1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <linux/hugetlb.h> 5 #include <asm/pgalloc.h> 6 #include <asm/tlb.h> 7 #include <asm/fixmap.h> 8 #include <asm/mtrr.h> 9 10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; 12 EXPORT_SYMBOL(physical_mask); 13 #endif 14 15 #ifdef CONFIG_HIGHPTE 16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM 17 #else 18 #define PGTABLE_HIGHMEM 0 19 #endif 20 21 #ifndef CONFIG_PARAVIRT 22 static inline 23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table) 24 { 25 tlb_remove_page(tlb, table); 26 } 27 #endif 28 29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM; 30 31 pgtable_t pte_alloc_one(struct mm_struct *mm) 32 { 33 return __pte_alloc_one(mm, __userpte_alloc_gfp); 34 } 35 36 static int __init setup_userpte(char *arg) 37 { 38 if (!arg) 39 return -EINVAL; 40 41 /* 42 * "userpte=nohigh" disables allocation of user pagetables in 43 * high memory. 44 */ 45 if (strcmp(arg, "nohigh") == 0) 46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 47 else 48 return -EINVAL; 49 return 0; 50 } 51 early_param("userpte", setup_userpte); 52 53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 54 { 55 pgtable_pte_page_dtor(pte); 56 paravirt_release_pte(page_to_pfn(pte)); 57 paravirt_tlb_remove_table(tlb, pte); 58 } 59 60 #if CONFIG_PGTABLE_LEVELS > 2 61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 62 { 63 struct page *page = virt_to_page(pmd); 64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 65 /* 66 * NOTE! For PAE, any changes to the top page-directory-pointer-table 67 * entries need a full cr3 reload to flush. 68 */ 69 #ifdef CONFIG_X86_PAE 70 tlb->need_flush_all = 1; 71 #endif 72 pgtable_pmd_page_dtor(page); 73 paravirt_tlb_remove_table(tlb, page); 74 } 75 76 #if CONFIG_PGTABLE_LEVELS > 3 77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 78 { 79 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 80 paravirt_tlb_remove_table(tlb, virt_to_page(pud)); 81 } 82 83 #if CONFIG_PGTABLE_LEVELS > 4 84 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 85 { 86 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 87 paravirt_tlb_remove_table(tlb, virt_to_page(p4d)); 88 } 89 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 90 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 91 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 92 93 static inline void pgd_list_add(pgd_t *pgd) 94 { 95 struct page *page = virt_to_page(pgd); 96 97 list_add(&page->lru, &pgd_list); 98 } 99 100 static inline void pgd_list_del(pgd_t *pgd) 101 { 102 struct page *page = virt_to_page(pgd); 103 104 list_del(&page->lru); 105 } 106 107 #define UNSHARED_PTRS_PER_PGD \ 108 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 109 #define MAX_UNSHARED_PTRS_PER_PGD \ 110 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD) 111 112 113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 114 { 115 virt_to_page(pgd)->pt_mm = mm; 116 } 117 118 struct mm_struct *pgd_page_get_mm(struct page *page) 119 { 120 return page->pt_mm; 121 } 122 123 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 124 { 125 /* If the pgd points to a shared pagetable level (either the 126 ptes in non-PAE, or shared PMD in PAE), then just copy the 127 references from swapper_pg_dir. */ 128 if (CONFIG_PGTABLE_LEVELS == 2 || 129 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 130 CONFIG_PGTABLE_LEVELS >= 4) { 131 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 132 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 133 KERNEL_PGD_PTRS); 134 } 135 136 /* list required to sync kernel mapping updates */ 137 if (!SHARED_KERNEL_PMD) { 138 pgd_set_mm(pgd, mm); 139 pgd_list_add(pgd); 140 } 141 } 142 143 static void pgd_dtor(pgd_t *pgd) 144 { 145 if (SHARED_KERNEL_PMD) 146 return; 147 148 spin_lock(&pgd_lock); 149 pgd_list_del(pgd); 150 spin_unlock(&pgd_lock); 151 } 152 153 /* 154 * List of all pgd's needed for non-PAE so it can invalidate entries 155 * in both cached and uncached pgd's; not needed for PAE since the 156 * kernel pmd is shared. If PAE were not to share the pmd a similar 157 * tactic would be needed. This is essentially codepath-based locking 158 * against pageattr.c; it is the unique case in which a valid change 159 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 160 * vmalloc faults work because attached pagetables are never freed. 