xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision 22246614)
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 
6 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
7 {
8 	return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
9 }
10 
11 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
12 {
13 	struct page *pte;
14 
15 #ifdef CONFIG_HIGHPTE
16 	pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
17 #else
18 	pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
19 #endif
20 	if (pte)
21 		pgtable_page_ctor(pte);
22 	return pte;
23 }
24 
25 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
26 {
27 	pgtable_page_dtor(pte);
28 	paravirt_release_pte(page_to_pfn(pte));
29 	tlb_remove_page(tlb, pte);
30 }
31 
32 #if PAGETABLE_LEVELS > 2
33 void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
34 {
35 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
36 	tlb_remove_page(tlb, virt_to_page(pmd));
37 }
38 
39 #if PAGETABLE_LEVELS > 3
40 void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
41 {
42 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
43 	tlb_remove_page(tlb, virt_to_page(pud));
44 }
45 #endif	/* PAGETABLE_LEVELS > 3 */
46 #endif	/* PAGETABLE_LEVELS > 2 */
47 
48 static inline void pgd_list_add(pgd_t *pgd)
49 {
50 	struct page *page = virt_to_page(pgd);
51 
52 	list_add(&page->lru, &pgd_list);
53 }
54 
55 static inline void pgd_list_del(pgd_t *pgd)
56 {
57 	struct page *page = virt_to_page(pgd);
58 
59 	list_del(&page->lru);
60 }
61 
62 #define UNSHARED_PTRS_PER_PGD				\
63 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
64 
65 static void pgd_ctor(void *p)
66 {
67 	pgd_t *pgd = p;
68 	unsigned long flags;
69 
70 	/* Clear usermode parts of PGD */
71 	memset(pgd, 0, KERNEL_PGD_BOUNDARY*sizeof(pgd_t));
72 
73 	spin_lock_irqsave(&pgd_lock, flags);
74 
75 	/* If the pgd points to a shared pagetable level (either the
76 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
77 	   references from swapper_pg_dir. */
78 	if (PAGETABLE_LEVELS == 2 ||
79 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
80 	    PAGETABLE_LEVELS == 4) {
81 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
82 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
83 				KERNEL_PGD_PTRS);
84 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
85 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
86 					 KERNEL_PGD_BOUNDARY,
87 					 KERNEL_PGD_PTRS);
88 	}
89 
90 	/* list required to sync kernel mapping updates */
91 	if (!SHARED_KERNEL_PMD)
92 		pgd_list_add(pgd);
93 
94 	spin_unlock_irqrestore(&pgd_lock, flags);
95 }
96 
97 static void pgd_dtor(void *pgd)
98 {
99 	unsigned long flags; /* can be called from interrupt context */
100 
101 	if (SHARED_KERNEL_PMD)
102 		return;
103 
104 	spin_lock_irqsave(&pgd_lock, flags);
105 	pgd_list_del(pgd);
106 	spin_unlock_irqrestore(&pgd_lock, flags);
107 }
108 
109 /*
110  * List of all pgd's needed for non-PAE so it can invalidate entries
111  * in both cached and uncached pgd's; not needed for PAE since the
112  * kernel pmd is shared. If PAE were not to share the pmd a similar
113  * tactic would be needed. This is essentially codepath-based locking
114  * against pageattr.c; it is the unique case in which a valid change
115  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
116  * vmalloc faults work because attached pagetables are never freed.
117  * -- wli
118  */
119 
120 #ifdef CONFIG_X86_PAE
121 /*
122  * Mop up any pmd pages which may still be attached to the pgd.
123  * Normally they will be freed by munmap/exit_mmap, but any pmd we
124  * preallocate which never got a corresponding vma will need to be
125  * freed manually.
