xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision 7d029125)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (pte)
29 		pgtable_page_ctor(pte);
30 	return pte;
31 }
32 
33 static int __init setup_userpte(char *arg)
34 {
35 	if (!arg)
36 		return -EINVAL;
37 
38 	/*
39 	 * "userpte=nohigh" disables allocation of user pagetables in
40 	 * high memory.
41 	 */
42 	if (strcmp(arg, "nohigh") == 0)
43 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 	else
45 		return -EINVAL;
46 	return 0;
47 }
48 early_param("userpte", setup_userpte);
49 
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52 	pgtable_page_dtor(pte);
53 	paravirt_release_pte(page_to_pfn(pte));
54 	tlb_remove_page(tlb, pte);
55 }
56 
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61 	tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63 
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68 	tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif	/* PAGETABLE_LEVELS > 3 */
71 #endif	/* PAGETABLE_LEVELS > 2 */
72 
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75 	struct page *page = virt_to_page(pgd);
76 
77 	list_add(&page->lru, &pgd_list);
78 }
79 
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82 	struct page *page = virt_to_page(pgd);
83 
84 	list_del(&page->lru);
85 }
86 
87 #define UNSHARED_PTRS_PER_PGD				\
88 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89 
90 
91 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
92 {
93 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
94 	virt_to_page(pgd)->index = (pgoff_t)mm;
95 }
96 
97 struct mm_struct *pgd_page_get_mm(struct page *page)
98 {
99 	return (struct mm_struct *)page->index;
100 }
101 
102 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103 {
104 	/* If the pgd points to a shared pagetable level (either the
105 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106 	   references from swapper_pg_dir. */
107 	if (PAGETABLE_LEVELS == 2 ||
108 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109 	    PAGETABLE_LEVELS == 4) {
110 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112 				KERNEL_PGD_PTRS);
113 	}
114 
115 	/* list required to sync kernel mapping updates */
116 	if (!SHARED_KERNEL_PMD) {
117 		pgd_set_mm(pgd, mm);
118 		pgd_list_add(pgd);
119 	}
120 }
121 
122 static void pgd_dtor(pgd_t *pgd)
123 {
124 	if (SHARED_KERNEL_PMD)
125 		return;
126 
127 	spin_lock(&pgd_lock);
128 	pgd_list_del(pgd);
129 	spin_unlock(&pgd_lock);
130 }
131 
132 /*
133  * List of all pgd's needed for non-PAE so it can invalidate entries
134  * in both cached and uncached pgd's; not needed for PAE since the
135  * kernel pmd is shared. If PAE were not to share the pmd a similar
136  * tactic would be needed. This is essentially codepath-based locking
137  * against pageattr.c; it is the unique case in which a valid change
138  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139  * vmalloc faults work because attached pagetables are never freed.
140  * -- nyc
141  */
142 
143 #ifdef CONFIG_X86_PAE
144 /*
145  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146  * updating the top-level pagetable entries to guarantee the
147  * processor notices the update.  Since this is expensive, and
148  * all 4 top-level entries are used almost immediately in a
149  * new process's life, we just pre-populate them here.
150  *
151  * Also, if we're in a paravirt environment where the kernel pmd is
152  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153  * and initialize the kernel pmds here.
154  */
155 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
156 
157 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158 {
159 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160 
161 	/* Note: almost everything apart from _PAGE_PRESENT is
162 	   reserved at the pmd (PDPT) level. */
163 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164 
165 	/*
166 	 * According to Intel App note "TLBs, Paging-Structure Caches,
167 	 * and Their Invalidation", April 2007, document 317080-001,
168 	 * section 8.1: in PAE mode we explicitly have to flush the
169 	 * TLB via cr3 if the top-level pgd is changed...
170 	 */
171 	flush_tlb_mm(mm);
172 }
173 #else  /* !CONFIG_X86_PAE */
174 
175 /* No need to prepopulate any pagetable entries in non-PAE modes. */
176 #define PREALLOCATED_PMDS	0
177 
178 #endif	/* CONFIG_X86_PAE */
179 
180 static void free_pmds(pmd_t *pmds[])
181 {
182 	int i;
183 
184 	for(i = 0; i < PREALLOCATED_PMDS; i++)
185 		if (pmds[i])
186 			free_page((unsigned long)pmds[i]);
187 }
188 
189 static int preallocate_pmds(pmd_t *pmds[])
190 {
191 	int i;
192 	bool failed = false;
193 
194 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
195 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196 		if (pmd == NULL)
197 			failed = true;
198 		pmds[i] = pmd;
199 	}
200 
201 	if (failed) {
202 		free_pmds(pmds);
203 		return -ENOMEM;
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * Mop up any pmd pages which may still be attached to the pgd.
211  * Normally they will be freed by munmap/exit_mmap, but any pmd we
212  * preallocate which never got a corresponding vma will need to be
213  * freed manually.