161 * -- nyc 162 */ 163 164 #ifdef CONFIG_X86_PAE 165 /* 166 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 167 * updating the top-level pagetable entries to guarantee the 168 * processor notices the update. Since this is expensive, and 169 * all 4 top-level entries are used almost immediately in a 170 * new process's life, we just pre-populate them here. 171 * 172 * Also, if we're in a paravirt environment where the kernel pmd is 173 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 174 * and initialize the kernel pmds here. 175 */ 176 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 177 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD 178 179 /* 180 * We allocate separate PMDs for the kernel part of the user page-table 181 * when PTI is enabled. We need them to map the per-process LDT into the 182 * user-space page-table. 183 */ 184 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \ 185 KERNEL_PGD_PTRS : 0) 186 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS 187 188 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 189 { 190 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 191 192 /* Note: almost everything apart from _PAGE_PRESENT is 193 reserved at the pmd (PDPT) level. */ 194 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 195 196 /* 197 * According to Intel App note "TLBs, Paging-Structure Caches, 198 * and Their Invalidation", April 2007, document 317080-001, 199 * section 8.1: in PAE mode we explicitly have to flush the 200 * TLB via cr3 if the top-level pgd is changed... 201 */ 202 flush_tlb_mm(mm); 203 } 204 #else /* !CONFIG_X86_PAE */ 205 206 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 207 #define PREALLOCATED_PMDS 0 208 #define MAX_PREALLOCATED_PMDS 0 209 #define PREALLOCATED_USER_PMDS 0 210 #define MAX_PREALLOCATED_USER_PMDS 0 211 #endif /* CONFIG_X86_PAE */ 212 213 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 214 { 215 int i; 216 217 for (i = 0; i < count; i++) 218 if (pmds[i]) { 219 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 220 free_page((unsigned long)pmds[i]); 221 mm_dec_nr_pmds(mm); 222 } 223 } 224 225 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 226 { 227 int i; 228 bool failed = false; 229 gfp_t gfp = GFP_PGTABLE_USER; 230 231 if (mm == &init_mm) 232 gfp &= ~__GFP_ACCOUNT; 233 234 for (i = 0; i < count; i++) { 235 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 236 if (!pmd) 237 failed = true; 238 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 239 free_page((unsigned long)pmd); 240 pmd = NULL; 241 failed = true; 242 } 243 if (pmd) 244 mm_inc_nr_pmds(mm); 245 pmds[i] = pmd; 246 } 247 248 if (failed) { 249 free_pmds(mm, pmds, count); 250 return -ENOMEM; 251 } 252 253 return 0; 254 } 255 256 /* 257 * Mop up any pmd pages which may still be attached to the pgd. 258 * Normally they will be freed by munmap/exit_mmap, but any pmd we 259 * preallocate which never got a corresponding vma will need to be 260 * freed manually. 