xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15 
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
17 
18 #ifdef CONFIG_HIGHPTE
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
20 #else
21 #define PGALLOC_USER_GFP 0
22 #endif
23 
24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
25 
26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
27 {
28 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
29 }
30 
31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 	struct page *pte;
34 
35 	pte = alloc_pages(__userpte_alloc_gfp, 0);
36 	if (!pte)
37 		return NULL;
38 	if (!pgtable_page_ctor(pte)) {
39 		__free_page(pte);
40 		return NULL;
41 	}
42 	return pte;
43 }
44 
45 static int __init setup_userpte(char *arg)
46 {
47 	if (!arg)
48 		return -EINVAL;
49 
50 	/*
51 	 * "userpte=nohigh" disables allocation of user pagetables in
52 	 * high memory.
53 	 */
54 	if (strcmp(arg, "nohigh") == 0)
55 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
56 	else
57 		return -EINVAL;
58 	return 0;
59 }
60 early_param("userpte", setup_userpte);
61 
62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
63 {
64 	pgtable_page_dtor(pte);
65 	paravirt_release_pte(page_to_pfn(pte));
66 	paravirt_tlb_remove_table(tlb, pte);
67 }
68 
69 #if CONFIG_PGTABLE_LEVELS > 2
70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
71 {
72 	struct page *page = virt_to_page(pmd);
73 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
74 	/*
75 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 	 * entries need a full cr3 reload to flush.
77 	 */
78 #ifdef CONFIG_X86_PAE
79 	tlb->need_flush_all = 1;
80 #endif
81 	pgtable_pmd_page_dtor(page);
82 	paravirt_tlb_remove_table(tlb, page);
83 }
84 
85 #if CONFIG_PGTABLE_LEVELS > 3
86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
87 {
88 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
90 }
91 
92 #if CONFIG_PGTABLE_LEVELS > 4
93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
94 {
95 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
97 }
98 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
101 
102 static inline void pgd_list_add(pgd_t *pgd)
103 {
104 	struct page *page = virt_to_page(pgd);
105 
106 	list_add(&page->lru, &pgd_list);
107 }
108 
109 static inline void pgd_list_del(pgd_t *pgd)
110 {
111 	struct page *page = virt_to_page(pgd);
112 
113 	list_del(&page->lru);
114 }
115 
116 #define UNSHARED_PTRS_PER_PGD				\
117 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118 #define MAX_UNSHARED_PTRS_PER_PGD			\
119 	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
120 
121 
122 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
123 {
124 	virt_to_page(pgd)->pt_mm = mm;
125 }
126 
127 struct mm_struct *pgd_page_get_mm(struct page *page)
128 {
129 	return page->pt_mm;
130 }
131 
132 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
133 {
134 	/* If the pgd points to a shared pagetable level (either the
135 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
136 	   references from swapper_pg_dir. */
137 	if (CONFIG_PGTABLE_LEVELS == 2 ||
138 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
139 	    CONFIG_PGTABLE_LEVELS >= 4) {
140 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
141 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
142 				KERNEL_PGD_PTRS);
143 	}
144 
145 	/* list required to sync kernel mapping updates */
146 	if (!SHARED_KERNEL_PMD) {
147 		pgd_set_mm(pgd, mm);
148 		pgd_list_add(pgd);
149 	}
150 }
151 
152 static void pgd_dtor(pgd_t *pgd)
153 {
154 	if (SHARED_KERNEL_PMD)
155 		return;
156 
157 	spin_lock(&pgd_lock);
158 	pgd_list_del(pgd);
159 	spin_unlock(&pgd_lock);
160 }
161 
162 /*
163  * List of all pgd's needed for non-PAE so it can invalidate entries
164  * in both cached and uncached pgd's; not needed for PAE since the
165  * kernel pmd is shared. If PAE were not to share the pmd a similar
166  * tactic would be needed. This is essentially codepath-based locking
167  * against pageattr.c; it is the unique case in which a valid change
168  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
169  * vmalloc faults work because attached pagetables are never freed.