214  */
215 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216 {
217 	int i;
218 
219 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
220 		pgd_t pgd = pgdp[i];
221 
222 		if (pgd_val(pgd) != 0) {
223 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224 
225 			pgdp[i] = native_make_pgd(0);
226 
227 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228 			pmd_free(mm, pmd);
229 		}
230 	}
231 }
232 
233 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234 {
235 	pud_t *pud;
236 	unsigned long addr;
237 	int i;
238 
239 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240 		return;
241 
242 	pud = pud_offset(pgd, 0);
243 
244  	for (addr = i = 0; i < PREALLOCATED_PMDS;
245 	     i++, pud++, addr += PUD_SIZE) {
246 		pmd_t *pmd = pmds[i];
247 
248 		if (i >= KERNEL_PGD_BOUNDARY)
249 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250 			       sizeof(pmd_t) * PTRS_PER_PMD);
251 
252 		pud_populate(mm, pud, pmd);
253 	}
254 }
255 
256 pgd_t *pgd_alloc(struct mm_struct *mm)
257 {
258 	pgd_t *pgd;
259 	pmd_t *pmds[PREALLOCATED_PMDS];
260 
261 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262 
263 	if (pgd == NULL)
264 		goto out;
265 
266 	mm->pgd = pgd;
267 
268 	if (preallocate_pmds(pmds) != 0)
269 		goto out_free_pgd;
270 
271 	if (paravirt_pgd_alloc(mm) != 0)
272 		goto out_free_pmds;
273 
274 	/*
275 	 * Make sure that pre-populating the pmds is atomic with
276 	 * respect to anything walking the pgd_list, so that they
277 	 * never see a partially populated pgd.
278 	 */
279 	spin_lock(&pgd_lock);
280 
281 	pgd_ctor(mm, pgd);
282 	pgd_prepopulate_pmd(mm, pgd, pmds);
283 
284 	spin_unlock(&pgd_lock);
285 
286 	return pgd;
287 
288 out_free_pmds:
289 	free_pmds(pmds);
290 out_free_pgd:
291 	free_page((unsigned long)pgd);
292 out:
293 	return NULL;
294 }
295 
296 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297 {
298 	pgd_mop_up_pmds(mm, pgd);
299 	pgd_dtor(pgd);
300 	paravirt_pgd_free(mm, pgd);
301 	free_page((unsigned long)pgd);
302 }
303 
304 /*
305  * Used to set accessed or dirty bits in the page table entries
306  * on other architectures. On x86, the accessed and dirty bits
307  * are tracked by hardware. However, do_wp_page calls this function
308  * to also make the pte writeable at the same time the dirty bit is
309  * set. In that case we do actually need to write the PTE.
310  */
311 int ptep_set_access_flags(struct vm_area_struct *vma,
312 			  unsigned long address, pte_t *ptep,
313 			  pte_t entry, int dirty)
314 {
315 	int changed = !pte_same(*ptep, entry);
316 
317 	if (changed && dirty) {
318 		*ptep = entry;
319 		pte_update_defer(vma->vm_mm, address, ptep);
320 	}
321 
322 	return changed;
323 }
324 
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 int pmdp_set_access_flags(struct vm_area_struct *vma,
327 			  unsigned long address, pmd_t *pmdp,
328 			  pmd_t entry, int dirty)
329 {
330 	int changed = !pmd_same(*pmdp, entry);
331 
332 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
333 
334 	if (changed && dirty) {
335 		*pmdp = entry;
336 		pmd_update_defer(vma->vm_mm, address, pmdp);
337 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
338 	}
339 
340 	return changed;
341 }
342 #endif
343 
344 int ptep_test_and_clear_young(struct vm_area_struct *vma,
345 			      unsigned long addr, pte_t *ptep)
346 {
347 	int ret = 0;
348 
349 	if (pte_young(*ptep))
350 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
351 					 (unsigned long *) &ptep->pte);
352 
353 	if (ret)
354 		pte_update(vma->vm_mm, addr, ptep);
355 
356 	return ret;
357 }
358 
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
361 			      unsigned long addr, pmd_t *pmdp)
362 {
363 	int ret = 0;
364 
365 	if (pmd_young(*pmdp))
366 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
367 					 (unsigned long *)pmdp);
368 
369 	if (ret)
370 		pmd_update(vma->vm_mm, addr, pmdp);
371 
372 	return ret;
373 }
374 #endif
375 
376 int ptep_clear_flush_young(struct vm_area_struct *vma,
377 			   unsigned long address, pte_t *ptep)
378 {
379 	int young;
380 
381 	young = ptep_test_and_clear_young(vma, address, ptep);
382 	if (young)
383 		flush_tlb_page(vma, address);
384 
385 	return young;
386 }
387 
388 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
389 int pmdp_clear_flush_young(struct vm_area_struct *vma,
390 			   unsigned long address, pmd_t *pmdp)
391 {
392 	int young;
393 
394 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
395 
396 	young = pmdp_test_and_clear_young(vma, address, pmdp);
397 	if (young)
398 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
399 
400 	return young;
401 }
402 
403 void pmdp_splitting_flush(struct vm_area_struct *vma,
404 			  unsigned long address, pmd_t *pmdp)
405 {
406 	int set;
407 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
408 	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
409 				(unsigned long *)pmdp);
410 	if (set) {
411 		pmd_update(vma->vm_mm, address, pmdp);
412 		/* need tlb flush only to serialize against gup-fast */
413 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
414 	}
415 }
416 #endif
417 
418 /**
419  * reserve_top_address - reserves a hole in the top of kernel address space
420  * @reserve - size of hole to reserve
421  *
422  * Can be used to relocate the fixmap area and poke a hole in the top
423  * of kernel address space to make room for a hypervisor.
424  */
425 void __init reserve_top_address(unsigned long reserve)
426 {
427 #ifdef CONFIG_X86_32
428 	BUG_ON(fixmaps_set > 0);
429 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
430 	       (int)-reserve);
431 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
432 #endif
433 }
434 
435 int fixmaps_set;
436 
437 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
438 {
439 	unsigned long address = __fix_to_virt(idx);
440 
441 	if (idx >= __end_of_fixed_addresses) {
442 		BUG();
443 		return;
444 	}
445 	set_pte_vaddr(address, pte);
446 	fixmaps_set++;
447 }
448 
449 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
450 		       pgprot_t flags)
451 {
452 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
453 }
454