261 */ 262 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) 263 { 264 pgd_t pgd = *pgdp; 265 266 if (pgd_val(pgd) != 0) { 267 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 268 269 pgd_clear(pgdp); 270 271 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 272 pmd_free(mm, pmd); 273 mm_dec_nr_pmds(mm); 274 } 275 } 276 277 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 278 { 279 int i; 280 281 for (i = 0; i < PREALLOCATED_PMDS; i++) 282 mop_up_one_pmd(mm, &pgdp[i]); 283 284 #ifdef CONFIG_PAGE_TABLE_ISOLATION 285 286 if (!boot_cpu_has(X86_FEATURE_PTI)) 287 return; 288 289 pgdp = kernel_to_user_pgdp(pgdp); 290 291 for (i = 0; i < PREALLOCATED_USER_PMDS; i++) 292 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); 293 #endif 294 } 295 296 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 297 { 298 p4d_t *p4d; 299 pud_t *pud; 300 int i; 301 302 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 303 return; 304 305 p4d = p4d_offset(pgd, 0); 306 pud = pud_offset(p4d, 0); 307 308 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 309 pmd_t *pmd = pmds[i]; 310 311 if (i >= KERNEL_PGD_BOUNDARY) 312 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 313 sizeof(pmd_t) * PTRS_PER_PMD); 314 315 pud_populate(mm, pud, pmd); 316 } 317 } 318 319 #ifdef CONFIG_PAGE_TABLE_ISOLATION 320 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 321 pgd_t *k_pgd, pmd_t *pmds[]) 322 { 323 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); 324 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 325 p4d_t *u_p4d; 326 pud_t *u_pud; 327 int i; 328 329 u_p4d = p4d_offset(u_pgd, 0); 330 u_pud = pud_offset(u_p4d, 0); 331 332 s_pgd += KERNEL_PGD_BOUNDARY; 333 u_pud += KERNEL_PGD_BOUNDARY; 334 335 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { 336 pmd_t *pmd = pmds[i]; 337 338 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), 339 sizeof(pmd_t) * PTRS_PER_PMD); 340 341 pud_populate(mm, u_pud, pmd); 342 } 343 344 } 345 #else 346 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 347 pgd_t *k_pgd, pmd_t *pmds[]) 348 { 349 } 350 #endif 351 /* 352 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 353 * assumes that pgd should be in one page. 354 * 355 * But kernel with PAE paging that is not running as a Xen domain 356 * only needs to allocate 32 bytes for pgd instead of one page. 357 */ 358 #ifdef CONFIG_X86_PAE 359 360 #include <linux/slab.h> 361 362 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 363 #define PGD_ALIGN 32 364 365 static struct kmem_cache *pgd_cache; 366 367 void __init pgtable_cache_init(void) 368 { 369 /* 370 * When PAE kernel is running as a Xen domain, it does not use 371 * shared kernel pmd. And this requires a whole page for pgd. 372 */ 373 if (!SHARED_KERNEL_PMD) 374 return; 375 376 /* 377 * when PAE kernel is not running as a Xen domain, it uses 378 * shared kernel pmd. Shared kernel pmd does not require a whole 379 * page for pgd. We are able to just allocate a 32-byte for pgd. 380 * During boot time, we create a 32-byte slab for pgd table allocation. 381 */ 382 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 383 SLAB_PANIC, NULL); 384 } 385 386 static inline pgd_t *_pgd_alloc(void) 387 { 388 /* 389 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 390 * We allocate one page for pgd. 391 */ 392 if (!SHARED_KERNEL_PMD) 393 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER, 394 PGD_ALLOCATION_ORDER); 395 396 /* 397 * Now PAE kernel is not running as a Xen domain. We can allocate 398 * a 32-byte slab for pgd to save memory space. 399 */ 400 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER); 401 } 402 403 static inline void _pgd_free(pgd_t *pgd) 404 { 405 if (!SHARED_KERNEL_PMD) 406 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 407 else 408 kmem_cache_free(pgd_cache, pgd); 409 } 410 #else 411 412 static inline pgd_t *_pgd_alloc(void) 413 { 414 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER, 415 PGD_ALLOCATION_ORDER); 416 } 417 418 static inline void _pgd_free(pgd_t *pgd) 419 { 420 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 421 } 422 #endif /* CONFIG_X86_PAE */ 423 424 pgd_t *pgd_alloc(struct mm_struct *mm) 425 { 426 pgd_t *pgd; 427 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS]; 428 pmd_t *pmds[MAX_PREALLOCATED_PMDS]; 429 430 pgd = _pgd_alloc(); 431 432 if (pgd == NULL) 433 goto out; 434 435 mm->pgd = pgd; 436 437 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) 