xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision 4dc7ccf7)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (pte)
29 		pgtable_page_ctor(pte);
30 	return pte;
31 }
32 
33 static int __init setup_userpte(char *arg)
34 {
35 	if (!arg)
36 		return -EINVAL;
37 
38 	/*
39 	 * "userpte=nohigh" disables allocation of user pagetables in
40 	 * high memory.
41 	 */
42 	if (strcmp(arg, "nohigh") == 0)
43 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 	else
45 		return -EINVAL;
46 	return 0;
47 }
48 early_param("userpte", setup_userpte);
49 
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52 	pgtable_page_dtor(pte);
53 	paravirt_release_pte(page_to_pfn(pte));
54 	tlb_remove_page(tlb, pte);
55 }
56 
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61 	tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63 
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68 	tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif	/* PAGETABLE_LEVELS > 3 */
71 #endif	/* PAGETABLE_LEVELS > 2 */
72 
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75 	struct page *page = virt_to_page(pgd);
76 
77 	list_add(&page->lru, &pgd_list);
78 }
79 
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82 	struct page *page = virt_to_page(pgd);
83 
84 	list_del(&page->lru);
85 }
86 
87 #define UNSHARED_PTRS_PER_PGD				\
88 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89 
90 static void pgd_ctor(pgd_t *pgd)
91 {
92 	/* If the pgd points to a shared pagetable level (either the
93 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
94 	   references from swapper_pg_dir. */
95 	if (PAGETABLE_LEVELS == 2 ||
96 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
97 	    PAGETABLE_LEVELS == 4) {
98 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
99 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
100 				KERNEL_PGD_PTRS);
101 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
102 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
103 					 KERNEL_PGD_BOUNDARY,
104 					 KERNEL_PGD_PTRS);
105 	}
106 
107 	/* list required to sync kernel mapping updates */
108 	if (!SHARED_KERNEL_PMD)
109 		pgd_list_add(pgd);
110 }
111 
112 static void pgd_dtor(pgd_t *pgd)
113 {
114 	unsigned long flags; /* can be called from interrupt context */
115 
116 	if (SHARED_KERNEL_PMD)
117 		return;
118 
119 	spin_lock_irqsave(&pgd_lock, flags);
120 	pgd_list_del(pgd);
121 	spin_unlock_irqrestore(&pgd_lock, flags);
122 }
123 
124 /*
125  * List of all pgd's needed for non-PAE so it can invalidate entries
126  * in both cached and uncached pgd's; not needed for PAE since the
127  * kernel pmd is shared. If PAE were not to share the pmd a similar
128  * tactic would be needed. This is essentially codepath-based locking
129  * against pageattr.c; it is the unique case in which a valid change
130  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
131  * vmalloc faults work because attached pagetables are never freed.
132  * -- wli
133  */
134 
135 #ifdef CONFIG_X86_PAE
136 /*
137  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
138  * updating the top-level pagetable entries to guarantee the
139  * processor notices the update.  Since this is expensive, and
140  * all 4 top-level entries are used almost immediately in a
141  * new process's life, we just pre-populate them here.
142  *
143  * Also, if we're in a paravirt environment where the kernel pmd is
144  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
145  * and initialize the kernel pmds here.
146  */
147 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
148 
149 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
150 {
151 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
152 
153 	/* Note: almost everything apart from _PAGE_PRESENT is
154 	   reserved at the pmd (PDPT) level. */
155 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
156 
157 	/*
158 	 * According to Intel App note "TLBs, Paging-Structure Caches,
159 	 * and Their Invalidation", April 2007, document 317080-001,
160 	 * section 8.1: in PAE mode we explicitly have to flush the
161 	 * TLB via cr3 if the top-level pgd is changed...
162 	 */
163 	if (mm == current->active_mm)
164 		write_cr3(read_cr3());
165 }
166 #else  /* !CONFIG_X86_PAE */
167 
168 /* No need to prepopulate any pagetable entries in non-PAE modes. */
169 #define PREALLOCATED_PMDS	0
170 
171 #endif	/* CONFIG_X86_PAE */
172 
173 static void free_pmds(pmd_t *pmds[])
174 {
175 	int i;
176 
177 	for(i = 0; i < PREALLOCATED_PMDS; i++)
178 		if (pmds[i])
179 			free_page((unsigned long)pmds[i]);
180 }
181 
182 static int preallocate_pmds(pmd_t *pmds[])
183 {
184 	int i;
185 	bool failed = false;
186 
187 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
188 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
189 		if (pmd == NULL)
190 			failed = true;
191 		pmds[i] = pmd;
192 	}
193 
194 	if (failed) {
195 		free_pmds(pmds);
196 		return -ENOMEM;
197 	}
198 
199 	return 0;
200 }
201 
202 /*
203  * Mop up any pmd pages which may still be attached to the pgd.