170  * -- nyc
171  */
172 
173 #ifdef CONFIG_X86_PAE
174 /*
175  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
176  * updating the top-level pagetable entries to guarantee the
177  * processor notices the update.  Since this is expensive, and
178  * all 4 top-level entries are used almost immediately in a
179  * new process's life, we just pre-populate them here.
180  *
181  * Also, if we're in a paravirt environment where the kernel pmd is
182  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
183  * and initialize the kernel pmds here.
184  */
185 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
186 #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
187 
188 /*
189  * We allocate separate PMDs for the kernel part of the user page-table
190  * when PTI is enabled. We need them to map the per-process LDT into the
191  * user-space page-table.
192  */
193 #define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
194 					KERNEL_PGD_PTRS : 0)
195 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
196 
197 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
198 {
199 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
200 
201 	/* Note: almost everything apart from _PAGE_PRESENT is
202 	   reserved at the pmd (PDPT) level. */
203 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
204 
205 	/*
206 	 * According to Intel App note "TLBs, Paging-Structure Caches,
207 	 * and Their Invalidation", April 2007, document 317080-001,
208 	 * section 8.1: in PAE mode we explicitly have to flush the
209 	 * TLB via cr3 if the top-level pgd is changed...
210 	 */
211 	flush_tlb_mm(mm);
212 }
213 #else  /* !CONFIG_X86_PAE */
214 
215 /* No need to prepopulate any pagetable entries in non-PAE modes. */
216 #define PREALLOCATED_PMDS	0
217 #define MAX_PREALLOCATED_PMDS	0
218 #define PREALLOCATED_USER_PMDS	 0
219 #define MAX_PREALLOCATED_USER_PMDS 0
220 #endif	/* CONFIG_X86_PAE */
221 
222 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
223 {
224 	int i;
225 
226 	for (i = 0; i < count; i++)
227 		if (pmds[i]) {
228 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
229 			free_page((unsigned long)pmds[i]);
230 			mm_dec_nr_pmds(mm);
231 		}
232 }
233 
234 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
235 {
236 	int i;
237 	bool failed = false;
238 	gfp_t gfp = PGALLOC_GFP;
239 
240 	if (mm == &init_mm)
241 		gfp &= ~__GFP_ACCOUNT;
242 
243 	for (i = 0; i < count; i++) {
244 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
245 		if (!pmd)
246 			failed = true;
247 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
248 			free_page((unsigned long)pmd);
249 			pmd = NULL;
250 			failed = true;
251 		}
252 		if (pmd)
253 			mm_inc_nr_pmds(mm);
254 		pmds[i] = pmd;
255 	}
256 
257 	if (failed) {
258 		free_pmds(mm, pmds, count);
259 		return -ENOMEM;
260 	}
261 
262 	return 0;
263 }
264 
265 /*
266  * Mop up any pmd pages which may still be attached to the pgd.
267  * Normally they will be freed by munmap/exit_mmap, but any pmd we
268  * preallocate which never got a corresponding vma will need to be
269  * freed manually.