438 goto out_free_pgd; 439 440 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) 441 goto out_free_pmds; 442 443 if (paravirt_pgd_alloc(mm) != 0) 444 goto out_free_user_pmds; 445 446 /* 447 * Make sure that pre-populating the pmds is atomic with 448 * respect to anything walking the pgd_list, so that they 449 * never see a partially populated pgd. 450 */ 451 spin_lock(&pgd_lock); 452 453 pgd_ctor(mm, pgd); 454 pgd_prepopulate_pmd(mm, pgd, pmds); 455 pgd_prepopulate_user_pmd(mm, pgd, u_pmds); 456 457 spin_unlock(&pgd_lock); 458 459 return pgd; 460 461 out_free_user_pmds: 462 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); 463 out_free_pmds: 464 free_pmds(mm, pmds, PREALLOCATED_PMDS); 465 out_free_pgd: 466 _pgd_free(pgd); 467 out: 468 return NULL; 469 } 470 471 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 472 { 473 pgd_mop_up_pmds(mm, pgd); 474 pgd_dtor(pgd); 475 paravirt_pgd_free(mm, pgd); 476 _pgd_free(pgd); 477 } 478 479 /* 480 * Used to set accessed or dirty bits in the page table entries 481 * on other architectures. On x86, the accessed and dirty bits 482 * are tracked by hardware. However, do_wp_page calls this function 483 * to also make the pte writeable at the same time the dirty bit is 484 * set. In that case we do actually need to write the PTE. 485 */ 486 int ptep_set_access_flags(struct vm_area_struct *vma, 487 unsigned long address, pte_t *ptep, 488 pte_t entry, int dirty) 489 { 490 int changed = !pte_same(*ptep, entry); 491 492 if (changed && dirty) 493 set_pte(ptep, entry); 494 495 return changed; 496 } 497 498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 499 int pmdp_set_access_flags(struct vm_area_struct *vma, 500 unsigned long address, pmd_t *pmdp, 501 pmd_t entry, int dirty) 502 { 503 int changed = !pmd_same(*pmdp, entry); 504 505 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 506 507 if (changed && dirty) { 508 set_pmd(pmdp, entry); 509 /* 510 * We had a write-protection fault here and changed the pmd 511 * to to more permissive. No need to flush the TLB for that, 512 * #PF is architecturally guaranteed to do that and in the 513 * worst-case we'll generate a spurious fault. 514 */ 515 } 516 517 return changed; 518 } 519 520 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 521 pud_t *pudp, pud_t entry, int dirty) 522 { 523 int changed = !pud_same(*pudp, entry); 524 525 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 526 527 if (changed && dirty) { 528 set_pud(pudp, entry); 529 /* 530 * We had a write-protection fault here and changed the pud 531 * to to more permissive. No need to flush the TLB for that, 532 * #PF is architecturally guaranteed to do that and in the 533 * worst-case we'll generate a spurious fault. 534 */ 535 } 536 537 return changed; 538 } 539 #endif 540 541 int ptep_test_and_clear_young(struct vm_area_struct *vma, 542 unsigned long addr, pte_t *ptep) 543 { 544 int ret = 0; 545 546 if (pte_young(*ptep)) 547 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 548 (unsigned long *) &ptep->pte); 549 550 return ret; 551 } 552 553 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 554 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 555 unsigned long addr, pmd_t *pmdp) 556 { 557 int ret = 0; 558 559 if (pmd_young(*pmdp)) 560 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 561 (unsigned long *)pmdp); 562 563 return ret; 564 } 565 #endif 566 567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 568 int pudp_test_and_clear_young(struct vm_area_struct *vma, 569 unsigned long addr, pud_t *pudp) 570 { 571 int ret = 0; 572 573 if (pud_young(*pudp)) 574 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 575 (unsigned long *)pudp); 576 577 return ret; 578 } 579 #endif 580 581 int ptep_clear_flush_young(struct vm_area_struct *vma, 582 unsigned long address, pte_t *ptep) 583 { 584 /* 585 * On x86 CPUs, clearing the accessed bit without a TLB flush 586 * doesn't