1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <linux/hugetlb.h> 5 #include <asm/pgalloc.h> 6 #include <asm/pgtable.h> 7 #include <asm/tlb.h> 8 #include <asm/fixmap.h> 9 #include <asm/mtrr.h> 10 11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; 13 EXPORT_SYMBOL(physical_mask); 14 #endif 15 16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) 17 18 #ifdef CONFIG_HIGHPTE 19 #define PGALLOC_USER_GFP __GFP_HIGHMEM 20 #else 21 #define PGALLOC_USER_GFP 0 22 #endif 23 24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 25 26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm) 27 { 28 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); 29 } 30 31 pgtable_t pte_alloc_one(struct mm_struct *mm) 32 { 33 struct page *pte; 34 35 pte = alloc_pages(__userpte_alloc_gfp, 0); 36 if (!pte) 37 return NULL; 38 if (!pgtable_page_ctor(pte)) { 39 __free_page(pte); 40 return NULL; 41 } 42 return pte; 43 } 44 45 static int __init setup_userpte(char *arg) 46 { 47 if (!arg) 48 return -EINVAL; 49 50 /* 51 * "userpte=nohigh" disables allocation of user pagetables in 52 * high memory. 53 */ 54 if (strcmp(arg, "nohigh") == 0) 55 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 56 else 57 return -EINVAL; 58 return 0; 59 } 60 early_param("userpte", setup_userpte); 61 62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 63 { 64 pgtable_page_dtor(pte); 65 paravirt_release_pte(page_to_pfn(pte)); 66 paravirt_tlb_remove_table(tlb, pte); 67 } 68 69 #if CONFIG_PGTABLE_LEVELS > 2 70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 71 { 72 struct page *page = virt_to_page(pmd); 73 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 74 /* 75 * NOTE! For PAE, any changes to the top page-directory-pointer-table 76 * entries need a full cr3 reload to flush. 77 */ 78 #ifdef CONFIG_X86_PAE 79 tlb->need_flush_all = 1; 80 #endif 81 pgtable_pmd_page_dtor(page); 82 paravirt_tlb_remove_table(tlb, page); 83 } 84 85 #if CONFIG_PGTABLE_LEVELS > 3 86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 87 { 88 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 89 paravirt_tlb_remove_table(tlb, virt_to_page(pud)); 90 } 91 92 #if CONFIG_PGTABLE_LEVELS > 4 93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 94 { 95 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 96 paravirt_tlb_remove_table(tlb, virt_to_page(p4d)); 97 } 98 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 99 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 100 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 101 102 static inline void pgd_list_add(pgd_t *pgd) 103 { 104 struct page *page = virt_to_page(pgd); 105 106 list_add(&page->lru, &pgd_list); 107 } 108 109 static inline void pgd_list_del(pgd_t *pgd) 110 { 111 struct page *page = virt_to_page(pgd); 112 113 list_del(&page->lru); 114 } 115 116 #define UNSHARED_PTRS_PER_PGD \ 117 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 118 #define MAX_UNSHARED_PTRS_PER_PGD \ 119 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD) 120 121 122 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 123 { 124 virt_to_page(pgd)->pt_mm = mm; 125 } 126 127 struct mm_struct *pgd_page_get_mm(struct page *page) 128 { 129 return page->pt_mm; 130 } 131 132 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 133 { 134 /* If the pgd points to a shared pagetable level (either the 135 ptes in non-PAE, or shared PMD in PAE), then just copy the 136 references from swapper_pg_dir. */ 137 if (CONFIG_PGTABLE_LEVELS == 2 || 138 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 139 CONFIG_PGTABLE_LEVELS >= 4) { 140 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 141 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 142 KERNEL_PGD_PTRS); 143 } 144 145 /* list required to sync kernel mapping updates */ 146 if (!SHARED_KERNEL_PMD) { 147 pgd_set_mm(pgd, mm); 148 pgd_list_add(pgd); 149 } 150 } 151 152 static void pgd_dtor(pgd_t *pgd) 153 { 154 if (SHARED_KERNEL_PMD) 