270  */
271 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
272 {
273 	pgd_t pgd = *pgdp;
274 
275 	if (pgd_val(pgd) != 0) {
276 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
277 
278 		pgd_clear(pgdp);
279 
280 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
281 		pmd_free(mm, pmd);
282 		mm_dec_nr_pmds(mm);
283 	}
284 }
285 
286 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
287 {
288 	int i;
289 
290 	for (i = 0; i < PREALLOCATED_PMDS; i++)
291 		mop_up_one_pmd(mm, &pgdp[i]);
292 
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
294 
295 	if (!boot_cpu_has(X86_FEATURE_PTI))
296 		return;
297 
298 	pgdp = kernel_to_user_pgdp(pgdp);
299 
300 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
301 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
302 #endif
303 }
304 
305 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
306 {
307 	p4d_t *p4d;
308 	pud_t *pud;
309 	int i;
310 
311 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
312 		return;
313 
314 	p4d = p4d_offset(pgd, 0);
315 	pud = pud_offset(p4d, 0);
316 
317 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 		pmd_t *pmd = pmds[i];
319 
320 		if (i >= KERNEL_PGD_BOUNDARY)
321 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 			       sizeof(pmd_t) * PTRS_PER_PMD);
323 
324 		pud_populate(mm, pud, pmd);
325 	}
326 }
327 
328 #ifdef CONFIG_PAGE_TABLE_ISOLATION
329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 				     pgd_t *k_pgd, pmd_t *pmds[])
331 {
332 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 	p4d_t *u_p4d;
335 	pud_t *u_pud;
336 	int i;
337 
338 	u_p4d = p4d_offset(u_pgd, 0);
339 	u_pud = pud_offset(u_p4d, 0);
340 
341 	s_pgd += KERNEL_PGD_BOUNDARY;
342 	u_pud += KERNEL_PGD_BOUNDARY;
343 
344 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 		pmd_t *pmd = pmds[i];
346 
347 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 		       sizeof(pmd_t) * PTRS_PER_PMD);
349 
350 		pud_populate(mm, u_pud, pmd);
351 	}
352 
353 }
354 #else
355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 				     pgd_t *k_pgd, pmd_t *pmds[])
357 {
358 }
359 #endif
360 /*
361  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362  * assumes that pgd should be in one page.
363  *
364  * But kernel with PAE paging that is not running as a Xen domain
365  * only needs to allocate 32 bytes for pgd instead of one page.
366  */
367 #ifdef CONFIG_X86_PAE
368 
369 #include <linux/slab.h>
370 
371 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN	32
373 
374 static struct kmem_cache *pgd_cache;
375 
376 void __init pgd_cache_init(void)
377 {
378 	/*
379 	 * When PAE kernel is running as a Xen domain, it does not use
380 	 * shared kernel pmd. And this requires a whole page for pgd.
381 	 */
382 	if (!SHARED_KERNEL_PMD)
383 		return;
384 
385 	/*
386 	 * when PAE kernel is not running as a Xen domain, it uses
387 	 * shared kernel pmd. Shared kernel pmd does not require a whole
388 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 	 * During boot time, we create a 32-byte slab for pgd table allocation.
390 	 */
391 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 				      SLAB_PANIC, NULL);
393 }
394 
395 static inline pgd_t *_pgd_alloc(void)
396 {
397 	/*
398 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
399 	 * We allocate one page for pgd.
400 	 */
401 	if (!SHARED_KERNEL_PMD)
402 		return (pgd_t *)__get_free_pages(PGALLOC_GFP,
403 						 PGD_ALLOCATION_ORDER);
404 
405 	/*
406 	 * Now PAE kernel is not running as a Xen domain. We can allocate
407 	 * a 32-byte slab for pgd to save memory space.
408 	 */
409 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
410 }
411 
412 static inline void _pgd_free(pgd_t *pgd)
413 {
414 	if (!SHARED_KERNEL_PMD)
415 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
416 	else
417 		kmem_cache_free(pgd_cache, pgd);
418 }
419 #else
420 
421 void __init pgd_cache_init(void)
422 {
423 }
424 
425 static inline pgd_t *_pgd_alloc(void)
426 {
427 	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
428 }
429 
430 static inline void _pgd_free(pgd_t *pgd)
431 {
432 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
433 }
434 #endif /* CONFIG_X86_PAE */
435 
436 pgd_t *pgd_alloc(struct mm_struct *mm)
437 {
438 	pgd_t *pgd;
439 	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
440 	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
441 
442 	pgd = _pgd_alloc();
443 
444 	if (pgd == NULL)
445 		goto out;
446 
447 	mm->pgd = pgd;
448 
449 	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
450 		goto out_free_pgd;
451 
452 	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
453 		goto out_free_pmds;
454 
455 	if (paravirt_pgd_alloc(mm) != 0)
456 		goto out_free_user_pmds;
457 
458 	/*
459 	 * Make sure that pre-populating the pmds is atomic with
460 	 * respect to anything walking the pgd_list, so that they
461 	 * never see a partially populated pgd.
