xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision 4cff79e9)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
12 
13 #ifdef CONFIG_HIGHPTE
14 #define PGALLOC_USER_GFP __GFP_HIGHMEM
15 #else
16 #define PGALLOC_USER_GFP 0
17 #endif
18 
19 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
20 
21 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
22 {
23 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
24 }
25 
26 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
27 {
28 	struct page *pte;
29 
30 	pte = alloc_pages(__userpte_alloc_gfp, 0);
31 	if (!pte)
32 		return NULL;
33 	if (!pgtable_page_ctor(pte)) {
34 		__free_page(pte);
35 		return NULL;
36 	}
37 	return pte;
38 }
39 
40 static int __init setup_userpte(char *arg)
41 {
42 	if (!arg)
43 		return -EINVAL;
44 
45 	/*
46 	 * "userpte=nohigh" disables allocation of user pagetables in
47 	 * high memory.
48 	 */
49 	if (strcmp(arg, "nohigh") == 0)
50 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
51 	else
52 		return -EINVAL;
53 	return 0;
54 }
55 early_param("userpte", setup_userpte);
56 
57 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
58 {
59 	pgtable_page_dtor(pte);
60 	paravirt_release_pte(page_to_pfn(pte));
61 	tlb_remove_table(tlb, pte);
62 }
63 
64 #if CONFIG_PGTABLE_LEVELS > 2
65 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
66 {
67 	struct page *page = virt_to_page(pmd);
68 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
69 	/*
70 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
71 	 * entries need a full cr3 reload to flush.
72 	 */
73 #ifdef CONFIG_X86_PAE
74 	tlb->need_flush_all = 1;
75 #endif
76 	pgtable_pmd_page_dtor(page);
77 	tlb_remove_table(tlb, page);
78 }
79 
80 #if CONFIG_PGTABLE_LEVELS > 3
81 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
82 {
83 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
84 	tlb_remove_table(tlb, virt_to_page(pud));
85 }
86 
87 #if CONFIG_PGTABLE_LEVELS > 4
88 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
89 {
90 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
91 	tlb_remove_table(tlb, virt_to_page(p4d));
92 }
93 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
94 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
95 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
96 
97 static inline void pgd_list_add(pgd_t *pgd)
98 {
99 	struct page *page = virt_to_page(pgd);
100 
101 	list_add(&page->lru, &pgd_list);
102 }
103 
104 static inline void pgd_list_del(pgd_t *pgd)
105 {
106 	struct page *page = virt_to_page(pgd);
107 
108 	list_del(&page->lru);
109 }
110 
111 #define UNSHARED_PTRS_PER_PGD				\
112 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
113 
114 
115 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
116 {
117 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
118 	virt_to_page(pgd)->index = (pgoff_t)mm;
119 }
120 
121 struct mm_struct *pgd_page_get_mm(struct page *page)
122 {
123 	return (struct mm_struct *)page->index;
124 }
125 
126 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127 {
128 	/* If the pgd points to a shared pagetable level (either the
129 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
130 	   references from swapper_pg_dir. */
131 	if (CONFIG_PGTABLE_LEVELS == 2 ||
132 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 	    CONFIG_PGTABLE_LEVELS >= 4) {
134 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 				KERNEL_PGD_PTRS);
137 	}
138 
139 	/* list required to sync kernel mapping updates */
140 	if (!SHARED_KERNEL_PMD) {
141 		pgd_set_mm(pgd, mm);
142 		pgd_list_add(pgd);
143 	}
144 }
145 
146 static void pgd_dtor(pgd_t *pgd)
147 {
148 	if (SHARED_KERNEL_PMD)
149 		return;
150 
151 	spin_lock(&pgd_lock);
152 	pgd_list_del(pgd);
153 	spin_unlock(&pgd_lock);
154 }
155 
156 /*
157  * List of all pgd's needed for non-PAE so it can invalidate entries
158  * in both cached and uncached pgd's; not needed for PAE since the
159  * kernel pmd is shared. If PAE were not to share the pmd a similar
160  * tactic would be needed. This is essentially codepath-based locking
161  * against pageattr.c; it is the unique case in which a valid change
162  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163  * vmalloc faults work because attached pagetables are never freed.