155 return; 156 157 spin_lock(&pgd_lock); 158 pgd_list_del(pgd); 159 spin_unlock(&pgd_lock); 160 } 161 162 /* 163 * List of all pgd's needed for non-PAE so it can invalidate entries 164 * in both cached and uncached pgd's; not needed for PAE since the 165 * kernel pmd is shared. If PAE were not to share the pmd a similar 166 * tactic would be needed. This is essentially codepath-based locking 167 * against pageattr.c; it is the unique case in which a valid change 168 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 169 * vmalloc faults work because attached pagetables are never freed. 170 * -- nyc 171 */ 172 173 #ifdef CONFIG_X86_PAE 174 /* 175 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 176 * updating the top-level pagetable entries to guarantee the 177 * processor notices the update. Since this is expensive, and 178 * all 4 top-level entries are used almost immediately in a 179 * new process's life, we just pre-populate them here. 180 * 181 * Also, if we're in a paravirt environment where the kernel pmd is 182 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 183 * and initialize the kernel pmds here. 184 */ 185 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 186 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD 187 188 /* 189 * We allocate separate PMDs for the kernel part of the user page-table 190 * when PTI is enabled. We need them to map the per-process LDT into the 191 * user-space page-table. 192 */ 193 #define PREALLOCATED_USER_PMDS (static_cpu_has(X86_FEATURE_PTI) ? \ 194 KERNEL_PGD_PTRS : 0) 195 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS 196 197 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 198 { 199 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 200 201 /* Note: almost everything apart from _PAGE_PRESENT is 202 reserved at the pmd (PDPT) level. */ 203 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 204 205 /* 206 * According to Intel App note "TLBs, Paging-Structure Caches, 207 * and Their Invalidation", April 2007, document 317080-001, 208 * section 8.1: in PAE mode we explicitly have to flush the 209 * TLB via cr3 if the top-level pgd is changed... 210 */ 211 flush_tlb_mm(mm); 212 } 213 #else /* !CONFIG_X86_PAE */ 214 215 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 216 #define PREALLOCATED_PMDS 0 217 #define MAX_PREALLOCATED_PMDS 0 218 #define PREALLOCATED_USER_PMDS 0 219 #define MAX_PREALLOCATED_USER_PMDS 0 220 #endif /* CONFIG_X86_PAE */ 221 222 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 223 { 224 int i; 225 226 for (i = 0; i < count; i++) 227 if (pmds[i]) { 228 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 229 free_page((unsigned long)pmds[i]); 230 mm_dec_nr_pmds(mm); 231 } 232 } 233 234 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 235 { 236 int i; 237 bool failed = false; 238 gfp_t gfp = PGALLOC_GFP; 239 240 if (mm == &init_mm) 241 gfp &= ~__GFP_ACCOUNT; 242 243 for (i = 0; i < count; i++) { 244 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 245 if (!pmd) 246 failed = true; 247 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 248 free_page((unsigned long)pmd); 249 pmd = NULL; 250 failed = true; 251 } 252 if (pmd) 253 mm_inc_nr_pmds(mm); 254 pmds[i] = pmd; 255 } 256 257 if (failed) { 258 free_pmds(mm, pmds, count); 259 return -ENOMEM; 260 } 261 262 return 0; 263 } 264 265 /* 266 * Mop up any pmd pages which may still be attached to the pgd. 267 * Normally they will be freed by munmap/exit_mmap, but any pmd we 268 * preallocate which never got a corresponding vma will need to be 269 * freed manually. 