462 	 */
463 	spin_lock(&pgd_lock);
464 
465 	pgd_ctor(mm, pgd);
466 	pgd_prepopulate_pmd(mm, pgd, pmds);
467 	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
468 
469 	spin_unlock(&pgd_lock);
470 
471 	return pgd;
472 
473 out_free_user_pmds:
474 	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
475 out_free_pmds:
476 	free_pmds(mm, pmds, PREALLOCATED_PMDS);
477 out_free_pgd:
478 	_pgd_free(pgd);
479 out:
480 	return NULL;
481 }
482 
483 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
484 {
485 	pgd_mop_up_pmds(mm, pgd);
486 	pgd_dtor(pgd);
487 	paravirt_pgd_free(mm, pgd);
488 	_pgd_free(pgd);
489 }
490 
491 /*
492  * Used to set accessed or dirty bits in the page table entries
493  * on other architectures. On x86, the accessed and dirty bits
494  * are tracked by hardware. However, do_wp_page calls this function
495  * to also make the pte writeable at the same time the dirty bit is
496  * set. In that case we do actually need to write the PTE.
497  */
498 int ptep_set_access_flags(struct vm_area_struct *vma,
499 			  unsigned long address, pte_t *ptep,
500 			  pte_t entry, int dirty)
501 {
502 	int changed = !pte_same(*ptep, entry);
503 
504 	if (changed && dirty)
505 		set_pte(ptep, entry);
506 
507 	return changed;
508 }
509 
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 int pmdp_set_access_flags(struct vm_area_struct *vma,
512 			  unsigned long address, pmd_t *pmdp,
513 			  pmd_t entry, int dirty)
514 {
515 	int changed = !pmd_same(*pmdp, entry);
516 
517 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
518 
519 	if (changed && dirty) {
520 		set_pmd(pmdp, entry);
521 		/*
522 		 * We had a write-protection fault here and changed the pmd
523 		 * to to more permissive. No need to flush the TLB for that,
524 		 * #PF is architecturally guaranteed to do that and in the
525 		 * worst-case we'll generate a spurious fault.
526 		 */
527 	}
528 
529 	return changed;
530 }
531 
532 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
533 			  pud_t *pudp, pud_t entry, int dirty)
534 {
535 	int changed = !pud_same(*pudp, entry);
536 
537 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
538 
539 	if (changed && dirty) {
540 		set_pud(pudp, entry);
541 		/*
542 		 * We had a write-protection fault here and changed the pud
543 		 * to to more permissive. No need to flush the TLB for that,
544 		 * #PF is architecturally guaranteed to do that and in the
545 		 * worst-case we'll generate a spurious fault.
546 		 */
547 	}
548 
549 	return changed;
550 }
551 #endif
552 
553 int ptep_test_and_clear_young(struct vm_area_struct *vma,
554 			      unsigned long addr, pte_t *ptep)
555 {
556 	int ret = 0;
557 
558 	if (pte_young(*ptep))
559 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
560 					 (unsigned long *) &ptep->pte);
561 
562 	return ret;
563 }
564 
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
567 			      unsigned long addr, pmd_t *pmdp)
568 {
569 	int ret = 0;
570 
571 	if (pmd_young(*pmdp))
572 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
573 					 (unsigned long *)pmdp);
574 
575 	return ret;
576 }
577 int pudp_test_and_clear_young(struct vm_area_struct *vma,
578 			      unsigned long addr, pud_t *pudp)
579 {
580 	int ret = 0;
581 
582 	if (pud_young(*pudp))
583 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
584 					 (unsigned long *)pudp);
585 
586 	return ret;
587 }
588 #endif
589 
590 int ptep_clear_flush_young(struct vm_area_struct *vma,
591 			   unsigned long address, pte_t *ptep)
592 {
593 	/*
594 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
595 	 * doesn't cause data corruption. [ It could cause incorrect
596 	 * page aging and the (mistaken) reclaim of hot pages, but the
597 	 * chance of that should be relatively low. ]
598 	 *
599 	 * So as a performance optimization don't flush the TLB when
600 	 * clearing the accessed bit, it will eventually be flushed by
601 	 * a context switch or a VM operation anyway. [ In the rare
602 	 * event of it not getting flushed for a long time the delay
603 	 * shouldn't really matter because there's no real memory
604 	 * pressure for swapout to react to. ]
605 	 */
606 	return ptep_test_and_clear_young(vma, address, ptep);
607 }
608 
609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
610 int pmdp_clear_flush_young(struct vm_area_struct *vma,
611 			   unsigned long address, pmd_t *pmdp)
612 {
613 	int young;
614 
615 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
616 
617 	young = pmdp_test_and_clear_young(vma, address, pmdp);
618 	if (young)
619 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
620 
621 	return young;
622 }
623 #endif
624 
625 /**
626  * reserve_top_address - reserves a hole in the top of kernel address space
627  * @reserve - size of hole to reserve
628  *
629  * Can be used to relocate the fixmap area and poke a hole in the top
630  * of kernel address space to make room for a hypervisor.