164  * -- nyc
165  */
166 
167 #ifdef CONFIG_X86_PAE
168 /*
169  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170  * updating the top-level pagetable entries to guarantee the
171  * processor notices the update.  Since this is expensive, and
172  * all 4 top-level entries are used almost immediately in a
173  * new process's life, we just pre-populate them here.
174  *
175  * Also, if we're in a paravirt environment where the kernel pmd is
176  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177  * and initialize the kernel pmds here.
178  */
179 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
180 
181 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182 {
183 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184 
185 	/* Note: almost everything apart from _PAGE_PRESENT is
186 	   reserved at the pmd (PDPT) level. */
187 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188 
189 	/*
190 	 * According to Intel App note "TLBs, Paging-Structure Caches,
191 	 * and Their Invalidation", April 2007, document 317080-001,
192 	 * section 8.1: in PAE mode we explicitly have to flush the
193 	 * TLB via cr3 if the top-level pgd is changed...
194 	 */
195 	flush_tlb_mm(mm);
196 }
197 #else  /* !CONFIG_X86_PAE */
198 
199 /* No need to prepopulate any pagetable entries in non-PAE modes. */
200 #define PREALLOCATED_PMDS	0
201 
202 #endif	/* CONFIG_X86_PAE */
203 
204 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
205 {
206 	int i;
207 
208 	for(i = 0; i < PREALLOCATED_PMDS; i++)
209 		if (pmds[i]) {
210 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
211 			free_page((unsigned long)pmds[i]);
212 			mm_dec_nr_pmds(mm);
213 		}
214 }
215 
216 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
217 {
218 	int i;
219 	bool failed = false;
220 	gfp_t gfp = PGALLOC_GFP;
221 
222 	if (mm == &init_mm)
223 		gfp &= ~__GFP_ACCOUNT;
224 
225 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
226 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
227 		if (!pmd)
228 			failed = true;
229 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
230 			free_page((unsigned long)pmd);
231 			pmd = NULL;
232 			failed = true;
233 		}
234 		if (pmd)
235 			mm_inc_nr_pmds(mm);
236 		pmds[i] = pmd;
237 	}
238 
239 	if (failed) {
240 		free_pmds(mm, pmds);
241 		return -ENOMEM;
242 	}
243 
244 	return 0;
245 }
246 
247 /*
248  * Mop up any pmd pages which may still be attached to the pgd.
249  * Normally they will be freed by munmap/exit_mmap, but any pmd we
250  * preallocate which never got a corresponding vma will need to be
251  * freed manually.
252  */
253 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
254 {
255 	int i;
256 
257 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
258 		pgd_t pgd = pgdp[i];
259 
260 		if (pgd_val(pgd) != 0) {
261 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
262 
263 			pgdp[i] = native_make_pgd(0);
264 
265 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
266 			pmd_free(mm, pmd);
267 			mm_dec_nr_pmds(mm);
268 		}
269 	}
270 }
271 
272 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
273 {
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	int i;
277 
278 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
279 		return;
280 
281 	p4d = p4d_offset(pgd, 0);
282 	pud = pud_offset(p4d, 0);
283 
284 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
285 		pmd_t *pmd = pmds[i];
286 
287 		if (i >= KERNEL_PGD_BOUNDARY)
288 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
289 			       sizeof(pmd_t) * PTRS_PER_PMD);
290 
291 		pud_populate(mm, pud, pmd);
292 	}
293 }
294 
295 /*
296  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
297  * assumes that pgd should be in one page.
298  *
299  * But kernel with PAE paging that is not running as a Xen domain
300  * only needs to allocate 32 bytes for pgd instead of one page.
301  */
302 #ifdef CONFIG_X86_PAE
303 
304 #include <linux/slab.h>
305 
306 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
307 #define PGD_ALIGN	32
308 
309 static struct kmem_cache *pgd_cache;
310 
311 static int __init pgd_cache_init(void)
312 {
313 	/*
314 	 * When PAE kernel is running as a Xen domain, it does not use
315 	 * shared kernel pmd. And this requires a whole page for pgd.