270 */ 271 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) 272 { 273 pgd_t pgd = *pgdp; 274 275 if (pgd_val(pgd) != 0) { 276 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 277 278 pgd_clear(pgdp); 279 280 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 281 pmd_free(mm, pmd); 282 mm_dec_nr_pmds(mm); 283 } 284 } 285 286 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 287 { 288 int i; 289 290 for (i = 0; i < PREALLOCATED_PMDS; i++) 291 mop_up_one_pmd(mm, &pgdp[i]); 292 293 #ifdef CONFIG_PAGE_TABLE_ISOLATION 294 295 if (!static_cpu_has(X86_FEATURE_PTI)) 296 return; 297 298 pgdp = kernel_to_user_pgdp(pgdp); 299 300 for (i = 0; i < PREALLOCATED_USER_PMDS; i++) 301 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); 302 #endif 303 } 304 305 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 306 { 307 p4d_t *p4d; 308 pud_t *pud; 309 int i; 310 311 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 312 return; 313 314 p4d = p4d_offset(pgd, 0); 315 pud = pud_offset(p4d, 0); 316 317 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 318 pmd_t *pmd = pmds[i]; 319 320 if (i >= KERNEL_PGD_BOUNDARY) 321 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 322 sizeof(pmd_t) * PTRS_PER_PMD); 323 324 pud_populate(mm, pud, pmd); 325 } 326 } 327 328 #ifdef CONFIG_PAGE_TABLE_ISOLATION 329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 330 pgd_t *k_pgd, pmd_t *pmds[]) 331 { 332 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); 333 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 334 p4d_t *u_p4d; 335 pud_t *u_pud; 336 int i; 337 338 u_p4d = p4d_offset(u_pgd, 0); 339 u_pud = pud_offset(u_p4d, 0); 340 341 s_pgd += KERNEL_PGD_BOUNDARY; 342 u_pud += KERNEL_PGD_BOUNDARY; 343 344 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { 345 pmd_t *pmd = pmds[i]; 346 347 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), 348 sizeof(pmd_t) * PTRS_PER_PMD); 349 350 pud_populate(mm, u_pud, pmd); 351 } 352 353 } 354 #else 355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 356 pgd_t *k_pgd, pmd_t *pmds[]) 357 { 358 } 359 #endif 360 /* 361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 362 * assumes that pgd should be in one page. 363 * 364 * But kernel with PAE paging that is not running as a Xen domain 365 * only needs to allocate 32 bytes for pgd instead of one page. 366 */ 367 #ifdef CONFIG_X86_PAE 368 369 #include <linux/slab.h> 370 371 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 372 #define PGD_ALIGN 32 373 374 static struct kmem_cache *pgd_cache; 375 376 static int __init pgd_cache_init(void) 377 { 378 /* 379 * When PAE kernel is running as a Xen domain, it does not use 380 * shared kernel pmd. And this requires a whole page for pgd. 381 */ 382 if (!SHARED_KERNEL_PMD) 383 return 0; 384 385 /* 386 * when PAE kernel is not running as a Xen domain, it uses 387 * shared kernel pmd. Shared kernel pmd does not require a whole 388 * page for pgd. We are able to just allocate a 32-byte for pgd. 389 * During boot time, we create a 32-byte slab for pgd table allocation. 390 */ 391 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 392 SLAB_PANIC, NULL); 393 return 0; 394 } 395 core_initcall(pgd_cache_init); 396 397 static inline pgd_t *_pgd_alloc(void) 398 { 399 /* 400 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 401 * We allocate one page for pgd. 402 */ 403 if (!SHARED_KERNEL_PMD) 404 return (pgd_t *)__get_free_pages(PGALLOC_GFP, 405 PGD_ALLOCATION_ORDER); 406 407 /* 408 * Now PAE kernel is not running as a Xen domain. We can allocate 409 * a 32-byte slab for pgd to save memory space. 410 */ 411 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 412 } 413 414 static inline void _pgd_free(pgd_t *pgd) 415 { 416 if (!SHARED_KERNEL_PMD) 417 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 418 else 419 kmem_cache_free(pgd_cache, pgd); 420 } 421 #else 422 423 static inline pgd_t *_pgd_alloc(void) 424 { 425 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); 426 } 427 428 static inline void _pgd_free(pgd_t *pgd) 429 { 430 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 431 } 432 #endif /* CONFIG_X86_PAE */ 433 434 pgd_t *pgd_alloc(struct mm_struct *mm) 435 { 436 pgd_t *pgd; 437 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS]; 438 