631  */
632 void __init reserve_top_address(unsigned long reserve)
633 {
634 #ifdef CONFIG_X86_32
635 	BUG_ON(fixmaps_set > 0);
636 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
637 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
638 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
639 #endif
640 }
641 
642 int fixmaps_set;
643 
644 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
645 {
646 	unsigned long address = __fix_to_virt(idx);
647 
648 #ifdef CONFIG_X86_64
649        /*
650 	* Ensure that the static initial page tables are covering the
651 	* fixmap completely.
652 	*/
653 	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
654 		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
655 #endif
656 
657 	if (idx >= __end_of_fixed_addresses) {
658 		BUG();
659 		return;
660 	}
661 	set_pte_vaddr(address, pte);
662 	fixmaps_set++;
663 }
664 
665 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
666 		       pgprot_t flags)
667 {
668 	/* Sanitize 'prot' against any unsupported bits: */
669 	pgprot_val(flags) &= __default_kernel_pte_mask;
670 
671 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
672 }
673 
674 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
675 #ifdef CONFIG_X86_5LEVEL
676 /**
677  * p4d_set_huge - setup kernel P4D mapping
678  *
679  * No 512GB pages yet -- always return 0
680  */
681 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
682 {
683 	return 0;
684 }
685 
686 /**
687  * p4d_clear_huge - clear kernel P4D mapping when it is set
688  *
689  * No 512GB pages yet -- always return 0
690  */
691 int p4d_clear_huge(p4d_t *p4d)
692 {
693 	return 0;
694 }
695 #endif
696 
697 /**
698  * pud_set_huge - setup kernel PUD mapping
699  *
700  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
701  * function sets up a huge page only if any of the following conditions are met:
702  *
703  * - MTRRs are disabled, or
704  *
705  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
706  *
707  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
708  *   has no effect on the requested PAT memory type.
709  *
710  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
711  * page mapping attempt fails.
712  *
713  * Returns 1 on success and 0 on failure.
714  */
715 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
716 {
717 	u8 mtrr, uniform;
718 
719 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
720 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
721 	    (mtrr != MTRR_TYPE_WRBACK))
722 		return 0;
723 
724 	/* Bail out if we are we on a populated non-leaf entry: */
725 	if (pud_present(*pud) && !pud_huge(*pud))
726 		return 0;
727 
728 	prot = pgprot_4k_2_large(prot);
729 
730 	set_pte((pte_t *)pud, pfn_pte(
731 		(u64)addr >> PAGE_SHIFT,
732 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
733 
734 	return 1;
735 }
736 
737 /**
738  * pmd_set_huge - setup kernel PMD mapping
739  *
740  * See text over pud_set_huge() above.
741  *
742  * Returns 1 on success and 0 on failure.