cause data corruption. [ It could cause incorrect 587 * page aging and the (mistaken) reclaim of hot pages, but the 588 * chance of that should be relatively low. ] 589 * 590 * So as a performance optimization don't flush the TLB when 591 * clearing the accessed bit, it will eventually be flushed by 592 * a context switch or a VM operation anyway. [ In the rare 593 * event of it not getting flushed for a long time the delay 594 * shouldn't really matter because there's no real memory 595 * pressure for swapout to react to. ] 596 */ 597 return ptep_test_and_clear_young(vma, address, ptep); 598 } 599 600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 601 int pmdp_clear_flush_young(struct vm_area_struct *vma, 602 unsigned long address, pmd_t *pmdp) 603 { 604 int young; 605 606 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 607 608 young = pmdp_test_and_clear_young(vma, address, pmdp); 609 if (young) 610 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 611 612 return young; 613 } 614 615 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, 616 pmd_t *pmdp) 617 { 618 /* 619 * No flush is necessary. Once an invalid PTE is established, the PTE's 620 * access and dirty bits cannot be updated. 621 */ 622 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp)); 623 } 624 #endif 625 626 /** 627 * reserve_top_address - reserves a hole in the top of kernel address space 628 * @reserve - size of hole to reserve 629 * 630 * Can be used to relocate the fixmap area and poke a hole in the top 631 * of kernel address space to make room for a hypervisor. 632 */ 633 void __init reserve_top_address(unsigned long reserve) 634 { 635 #ifdef CONFIG_X86_32 636 BUG_ON(fixmaps_set > 0); 637 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 638 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 639 -reserve, __FIXADDR_TOP + PAGE_SIZE); 640 #endif 641 } 642 643 int fixmaps_set; 644 645 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 646 { 647 unsigned long address = __fix_to_virt(idx); 648 649 #ifdef CONFIG_X86_64 650 /* 651 * Ensure that the static initial page tables are covering the 652 * fixmap completely. 653 */ 654 BUILD_BUG_ON(__end_of_permanent_fixed_addresses > 655 (FIXMAP_PMD_NUM * PTRS_PER_PTE)); 656 #endif 657 658 if (idx >= __end_of_fixed_addresses) { 659 BUG(); 660 return; 661 } 662 set_pte_vaddr(address, pte); 663 fixmaps_set++; 664 } 665 666 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx, 667 phys_addr_t phys, pgprot_t flags) 668 { 669 /* Sanitize 'prot' against any unsupported bits: */ 670 pgprot_val(flags) &= __default_kernel_pte_mask; 671 672 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 673 } 674 675 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 676 #ifdef CONFIG_X86_5LEVEL 677 /** 678 * p4d_set_huge - setup kernel P4D mapping 679 * 680 * No 512GB pages yet -- always return 0 681 */ 682 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 683 { 684 return 0; 685 } 686 687 /** 688 * p4d_clear_huge - clear kernel P4D mapping when it is set 689 * 690 * No 512GB pages yet -- always return 0 691 */ 692 void p4d_clear_huge(p4d_t *p4d) 693 { 694 } 695 #endif 696 697 /** 698 * pud_set_huge - setup kernel PUD mapping 699 * 700 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 701 * function sets up a huge page only if any of the following conditions are met: 702 * 703 * - MTRRs are disabled, or 704 * 705 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 706 * 707 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 708 * has no effect on the requested PAT memory type. 709 * 710 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 711 * page mapping attempt fails. 712 * 713 * Returns 1 on success and 0 on failure. 