316 	 */
317 	if (!SHARED_KERNEL_PMD)
318 		return 0;
319 
320 	/*
321 	 * when PAE kernel is not running as a Xen domain, it uses
322 	 * shared kernel pmd. Shared kernel pmd does not require a whole
323 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
324 	 * During boot time, we create a 32-byte slab for pgd table allocation.
325 	 */
326 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
327 				      SLAB_PANIC, NULL);
328 	if (!pgd_cache)
329 		return -ENOMEM;
330 
331 	return 0;
332 }
333 core_initcall(pgd_cache_init);
334 
335 static inline pgd_t *_pgd_alloc(void)
336 {
337 	/*
338 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
339 	 * We allocate one page for pgd.
340 	 */
341 	if (!SHARED_KERNEL_PMD)
342 		return (pgd_t *)__get_free_page(PGALLOC_GFP);
343 
344 	/*
345 	 * Now PAE kernel is not running as a Xen domain. We can allocate
346 	 * a 32-byte slab for pgd to save memory space.
347 	 */
348 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
349 }
350 
351 static inline void _pgd_free(pgd_t *pgd)
352 {
353 	if (!SHARED_KERNEL_PMD)
354 		free_page((unsigned long)pgd);
355 	else
356 		kmem_cache_free(pgd_cache, pgd);
357 }
358 #else
359 
360 static inline pgd_t *_pgd_alloc(void)
361 {
362 	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
363 }
364 
365 static inline void _pgd_free(pgd_t *pgd)
366 {
367 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
368 }
369 #endif /* CONFIG_X86_PAE */
370 
371 pgd_t *pgd_alloc(struct mm_struct *mm)
372 {
373 	pgd_t *pgd;
374 	pmd_t *pmds[PREALLOCATED_PMDS];
375 
376 	pgd = _pgd_alloc();
377 
378 	if (pgd == NULL)
379 		goto out;
380 
381 	mm->pgd = pgd;
382 
383 	if (preallocate_pmds(mm, pmds) != 0)
384 		goto out_free_pgd;
385 
386 	if (paravirt_pgd_alloc(mm) != 0)
387 		goto out_free_pmds;
388 
389 	/*
390 	 * Make sure that pre-populating the pmds is atomic with
391 	 * respect to anything walking the pgd_list, so that they
392 	 * never see a partially populated pgd.
393 	 */
394 	spin_lock(&pgd_lock);
395 
396 	pgd_ctor(mm, pgd);
397 	pgd_prepopulate_pmd(mm, pgd, pmds);
398 
399 	spin_unlock(&pgd_lock);
400 
401 	return pgd;
402 
403 out_free_pmds:
404 	free_pmds(mm, pmds);
405 out_free_pgd:
406 	_pgd_free(pgd);
407 out:
408 	return NULL;
409 }
410 
411 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
412 {
413 	pgd_mop_up_pmds(mm, pgd);
414 	pgd_dtor(pgd);
415 	paravirt_pgd_free(mm, pgd);
416 	_pgd_free(pgd);
417 }
418 
419 /*
420  * Used to set accessed or dirty bits in the page table entries
421  * on other architectures. On x86, the accessed and dirty bits
422  * are tracked by hardware. However, do_wp_page calls this function
423  * to also make the pte writeable at the same time the dirty bit is
424  * set. In that case we do actually need to write the PTE.
425  */
426 int ptep_set_access_flags(struct vm_area_struct *vma,
427 			  unsigned long address, pte_t *ptep,
428 			  pte_t entry, int dirty)
429 {
430 	int changed = !pte_same(*ptep, entry);
431 
432 	if (changed && dirty)
433 		*ptep = entry;
434 
435 	return changed;
436 }
437 
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 int pmdp_set_access_flags(struct vm_area_struct *vma,
440 			  unsigned long address, pmd_t *pmdp,
441 			  pmd_t entry, int dirty)
442 {
443 	int changed = !pmd_same(*pmdp, entry);
444 
445 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
446 
447 	if (changed && dirty) {
448 		*pmdp = entry;
449 		/*
450 		 * We had a write-protection fault here and changed the pmd
451 		 * to to more permissive. No need to flush the TLB for that,
452 		 * #PF is architecturally guaranteed to do that and in the
453 		 * worst-case we'll generate a spurious fault.