204  * Normally they will be freed by munmap/exit_mmap, but any pmd we
205  * preallocate which never got a corresponding vma will need to be
206  * freed manually.
207  */
208 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
209 {
210 	int i;
211 
212 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
213 		pgd_t pgd = pgdp[i];
214 
215 		if (pgd_val(pgd) != 0) {
216 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
217 
218 			pgdp[i] = native_make_pgd(0);
219 
220 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
221 			pmd_free(mm, pmd);
222 		}
223 	}
224 }
225 
226 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
227 {
228 	pud_t *pud;
229 	unsigned long addr;
230 	int i;
231 
232 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
233 		return;
234 
235 	pud = pud_offset(pgd, 0);
236 
237  	for (addr = i = 0; i < PREALLOCATED_PMDS;
238 	     i++, pud++, addr += PUD_SIZE) {
239 		pmd_t *pmd = pmds[i];
240 
241 		if (i >= KERNEL_PGD_BOUNDARY)
242 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
243 			       sizeof(pmd_t) * PTRS_PER_PMD);
244 
245 		pud_populate(mm, pud, pmd);
246 	}
247 }
248 
249 pgd_t *pgd_alloc(struct mm_struct *mm)
250 {
251 	pgd_t *pgd;
252 	pmd_t *pmds[PREALLOCATED_PMDS];
253 	unsigned long flags;
254 
255 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
256 
257 	if (pgd == NULL)
258 		goto out;
259 
260 	mm->pgd = pgd;
261 
262 	if (preallocate_pmds(pmds) != 0)
263 		goto out_free_pgd;
264 
265 	if (paravirt_pgd_alloc(mm) != 0)
266 		goto out_free_pmds;
267 
268 	/*
269 	 * Make sure that pre-populating the pmds is atomic with
270 	 * respect to anything walking the pgd_list, so that they
271 	 * never see a partially populated pgd.
272 	 */
273 	spin_lock_irqsave(&pgd_lock, flags);
274 
275 	pgd_ctor(pgd);
276 	pgd_prepopulate_pmd(mm, pgd, pmds);
277 
278 	spin_unlock_irqrestore(&pgd_lock, flags);
279 
280 	return pgd;
281 
282 out_free_pmds:
283 	free_pmds(pmds);
284 out_free_pgd:
285 	free_page((unsigned long)pgd);
286 out:
287 	return NULL;
288 }
289 
290 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
291 {
292 	pgd_mop_up_pmds(mm, pgd);
293 	pgd_dtor(pgd);
294 	paravirt_pgd_free(mm, pgd);
295 	free_page((unsigned long)pgd);
296 }
297 
298 int ptep_set_access_flags(struct vm_area_struct *vma,
299 			  unsigned long address, pte_t *ptep,
300 			  pte_t entry, int dirty)
301 {
302 	int changed = !pte_same(*ptep, entry);
303 
304 	if (changed && dirty) {
305 		*ptep = entry;
306 		pte_update_defer(vma->vm_mm, address, ptep);
307 		flush_tlb_page(vma, address);
308 	}
309 
310 	return changed;
311 }
312 
313 int ptep_test_and_clear_young(struct vm_area_struct *vma,
314 			      unsigned long addr, pte_t *ptep)
315 {
316 	int ret = 0;
317 
318 	if (pte_young(*ptep))
319 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
320 					 (unsigned long *) &ptep->pte);
321 
322 	if (ret)
323 		pte_update(vma->vm_mm, addr, ptep);
324 
325 	return ret;
326 }
327 
328 int ptep_clear_flush_young(struct vm_area_struct *vma,
329 			   unsigned long address, pte_t *ptep)
330 {
331 	int young;
332 
333 	young = ptep_test_and_clear_young(vma, address, ptep);
334 	if (young)
335 		flush_tlb_page(vma, address);
336 
337 	return young;
338 }
339 
340 /**
341  * reserve_top_address - reserves a hole in the top of kernel address space
342  * @reserve - size of hole to reserve
343  *
344  * Can be used to relocate the fixmap area and poke a hole in the top
345  * of kernel address space to make room for a hypervisor.
346  */
347 void __init reserve_top_address(unsigned long reserve)
348 {
349 #ifdef CONFIG_X86_32
350 	BUG_ON(fixmaps_set > 0);
351 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
352 	       (int)-reserve);
353 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
354 #endif
355 }
356 
357 int fixmaps_set;
358 
359 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
360 {
361 	unsigned long address = __fix_to_virt(idx);
362 
363 	if (idx >= __end_of_fixed_addresses) {
364 		BUG();
365 		return;
366 	}
367 	set_pte_vaddr(address, pte);
368 	fixmaps_set++;
369 }
370 
371 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
372 		       pgprot_t flags)
373 {
374 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
375 }
376