714 */ 715 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 716 { 717 u8 mtrr, uniform; 718 719 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 720 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 721 (mtrr != MTRR_TYPE_WRBACK)) 722 return 0; 723 724 /* Bail out if we are we on a populated non-leaf entry: */ 725 if (pud_present(*pud) && !pud_huge(*pud)) 726 return 0; 727 728 set_pte((pte_t *)pud, pfn_pte( 729 (u64)addr >> PAGE_SHIFT, 730 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE))); 731 732 return 1; 733 } 734 735 /** 736 * pmd_set_huge - setup kernel PMD mapping 737 * 738 * See text over pud_set_huge() above. 739 * 740 * Returns 1 on success and 0 on failure. 741 */ 742 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 743 { 744 u8 mtrr, uniform; 745 746 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 747 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 748 (mtrr != MTRR_TYPE_WRBACK)) { 749 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 750 __func__, addr, addr + PMD_SIZE); 751 return 0; 752 } 753 754 /* Bail out if we are we on a populated non-leaf entry: */ 755 if (pmd_present(*pmd) && !pmd_huge(*pmd)) 756 return 0; 757 758 set_pte((pte_t *)pmd, pfn_pte( 759 (u64)addr >> PAGE_SHIFT, 760 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE))); 761 762 return 1; 763 } 764 765 /** 766 * pud_clear_huge - clear kernel PUD mapping when it is set 767 * 768 * Returns 1 on success and 0 on failure (no PUD map is found). 769 */ 770 int pud_clear_huge(pud_t *pud) 771 { 772 if (pud_large(*pud)) { 773 pud_clear(pud); 774 return 1; 775 } 776 777 return 0; 778 } 779 780 /** 781 * pmd_clear_huge - clear kernel PMD mapping when it is set 782 * 783 * Returns 1 on success and 0 on failure (no PMD map is found). 784 */ 785 int pmd_clear_huge(pmd_t *pmd) 786 { 787 if (pmd_large(*pmd)) { 788 pmd_clear(pmd); 789 return 1; 790 } 791 792 return 0; 793 } 794 795 #ifdef CONFIG_X86_64 796 /** 797 * pud_free_pmd_page - Clear pud entry and free pmd page. 798 * @pud: Pointer to a PUD. 799 * @addr: Virtual address associated with pud. 800 * 801 * Context: The pud range has been unmapped and TLB purged. 802 * Return: 1 if clearing the entry succeeded. 0 otherwise. 803 * 804 * NOTE: Callers must allow a single page allocation. 805 */ 806 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 807 { 808 pmd_t *pmd, *pmd_sv; 809 pte_t *pte; 810 int i; 811 812 pmd = pud_pgtable(*pud); 813 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); 814 if (!pmd_sv) 815 return 0; 816 817 for (i = 0; i < PTRS_PER_PMD; i++) { 818 pmd_sv[i] = pmd[i]; 819 if (!pmd_none(pmd[i])) 820 pmd_clear(&pmd[i]); 821 } 822 823 pud_clear(pud); 824 825 /* INVLPG to clear all paging-structure caches */ 826 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 827 828 for (i = 0; i < PTRS_PER_PMD; i++) { 829 if (!pmd_none(pmd_sv[i])) { 830 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); 831 free_page((unsigned long)pte); 832 } 833 } 834 835 free_page((unsigned long)pmd_sv); 836 837 pgtable_pmd_page_dtor(virt_to_page(pmd)); 838 free_page((unsigned long)pmd); 839 840 return 1; 841 } 842 843 /** 844 * pmd_free_pte_page - Clear pmd entry and free pte page. 845 * @pmd: Pointer to a PMD. 846 * @addr: Virtual address associated with pmd. 847 * 848 * Context: The pmd range has been unmapped and TLB purged. 849 * Return: 1 if clearing the entry succeeded. 0 otherwise. 850 */ 851 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 852 { 853 pte_t *pte; 854 855 pte = (pte_t *)pmd_page_vaddr(*pmd); 856 pmd_clear(pmd); 857 858 /* INVLPG to clear all paging-structure caches */ 859 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 860 861 free_page((unsigned long)pte); 862 863 return 1; 864 } 865 866 #else /* !CONFIG_X86_64 */ 867 868 /* 869 * Disable free page handling on x86-PAE. This assures that ioremap() 870 * does not update sync'd pmd entries. See vmalloc_sync_one(). 871 */ 872 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 873 { 874 return pmd_none(*pmd); 875 } 876 877 #endif /* CONFIG_X86_64 */ 878 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 879