454 		 */
455 	}
456 
457 	return changed;
458 }
459 
460 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
461 			  pud_t *pudp, pud_t entry, int dirty)
462 {
463 	int changed = !pud_same(*pudp, entry);
464 
465 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
466 
467 	if (changed && dirty) {
468 		*pudp = entry;
469 		/*
470 		 * We had a write-protection fault here and changed the pud
471 		 * to to more permissive. No need to flush the TLB for that,
472 		 * #PF is architecturally guaranteed to do that and in the
473 		 * worst-case we'll generate a spurious fault.
474 		 */
475 	}
476 
477 	return changed;
478 }
479 #endif
480 
481 int ptep_test_and_clear_young(struct vm_area_struct *vma,
482 			      unsigned long addr, pte_t *ptep)
483 {
484 	int ret = 0;
485 
486 	if (pte_young(*ptep))
487 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
488 					 (unsigned long *) &ptep->pte);
489 
490 	return ret;
491 }
492 
493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
494 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
495 			      unsigned long addr, pmd_t *pmdp)
496 {
497 	int ret = 0;
498 
499 	if (pmd_young(*pmdp))
500 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
501 					 (unsigned long *)pmdp);
502 
503 	return ret;
504 }
505 int pudp_test_and_clear_young(struct vm_area_struct *vma,
506 			      unsigned long addr, pud_t *pudp)
507 {
508 	int ret = 0;
509 
510 	if (pud_young(*pudp))
511 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
512 					 (unsigned long *)pudp);
513 
514 	return ret;
515 }
516 #endif
517 
518 int ptep_clear_flush_young(struct vm_area_struct *vma,
519 			   unsigned long address, pte_t *ptep)
520 {
521 	/*
522 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
523 	 * doesn't cause data corruption. [ It could cause incorrect
524 	 * page aging and the (mistaken) reclaim of hot pages, but the
525 	 * chance of that should be relatively low. ]
526 	 *
527 	 * So as a performance optimization don't flush the TLB when
528 	 * clearing the accessed bit, it will eventually be flushed by
529 	 * a context switch or a VM operation anyway. [ In the rare
530 	 * event of it not getting flushed for a long time the delay
531 	 * shouldn't really matter because there's no real memory
532 	 * pressure for swapout to react to. ]
533 	 */
534 	return ptep_test_and_clear_young(vma, address, ptep);
535 }
536 
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 int pmdp_clear_flush_young(struct vm_area_struct *vma,
539 			   unsigned long address, pmd_t *pmdp)
540 {
541 	int young;
542 
543 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
544 
545 	young = pmdp_test_and_clear_young(vma, address, pmdp);
546 	if (young)
547 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
548 
549 	return young;
550 }
551 #endif
552 
553 /**
554  * reserve_top_address - reserves a hole in the top of kernel address space
555  * @reserve - size of hole to reserve
556  *
557  * Can be used to relocate the fixmap area and poke a hole in the top
558  * of kernel address space to make room for a hypervisor.
559  */
560 void __init reserve_top_address(unsigned long reserve)
561 {
562 #ifdef CONFIG_X86_32
563 	BUG_ON(fixmaps_set > 0);
564 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
565 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
566 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
567 #endif
568 }
569 
570 int fixmaps_set;
571 
572 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
573 {
574 	unsigned long address = __fix_to_virt(idx);
575 
576 	if (idx >= __end_of_fixed_addresses) {
577 		BUG();
578 		return;
579 	}
580 	set_pte_vaddr(address, pte);
581 	fixmaps_set++;
582 }
583 
584 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
585 		       pgprot_t flags)
586 {
587 	/* Sanitize 'prot' against any unsupported bits: */
588 	pgprot_val(flags) &= __default_kernel_pte_mask;
589 
590 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
591 }
592 
593 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
594 #ifdef CONFIG_X86_5LEVEL
595 /**
596  * p4d_set_huge - setup kernel P4D mapping
597  *
598  * No 512GB pages yet -- always return 0
599  */
600 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
601 {
602 	return 0;
603 }
604 
605 /**
606  * p4d_clear_huge - clear kernel P4D mapping when it is set
607  *
608  * No 512GB pages yet -- always return 0
609  */
610 int p4d_clear_huge(p4d_t *p4d)
611 {
612 	return 0;
613 }
614 #endif
615 
616 /**
617  * pud_set_huge - setup kernel PUD mapping
618  *
619  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
620  * function sets up a huge page only if any of the following conditions are met:
621  *
622  * - MTRRs are disabled, or
623  *
624  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
625  *
626  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
627  *   has no effect on the requested PAT memory type.