126  */
127 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
128 {
129 	int i;
130 
131 	for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
132 		pgd_t pgd = pgdp[i];
133 
134 		if (pgd_val(pgd) != 0) {
135 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
136 
137 			pgdp[i] = native_make_pgd(0);
138 
139 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
140 			pmd_free(mm, pmd);
141 		}
142 	}
143 }
144 
145 /*
146  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
147  * updating the top-level pagetable entries to guarantee the
148  * processor notices the update.  Since this is expensive, and
149  * all 4 top-level entries are used almost immediately in a
150  * new process's life, we just pre-populate them here.
151  *
152  * Also, if we're in a paravirt environment where the kernel pmd is
153  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
154  * and initialize the kernel pmds here.
155  */
156 static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
157 {
158 	pud_t *pud;
159 	unsigned long addr;
160 	int i;
161 
162 	pud = pud_offset(pgd, 0);
163  	for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
164 	     i++, pud++, addr += PUD_SIZE) {
165 		pmd_t *pmd = pmd_alloc_one(mm, addr);
166 
167 		if (!pmd) {
168 			pgd_mop_up_pmds(mm, pgd);
169 			return 0;
170 		}
171 
172 		if (i >= KERNEL_PGD_BOUNDARY)
173 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
174 			       sizeof(pmd_t) * PTRS_PER_PMD);
175 
176 		pud_populate(mm, pud, pmd);
177 	}
178 
179 	return 1;
180 }
181 
182 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
183 {
184 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
185 
186 	/* Note: almost everything apart from _PAGE_PRESENT is
187 	   reserved at the pmd (PDPT) level. */
188 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
189 
190 	/*
191 	 * According to Intel App note "TLBs, Paging-Structure Caches,
192 	 * and Their Invalidation", April 2007, document 317080-001,
193 	 * section 8.1: in PAE mode we explicitly have to flush the
194 	 * TLB via cr3 if the top-level pgd is changed...
195 	 */
196 	if (mm == current->active_mm)
197 		write_cr3(read_cr3());
198 }
199 #else  /* !CONFIG_X86_PAE */
200 /* No need to prepopulate any pagetable entries in non-PAE modes. */
201 static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
202 {
203 	return 1;
204 }
205 
206 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgd)
207 {
208 }
209 #endif	/* CONFIG_X86_PAE */
210 
211 pgd_t *pgd_alloc(struct mm_struct *mm)
212 {
213 	pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
214 
215 	/* so that alloc_pmd can use it */
216 	mm->pgd = pgd;
217 	if (pgd)
218 		pgd_ctor(pgd);
219 
220 	if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
221 		pgd_dtor(pgd);
222 		free_page((unsigned long)pgd);
223 		pgd = NULL;
224 	}
225 
226 	return pgd;
227 }
228 
229 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
230 {
231 	pgd_mop_up_pmds(mm, pgd);
232 	pgd_dtor(pgd);
233 	free_page((unsigned long)pgd);
234 }
235 
236 int ptep_set_access_flags(struct vm_area_struct *vma,
237 			  unsigned long address, pte_t *ptep,
238 			  pte_t entry, int dirty)
239 {
240 	int changed = !pte_same(*ptep, entry);
241 
242 	if (changed && dirty) {
243 		*ptep = entry;
244 		pte_update_defer(vma->vm_mm, address, ptep);
245 		flush_tlb_page(vma, address);
246 	}
247 
248 	return changed;
249 }
250 
251 int ptep_test_and_clear_young(struct vm_area_struct *vma,
252 			      unsigned long addr, pte_t *ptep)
253 {
254 	int ret = 0;
255 
256 	if (pte_young(*ptep))
257 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
258 					 &ptep->pte);
259 
260 	if (ret)
261 		pte_update(vma->vm_mm, addr, ptep);
262 
263 	return ret;
264 }
265 
266 int ptep_clear_flush_young(struct vm_area_struct *vma,
267 			   unsigned long address, pte_t *ptep)
268 {
269 	int young;
270 
271 	young = ptep_test_and_clear_young(vma, address, ptep);
272 	if (young)
273 		flush_tlb_page(vma, address);
274 
275 	return young;
276 }
277