit is
481  * set. In that case we do actually need to write the PTE.
482  */
483 int ptep_set_access_flags(struct vm_area_struct *vma,
484 			  unsigned long address, pte_t *ptep,
485 			  pte_t entry, int dirty)
486 {
487 	int changed = !pte_same(*ptep, entry);
488 
489 	if (changed && dirty)
490 		set_pte(ptep, entry);
491 
492 	return changed;
493 }
494 
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 int pmdp_set_access_flags(struct vm_area_struct *vma,
497 			  unsigned long address, pmd_t *pmdp,
498 			  pmd_t entry, int dirty)
499 {
500 	int changed = !pmd_same(*pmdp, entry);
501 
502 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
503 
504 	if (changed && dirty) {
505 		set_pmd(pmdp, entry);
506 		/*
507 		 * We had a write-protection fault here and changed the pmd
508 		 * to to more permissive. No need to flush the TLB for that,
509 		 * #PF is architecturally guaranteed to do that and in the
510 		 * worst-case we'll generate a spurious fault.
511 		 */
512 	}
513 
514 	return changed;
515 }
516 
517 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
518 			  pud_t *pudp, pud_t entry, int dirty)
519 {
520 	int changed = !pud_same(*pudp, entry);
521 
522 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
523 
524 	if (changed && dirty) {
525 		set_pud(pudp, entry);
526 		/*
527 		 * We had a write-protection fault here and changed the pud
528 		 * to to more permissive. No need to flush the TLB for that,
529 		 * #PF is architecturally guaranteed to do that and in the
530 		 * worst-case we'll generate a spurious fault.
531 		 */
532 	}
533 
534 	return changed;
535 }
536 #endif
537 
538 int ptep_test_and_clear_young(struct vm_area_struct *vma,
539 			      unsigned long addr, pte_t *ptep)
540 {
541 	int ret = 0;
542 
543 	if (pte_young(*ptep))
544 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
545 					 (unsigned long *) &ptep->pte);
546 
547 	return ret;
548 }
549 
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
552 			      unsigned long addr, pmd_t *pmdp)
553 {
554 	int ret = 0;
555 
556 	if (pmd_young(*pmdp))
557 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
558 					 (unsigned long *)pmdp);
559 
560 	return ret;
561 }
562 int pudp_test_and_clear_young(struct vm_area_struct *vma,
563 			      unsigned long addr, pud_t *pudp)
564 {
565 	int ret = 0;
566 
567 	if (pud_young(*pudp))
568 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
569 					 (unsigned long *)pudp);
570 
571 	return ret;
572 }
573 #endif
574 
575 int ptep_clear_flush_young(struct vm_area_struct *vma,
576 			   unsigned long address, pte_t *ptep)
577 {
578 	/*
579 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
580 	 * doesn't cause data corruption. [ It could cause incorrect
581 	 * page aging and the (mistaken) reclaim of hot pages, but the
582 	 * chance of that should be relatively low. ]
583 	 *
584 	 * So as a performance optimization don't flush the TLB when
585 	 * clearing the accessed bit, it will eventually be flushed by
586 	 * a context switch or a VM operation anyway. [ In the rare
587 	 * event of it not getting flushed for a long time the delay
588 	 * shouldn't really matter because there's no real memory
589 	 * pressure for swapout to react to. ]
590 	 */
591 	return ptep_test_and_clear_young(vma, address, ptep);
592 }
593 
594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
595 int pmdp_clear_flush_young(struct vm_area_struct *vma,
596 			   unsigned long address, pmd_t *pmdp)
597 {
598 	int young;
599 
600 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
601 
602 	young = pmdp_test_and_clear_young(vma, address, pmdp);
603 	if (young)
604 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
605 
606 	return young;
607 }
608 #endif
609 
610 /**
611  * reserve_top_address - reserves a hole in the top of kernel address space
612  * @reserve - size of hole to reserve
613  *
614  * Can be used to relocate the fixmap area and poke a hole in the top
615  * of kernel address space to make room for a hypervisor.
616  */
617 void __init reserve_top_address(unsigned long reserve)
618 {
619 #ifdef CONFIG_X86_32
620 	BUG_ON(fixmaps_set > 0);
621 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
622 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
623 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
624 #endif
625 }
626 
627 int fixmaps_set;
628 
629 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
630 {
631 	unsigned long address = __fix_to_virt(idx);
632 
633 #ifdef CONFIG_X86_64
634        /*
635 	* Ensure that the static initial page tables are covering the
636 	* fixmap completely.
637 	*/
638 	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
639 		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
640 #endif
641 
642 	if (idx >= __end_of_fixed_addresses) {
643 		BUG();
644 		return;
645 	}
646 	set_pte_vaddr(address, pte);
647 	fixmaps_set++;
648 }
649 
650 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
651 		       pgprot_t flags)
652 {
653 	/* Sanitize 'prot' against any unsupported bits: */
654 	pgprot_val(flags) &= __default_kernel_pte_mask;
655 
656 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
657 }
658 
659 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
660 #ifdef CONFIG_X86_5LEVEL
661 /**
662  * p4d_set_huge - setup kernel P4D mapping
663  *
664  * No 512GB pages yet -- always return 0
665  */
666 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
667 {
668 	return 0;
669 }
670 
671 /**
672  * p4d_clear_huge - clear kernel P4D mapping when it is set
673  *
674  * No 512GB pages yet -- always return 0
675  */
676 int p4d_clear_huge(p4d_t *p4d)
677 {
678 	return 0;
679 }
680 #endif
681 
682 /**
683  * pud_set_huge - setup kernel PUD mapping
684  *
685  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
686  * function sets up a huge page only if any of the following conditions are met:
687  *
688  * - MTRRs are disabled, or
689  *
690  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
691  *
692  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
693  *   has no effect on the requested PAT memory type.