pmd_t *pmds[MAX_PREALLOCATED_PMDS]; 439 440 pgd = _pgd_alloc(); 441 442 if (pgd == NULL) 443 goto out; 444 445 mm->pgd = pgd; 446 447 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) 448 goto out_free_pgd; 449 450 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) 451 goto out_free_pmds; 452 453 if (paravirt_pgd_alloc(mm) != 0) 454 goto out_free_user_pmds; 455 456 /* 457 * Make sure that pre-populating the pmds is atomic with 458 * respect to anything walking the pgd_list, so that they 459 * never see a partially populated pgd. 460 */ 461 spin_lock(&pgd_lock); 462 463 pgd_ctor(mm, pgd); 464 pgd_prepopulate_pmd(mm, pgd, pmds); 465 pgd_prepopulate_user_pmd(mm, pgd, u_pmds); 466 467 spin_unlock(&pgd_lock); 468 469 return pgd; 470 471 out_free_user_pmds: 472 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); 473 out_free_pmds: 474 free_pmds(mm, pmds, PREALLOCATED_PMDS); 475 out_free_pgd: 476 _pgd_free(pgd); 477 out: 478 return NULL; 479 } 480 481 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 482 { 483 pgd_mop_up_pmds(mm, pgd); 484 pgd_dtor(pgd); 485 paravirt_pgd_free(mm, pgd); 486 _pgd_free(pgd); 487 } 488 489 /* 490 * Used to set accessed or dirty bits in the page table entries 491 * on other architectures. On x86, the accessed and dirty bits 492 * are tracked by hardware. However, do_wp_page calls this function 493 * to also make the pte writeable at the same time the dirty bit is 494 * set. In that case we do actually need to write the PTE. 495 */ 496 int ptep_set_access_flags(struct vm_area_struct *vma, 497 unsigned long address, pte_t *ptep, 498 pte_t entry, int dirty) 499 { 500 int changed = !pte_same(*ptep, entry); 501 502 if (changed && dirty) 503 set_pte(ptep, entry); 504 505 return changed; 506 } 507 508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 509 int pmdp_set_access_flags(struct vm_area_struct *vma, 510 unsigned long address, pmd_t *pmdp, 511 pmd_t entry, int dirty) 512 { 513 int changed = !pmd_same(*pmdp, entry); 514 515 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 516 517 if (changed && dirty) { 518 set_pmd(pmdp, entry); 519 /* 520 * We had a write-protection fault here and changed the pmd 521 * to to more permissive. No need to flush the TLB for that, 522 * #PF is architecturally guaranteed to do that and in the 523 * worst-case we'll generate a spurious fault. 524 */ 525 } 526 527 return changed; 528 } 529 530 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 531 pud_t *pudp, pud_t entry, int dirty) 532 { 533 int changed = !pud_same(*pudp, entry); 534 535 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 536 537 if (changed && dirty) { 538 set_pud(pudp, entry); 539 /* 540 * We had a write-protection fault here and changed the pud 541 * to to more permissive. No need to flush the TLB for that, 542 * #PF is architecturally guaranteed to do that and in the 543 * worst-case we'll generate a spurious fault. 544 */ 545 } 546 547 return changed; 548 } 549 #endif 550 551 int ptep_test_and_clear_young(struct vm_area_struct *vma, 552 unsigned long addr, pte_t *ptep) 553 { 554 int ret = 0; 555 556 if (pte_young(*ptep)) 557 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 558 (unsigned long *) &ptep->pte); 559 560 return ret; 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 565 unsigned long addr, pmd_t *pmdp) 566 { 567 int ret = 0; 568 569 if (pmd_young(*pmdp)) 570 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 571 (unsigned long *)pmdp); 572 573 return ret; 574 } 575 int pudp_test_and_clear_young(struct vm_area_struct *vma, 576 unsigned long addr, pud_t *pudp) 577 { 578 int ret = 0; 579 580 if (pud_young(*pudp)) 581 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 582 (unsigned long *)pudp); 583 584 return ret; 585 } 586 #endif 587 588 int ptep_clear_flush_young(struct vm_area_struct *vma, 589 unsigned long address, pte_t *ptep) 590 { 591 /* 592 * On x86 CPUs, clearing the accessed bit without a TLB