628  *
629  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
630  * page mapping attempt fails.
631  *
632  * Returns 1 on success and 0 on failure.
633  */
634 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
635 {
636 	u8 mtrr, uniform;
637 
638 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
639 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
640 	    (mtrr != MTRR_TYPE_WRBACK))
641 		return 0;
642 
643 	/* Bail out if we are we on a populated non-leaf entry: */
644 	if (pud_present(*pud) && !pud_huge(*pud))
645 		return 0;
646 
647 	prot = pgprot_4k_2_large(prot);
648 
649 	set_pte((pte_t *)pud, pfn_pte(
650 		(u64)addr >> PAGE_SHIFT,
651 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
652 
653 	return 1;
654 }
655 
656 /**
657  * pmd_set_huge - setup kernel PMD mapping
658  *
659  * See text over pud_set_huge() above.
660  *
661  * Returns 1 on success and 0 on failure.
662  */
663 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
664 {
665 	u8 mtrr, uniform;
666 
667 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
668 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
669 	    (mtrr != MTRR_TYPE_WRBACK)) {
670 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
671 			     __func__, addr, addr + PMD_SIZE);
672 		return 0;
673 	}
674 
675 	/* Bail out if we are we on a populated non-leaf entry: */
676 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
677 		return 0;
678 
679 	prot = pgprot_4k_2_large(prot);
680 
681 	set_pte((pte_t *)pmd, pfn_pte(
682 		(u64)addr >> PAGE_SHIFT,
683 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
684 
685 	return 1;
686 }
687 
688 /**
689  * pud_clear_huge - clear kernel PUD mapping when it is set
690  *
691  * Returns 1 on success and 0 on failure (no PUD map is found).
692  */
693 int pud_clear_huge(pud_t *pud)
694 {
695 	if (pud_large(*pud)) {
696 		pud_clear(pud);
697 		return 1;
698 	}
699 
700 	return 0;
701 }
702 
703 /**
704  * pmd_clear_huge - clear kernel PMD mapping when it is set
705  *
706  * Returns 1 on success and 0 on failure (no PMD map is found).
707  */
708 int pmd_clear_huge(pmd_t *pmd)
709 {
710 	if (pmd_large(*pmd)) {
711 		pmd_clear(pmd);
712 		return 1;
713 	}
714 
715 	return 0;
716 }
717 
718 /**
719  * pud_free_pmd_page - Clear pud entry and free pmd page.
720  * @pud: Pointer to a PUD.
721  *
722  * Context: The pud range has been unmaped and TLB purged.
723  * Return: 1 if clearing the entry succeeded. 0 otherwise.
724  */
725 int pud_free_pmd_page(pud_t *pud)
726 {
727 	pmd_t *pmd;
728 	int i;
729 
730 	if (pud_none(*pud))
731 		return 1;
732 
733 	pmd = (pmd_t *)pud_page_vaddr(*pud);
734 
735 	for (i = 0; i < PTRS_PER_PMD; i++)
736 		if (!pmd_free_pte_page(&pmd[i]))
737 			return 0;
738 
739 	pud_clear(pud);
740 	free_page((unsigned long)pmd);
741 
742 	return 1;
743 }
744 
745 /**
746  * pmd_free_pte_page - Clear pmd entry and free pte page.
747  * @pmd: Pointer to a PMD.
748  *
749  * Context: The pmd range has been unmaped and TLB purged.
750  * Return: 1 if clearing the entry succeeded. 0 otherwise.
751  */
752 int pmd_free_pte_page(pmd_t *pmd)
753 {
754 	pte_t *pte;
755 
756 	if (pmd_none(*pmd))
757 		return 1;
758 
759 	pte = (pte_t *)pmd_page_vaddr(*pmd);
760 	pmd_clear(pmd);
761 	free_page((unsigned long)pte);
762 
763 	return 1;
764 }
765 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
766