694  *
695  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
696  * page mapping attempt fails.
697  *
698  * Returns 1 on success and 0 on failure.
699  */
700 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
701 {
702 	u8 mtrr, uniform;
703 
704 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
705 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
706 	    (mtrr != MTRR_TYPE_WRBACK))
707 		return 0;
708 
709 	/* Bail out if we are we on a populated non-leaf entry: */
710 	if (pud_present(*pud) && !pud_huge(*pud))
711 		return 0;
712 
713 	prot = pgprot_4k_2_large(prot);
714 
715 	set_pte((pte_t *)pud, pfn_pte(
716 		(u64)addr >> PAGE_SHIFT,
717 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
718 
719 	return 1;
720 }
721 
722 /**
723  * pmd_set_huge - setup kernel PMD mapping
724  *
725  * See text over pud_set_huge() above.
726  *
727  * Returns 1 on success and 0 on failure.
728  */
729 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
730 {
731 	u8 mtrr, uniform;
732 
733 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
734 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
735 	    (mtrr != MTRR_TYPE_WRBACK)) {
736 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
737 			     __func__, addr, addr + PMD_SIZE);
738 		return 0;
739 	}
740 
741 	/* Bail out if we are we on a populated non-leaf entry: */
742 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
743 		return 0;
744 
745 	prot = pgprot_4k_2_large(prot);
746 
747 	set_pte((pte_t *)pmd, pfn_pte(
748 		(u64)addr >> PAGE_SHIFT,
749 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
750 
751 	return 1;
752 }
753 
754 /**
755  * pud_clear_huge - clear kernel PUD mapping when it is set
756  *
757  * Returns 1 on success and 0 on failure (no PUD map is found).
758  */
759 int pud_clear_huge(pud_t *pud)
760 {
761 	if (pud_large(*pud)) {
762 		pud_clear(pud);
763 		return 1;
764 	}
765 
766 	return 0;
767 }
768 
769 /**
770  * pmd_clear_huge - clear kernel PMD mapping when it is set
771  *
772  * Returns 1 on success and 0 on failure (no PMD map is found).
773  */
774 int pmd_clear_huge(pmd_t *pmd)
775 {
776 	if (pmd_large(*pmd)) {
777 		pmd_clear(pmd);
778 		return 1;
779 	}
780 
781 	return 0;
782 }
783 
784 /*
785  * Until we support 512GB pages, skip them in the vmap area.
786  */
787 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
788 {
789 	return 0;
790 }
791 
792 #ifdef CONFIG_X86_64
793 /**
794  * pud_free_pmd_page - Clear pud entry and free pmd page.
795  * @pud: Pointer to a PUD.
796  * @addr: Virtual address associated with pud.
797  *
798  * Context: The pud range has been unmapped and TLB purged.
799  * Return: 1 if clearing the entry succeeded. 0 otherwise.
800  *
801  * NOTE: Callers must allow a single page allocation.
802  */
803 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
804 {
805 	pmd_t *pmd, *pmd_sv;
806 	pte_t *pte;
807 	int i;
808 
809 	pmd = (pmd_t *)pud_page_vaddr(*pud);
810 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
811 	if (!pmd_sv)
812 		return 0;
813 
814 	for (i = 0; i < PTRS_PER_PMD; i++) {
815 		pmd_sv[i] = pmd[i];
816 		if (!pmd_none(pmd[i]))
817 			pmd_clear(&pmd[i]);
818 	}
819 
820 	pud_clear(pud);
821 
822 	/* INVLPG to clear all paging-structure caches */
823 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
824 
825 	for (i = 0; i < PTRS_PER_PMD; i++) {
826 		if (!pmd_none(pmd_sv[i])) {
827 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
828 			free_page((unsigned long)pte);
829 		}
830 	}
831 
832 	free_page((unsigned long)pmd_sv);
833 	free_page((unsigned long)pmd);
834 
835 	return 1;
836 }
837 
838 /**
839  * pmd_free_pte_page - Clear pmd entry and free pte page.
840  * @pmd: Pointer to a PMD.
841  * @addr: Virtual address associated with pmd.
842  *
843  * Context: The pmd range has been unmapped and TLB purged.
844  * Return: 1 if clearing the entry succeeded. 0 otherwise.
845  */
846 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
847 {
848 	pte_t *pte;
849 
850 	pte = (pte_t *)pmd_page_vaddr(*pmd);
851 	pmd_clear(pmd);
852 
853 	/* INVLPG to clear all paging-structure caches */
854 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
855 
856 	free_page((unsigned long)pte);
857 
858 	return 1;
859 }
860 
861 #else /* !CONFIG_X86_64 */
862 
863 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
864 {
865 	return pud_none(*pud);
866 }
867 
868 /*
869  * Disable free page handling on x86-PAE. This assures that ioremap()
870  * does not update sync'd pmd entries. See vmalloc_sync_one().
871  */
872 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
873 {
874 	return pmd_none(*pmd);
875 }
876 
877 #endif /* CONFIG_X86_64 */
878 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
879