743  */
744 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
745 {
746 	u8 mtrr, uniform;
747 
748 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
749 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
750 	    (mtrr != MTRR_TYPE_WRBACK)) {
751 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
752 			     __func__, addr, addr + PMD_SIZE);
753 		return 0;
754 	}
755 
756 	/* Bail out if we are we on a populated non-leaf entry: */
757 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
758 		return 0;
759 
760 	prot = pgprot_4k_2_large(prot);
761 
762 	set_pte((pte_t *)pmd, pfn_pte(
763 		(u64)addr >> PAGE_SHIFT,
764 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
765 
766 	return 1;
767 }
768 
769 /**
770  * pud_clear_huge - clear kernel PUD mapping when it is set
771  *
772  * Returns 1 on success and 0 on failure (no PUD map is found).
773  */
774 int pud_clear_huge(pud_t *pud)
775 {
776 	if (pud_large(*pud)) {
777 		pud_clear(pud);
778 		return 1;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * pmd_clear_huge - clear kernel PMD mapping when it is set
786  *
787  * Returns 1 on success and 0 on failure (no PMD map is found).
788  */
789 int pmd_clear_huge(pmd_t *pmd)
790 {
791 	if (pmd_large(*pmd)) {
792 		pmd_clear(pmd);
793 		return 1;
794 	}
795 
796 	return 0;
797 }
798 
799 /*
800  * Until we support 512GB pages, skip them in the vmap area.
801  */
802 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
803 {
804 	return 0;
805 }
806 
807 #ifdef CONFIG_X86_64
808 /**
809  * pud_free_pmd_page - Clear pud entry and free pmd page.
810  * @pud: Pointer to a PUD.
811  * @addr: Virtual address associated with pud.
812  *
813  * Context: The pud range has been unmapped and TLB purged.
814  * Return: 1 if clearing the entry succeeded. 0 otherwise.
815  *
816  * NOTE: Callers must allow a single page allocation.
817  */
818 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
819 {
820 	pmd_t *pmd, *pmd_sv;
821 	pte_t *pte;
822 	int i;
823 
824 	pmd = (pmd_t *)pud_page_vaddr(*pud);
825 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
826 	if (!pmd_sv)
827 		return 0;
828 
829 	for (i = 0; i < PTRS_PER_PMD; i++) {
830 		pmd_sv[i] = pmd[i];
831 		if (!pmd_none(pmd[i]))
832 			pmd_clear(&pmd[i]);
833 	}
834 
835 	pud_clear(pud);
836 
837 	/* INVLPG to clear all paging-structure caches */
838 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
839 
840 	for (i = 0; i < PTRS_PER_PMD; i++) {
841 		if (!pmd_none(pmd_sv[i])) {
842 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
843 			free_page((unsigned long)pte);
844 		}
845 	}
846 
847 	free_page((unsigned long)pmd_sv);
848 	free_page((unsigned long)pmd);
849 
850 	return 1;
851 }
852 
853 /**
854  * pmd_free_pte_page - Clear pmd entry and free pte page.
855  * @pmd: Pointer to a PMD.
856  * @addr: Virtual address associated with pmd.
857  *
858  * Context: The pmd range has been unmapped and TLB purged.
859  * Return: 1 if clearing the entry succeeded. 0 otherwise.
860  */
861 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
862 {
863 	pte_t *pte;
864 
865 	pte = (pte_t *)pmd_page_vaddr(*pmd);
866 	pmd_clear(pmd);
867 
868 	/* INVLPG to clear all paging-structure caches */
869 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
870 
871 	free_page((unsigned long)pte);
872 
873 	return 1;
874 }
875 
876 #else /* !CONFIG_X86_64 */
877 
878 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
879 {
880 	return pud_none(*pud);
881 }
882 
883 /*
884  * Disable free page handling on x86-PAE. This assures that ioremap()
885  * does not update sync'd pmd entries. See vmalloc_sync_one().
886  */
887 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
888 {
889 	return pmd_none(*pmd);
890 }
891 
892 #endif /* CONFIG_X86_64 */
893 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
894