flush 593 * doesn't cause data corruption. [ It could cause incorrect 594 * page aging and the (mistaken) reclaim of hot pages, but the 595 * chance of that should be relatively low. ] 596 * 597 * So as a performance optimization don't flush the TLB when 598 * clearing the accessed bit, it will eventually be flushed by 599 * a context switch or a VM operation anyway. [ In the rare 600 * event of it not getting flushed for a long time the delay 601 * shouldn't really matter because there's no real memory 602 * pressure for swapout to react to. ] 603 */ 604 return ptep_test_and_clear_young(vma, address, ptep); 605 } 606 607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 608 int pmdp_clear_flush_young(struct vm_area_struct *vma, 609 unsigned long address, pmd_t *pmdp) 610 { 611 int young; 612 613 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 614 615 young = pmdp_test_and_clear_young(vma, address, pmdp); 616 if (young) 617 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 618 619 return young; 620 } 621 #endif 622 623 /** 624 * reserve_top_address - reserves a hole in the top of kernel address space 625 * @reserve - size of hole to reserve 626 * 627 * Can be used to relocate the fixmap area and poke a hole in the top 628 * of kernel address space to make room for a hypervisor. 629 */ 630 void __init reserve_top_address(unsigned long reserve) 631 { 632 #ifdef CONFIG_X86_32 633 BUG_ON(fixmaps_set > 0); 634 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 635 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 636 -reserve, __FIXADDR_TOP + PAGE_SIZE); 637 #endif 638 } 639 640 int fixmaps_set; 641 642 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 643 { 644 unsigned long address = __fix_to_virt(idx); 645 646 #ifdef CONFIG_X86_64 647 /* 648 * Ensure that the static initial page tables are covering the 649 * fixmap completely. 650 */ 651 BUILD_BUG_ON(__end_of_permanent_fixed_addresses > 652 (FIXMAP_PMD_NUM * PTRS_PER_PTE)); 653 #endif 654 655 if (idx >= __end_of_fixed_addresses) { 656 BUG(); 657 return; 658 } 659 set_pte_vaddr(address, pte); 660 fixmaps_set++; 661 } 662 663 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 664 pgprot_t flags) 665 { 666 /* Sanitize 'prot' against any unsupported bits: */ 667 pgprot_val(flags) &= __default_kernel_pte_mask; 668 669 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 670 } 671 672 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 673 #ifdef CONFIG_X86_5LEVEL 674 /** 675 * p4d_set_huge - setup kernel P4D mapping 676 * 677 * No 512GB pages yet -- always return 0 678 */ 679 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 680 { 681 return 0; 682 } 683 684 /** 685 * p4d_clear_huge - clear kernel P4D mapping when it is set 686 * 687 * No 512GB pages yet -- always return 0 688 */ 689 int p4d_clear_huge(p4d_t *p4d) 690 { 691 return 0; 692 } 693 #endif 694 695 /** 696 * pud_set_huge - setup kernel PUD mapping 697 * 698 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 699 * function sets up a huge page only if any of the following conditions are met: 700 * 701 * - MTRRs are disabled, or 702 * 703 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 704 * 705 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 706 * has no effect on the requested PAT memory type. 707 * 708 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 709 * page mapping attempt fails. 710 * 711 * Returns 1 on success and 0 on failure. 712 */ 713 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 714 { 715 u8 mtrr, uniform; 716 717 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 718 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 719 (mtrr != MTRR_TYPE_WRBACK)) 720 return 0; 721 722 /* Bail out if we are we on a populated non-leaf entry: */ 723 if (pud_present(*pud) && !pud_huge(*pud)) 724 return 0; 725 726 prot = pgprot_4k_2_large(prot); 727 728 set_pte((pte_t *)pud, pfn_pte( 729 (u64)addr >> PAGE_SHIFT, 730 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 731 732 return 1; 733 } 734 735 /** 736 * pmd_set_huge - setup kernel PMD mapping 737 * 738 * See text over pud_set_huge() above. 739 * 740 * Returns 1 on success and 0 on failure. 741 */ 742 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 743 { 744 u8 mtrr, uniform; 745 746 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 747 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 748 (mtrr != MTRR_TYPE_WRBACK)) { 749 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 750 __func__, addr, addr + PMD_SIZE); 751 return 0; 752 } 753 754 /* Bail out if we are we on a populated non-leaf entry: */ 755 if (pmd_present(*pmd) && !pmd_huge(*pmd)) 756 return 0; 757 758 prot = pgprot_4k_2_large(prot); 759 760 set_pte((pte_t *)pmd, pfn_pte( 761 (u64)addr >> PAGE_SHIFT, 762 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 763 764 return 1; 765 } 766 767 /** 768 * pud_clear_huge - clear kernel PUD mapping when it is set 769 * 770 * Returns 1 on success and 0 on failure (no PUD map is found). 771 */ 772 int pud_clear_huge(pud_t *pud) 773 { 774 if (pud_large(*pud)) { 775 pud_clear(pud); 776 return 1; 777 } 778 779 return 0; 780 } 781 782 /** 783 * pmd_clear_huge - clear kernel PMD mapping when it is set 784 * 785 * Returns 1 on success and 0 on failure (no PMD map is found). 786 */ 787 int pmd_clear_huge(pmd_t *pmd) 788 { 789 if (pmd_large(*pmd)) { 790 pmd_clear(pmd); 791 return 1; 792 } 793 794 return 0; 795 } 796 797 /* 798 * Until we support 512GB pages, skip them in the vmap area. 799 */ 800 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 801 { 802 return 0; 803 } 804 805 #ifdef CONFIG_X86_64 806 /** 807 * pud_free_pmd_page - Clear pud entry and free pmd page. 808 * @pud: Pointer to a PUD. 809 * @addr: Virtual address associated with pud. 810 * 811 * Context: The pud range has been unmapped and TLB purged. 812 * Return: 1 if clearing the entry succeeded. 0 otherwise. 813 * 814 * NOTE: Callers must allow a single page allocation. 815 */ 816 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 817 { 818 pmd_t *pmd, *pmd_sv; 819 pte_t *pte; 820 int i; 821 822 pmd = (pmd_t *)pud_page_vaddr(*pud); 823 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); 824 if (!pmd_sv) 825 return 0; 826 827 for (i = 0; i < PTRS_PER_PMD; i++) { 828 pmd_sv[i] = pmd[i]; 829 if (!pmd_none(pmd[i])) 830 pmd_clear(&pmd[i]); 831 } 832 833 pud_clear(pud); 834 835 /* INVLPG to clear all paging-structure caches */ 836 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 837 838 for (i = 0; i < PTRS_PER_PMD; i++) { 839 if (!pmd_none(pmd_sv[i])) { 840 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); 841 free_page((unsigned long)pte); 842 } 843 } 844 845 free_page((unsigned long)pmd_sv); 846 free_page((unsigned long)pmd); 847 848 return 1; 849 } 850 851 /** 852 * pmd_free_pte_page - Clear pmd entry and free pte page. 853 * @pmd: Pointer to a PMD. 854 * @addr: Virtual address associated with pmd. 855 * 856 * Context: The pmd range has been unmapped and TLB purged. 857 * Return: 1 if clearing the entry succeeded. 0 otherwise. 858 */ 859 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 860 { 861 pte_t *pte; 862 863 pte = (pte_t *)pmd_page_vaddr(*pmd); 864 pmd_clear(pmd); 865 866 /* INVLPG to clear all paging-structure caches */ 867 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 868 869 free_page((unsigned long)pte); 870 871 return 1; 872 } 873 874 #else /* !CONFIG_X86_64 */ 875 876 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 877 { 878 return pud_none(*pud); 879 } 880 881 /* 882 * Disable free page handling on x86-PAE. This assures that ioremap() 883 * does not update sync'd pmd entries. See vmalloc_sync_one(). 884 */ 885 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 886 { 887 return pmd_none(*pmd); 888 } 889 890 #endif /* CONFIG_X86_64 */ 891 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 892