xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22 #include <linux/set_memory.h>
23 
24 #include <asm/e820/api.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sections.h>
28 #include <asm/setup.h>
29 #include <linux/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/proto.h>
32 #include <asm/memtype.h>
33 #include <asm/hyperv-tlfs.h>
34 #include <asm/mshyperv.h>
35 
36 #include "../mm_internal.h"
37 
38 /*
39  * The current flushing context - we pass it instead of 5 arguments:
40  */
41 struct cpa_data {
42 	unsigned long	*vaddr;
43 	pgd_t		*pgd;
44 	pgprot_t	mask_set;
45 	pgprot_t	mask_clr;
46 	unsigned long	numpages;
47 	unsigned long	curpage;
48 	unsigned long	pfn;
49 	unsigned int	flags;
50 	unsigned int	force_split		: 1,
51 			force_static_prot	: 1,
52 			force_flush_all		: 1;
53 	struct page	**pages;
54 };
55 
56 enum cpa_warn {
57 	CPA_CONFLICT,
58 	CPA_PROTECT,
59 	CPA_DETECT,
60 };
61 
62 static const int cpa_warn_level = CPA_PROTECT;
63 
64 /*
65  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67  * entries change the page attribute in parallel to some other cpu
68  * splitting a large page entry along with changing the attribute.
69  */
70 static DEFINE_SPINLOCK(cpa_lock);
71 
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76 
77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
78 {
79 	return __pgprot(cachemode2protval(pcm));
80 }
81 
82 #ifdef CONFIG_PROC_FS
83 static unsigned long direct_pages_count[PG_LEVEL_NUM];
84 
85 void update_page_count(int level, unsigned long pages)
86 {
87 	/* Protect against CPA */
88 	spin_lock(&pgd_lock);
89 	direct_pages_count[level] += pages;
90 	spin_unlock(&pgd_lock);
91 }
92 
93 static void split_page_count(int level)
94 {
95 	if (direct_pages_count[level] == 0)
96 		return;
97 
98 	direct_pages_count[level]--;
99 	if (system_state == SYSTEM_RUNNING) {
100 		if (level == PG_LEVEL_2M)
101 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
102 		else if (level == PG_LEVEL_1G)
103 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
104 	}
105 	direct_pages_count[level - 1] += PTRS_PER_PTE;
106 }
107 
108 void arch_report_meminfo(struct seq_file *m)
109 {
110 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
111 			direct_pages_count[PG_LEVEL_4K] << 2);
112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
113 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
114 			direct_pages_count[PG_LEVEL_2M] << 11);
115 #else
116 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
117 			direct_pages_count[PG_LEVEL_2M] << 12);
118 #endif
119 	if (direct_gbpages)
120 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
121 			direct_pages_count[PG_LEVEL_1G] << 20);
122 }
123 #else
124 static inline void split_page_count(int level) { }
125 #endif
126 
127 #ifdef CONFIG_X86_CPA_STATISTICS
128 
129 static unsigned long cpa_1g_checked;
130 static unsigned long cpa_1g_sameprot;
131 static unsigned long cpa_1g_preserved;
132 static unsigned long cpa_2m_checked;
133 static unsigned long cpa_2m_sameprot;
134 static unsigned long cpa_2m_preserved;
135 static unsigned long cpa_4k_install;
136 
137 static inline void cpa_inc_1g_checked(void)
138 {
139 	cpa_1g_checked++;
140 }
141 
142 static inline void cpa_inc_2m_checked(void)
143 {
144 	cpa_2m_checked++;
145 }
146 
147 static inline void cpa_inc_4k_install(void)
148 {
149 	data_race(cpa_4k_install++);
150 }
151 
152 static inline void cpa_inc_lp_sameprot(int level)
153 {
154 	if (level == PG_LEVEL_1G)
155 		cpa_1g_sameprot++;
156 	else
157 		cpa_2m_sameprot++;
158 }
159 
160 static inline void cpa_inc_lp_preserved(int level)
161 {
162 	if (level == PG_LEVEL_1G)
163 		cpa_1g_preserved++;
164 	else
165 		cpa_2m_preserved++;
166 }
167 
168 static int cpastats_show(struct seq_file *m, void *p)
169 {
170 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
171 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
172 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
173 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
174 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
175 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
176 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
177 	return 0;
178 }
179 
180 static int cpastats_open(struct inode *inode, struct file *file)
181 {
182 	return single_open(file, cpastats_show, NULL);
183 }
184 
185 static const struct file_operations cpastats_fops = {
186 	.open		= cpastats_open,
187 	.read		= seq_read,
188 	.llseek		= seq_lseek,
189 	.release	= single_release,
190 };
191 
192 static int __init cpa_stats_init(void)
193 {
194 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
195 			    &cpastats_fops);
196 	return 0;
197 }
198 late_initcall(cpa_stats_init);
199 #else
200 static inline void cpa_inc_1g_checked(void) { }
201 static inline void cpa_inc_2m_checked(void) { }
202 static inline void cpa_inc_4k_install(void) { }
203 static inline void cpa_inc_lp_sameprot(int level) { }
204 static inline void cpa_inc_lp_preserved(int level) { }
205 #endif
206 
207 
208 static inline int
209 within(unsigned long addr, unsigned long start, unsigned long end)
210 {
211 	return addr >= start && addr < end;
212 }
213 
214 static inline int
215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
216 {
217 	return addr >= start && addr <= end;
218 }
219 
220 #ifdef CONFIG_X86_64
221 
222 static inline unsigned long highmap_start_pfn(void)
223 {
224 	return __pa_symbol(_text) >> PAGE_SHIFT;
225 }
226 
227 static inline unsigned long highmap_end_pfn(void)
228 {
229 	/* Do not reference physical address outside the kernel. */
230 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
231 }
232 
233 static bool __cpa_pfn_in_highmap(unsigned long pfn)
234 {
235 	/*
236 	 * Kernel text has an alias mapping at a high address, known
237 	 * here as "highmap".
238 	 */
239 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
240 }
241 
242 #else
243 
244 static bool __cpa_pfn_in_highmap(unsigned long pfn)
245 {
246 	/* There is no highmap on 32-bit */
247 	return false;
248 }
249 
250 #endif
251 
252 /*
253  * See set_mce_nospec().
254  *
255  * Machine check recovery code needs to change cache mode of poisoned pages to
256  * UC to avoid speculative access logging another error. But passing the
257  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
258  * speculative access. So we cheat and flip the top bit of the address. This
259  * works fine for the code that updates the page tables. But at the end of the
260  * process we need to flush the TLB and cache and the non-canonical address
261  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
262  *
263  * But in the common case we already have a canonical address. This code
264  * will fix the top bit if needed and is a no-op otherwise.
265  */
266 static inline unsigned long fix_addr(unsigned long addr)
267 {
268 #ifdef CONFIG_X86_64
269 	return (long)(addr << 1) >> 1;
270 #else
271 	return addr;
272 #endif
273 }
274 
275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
276 {
277 	if (cpa->flags & CPA_PAGES_ARRAY) {
278 		struct page *page = cpa->pages[idx];
279 
280 		if (unlikely(PageHighMem(page)))
281 			return 0;
282 
283 		return (unsigned long)page_address(page);
284 	}
285 
286 	if (cpa->flags & CPA_ARRAY)
287 		return cpa->vaddr[idx];
288 
289 	return *cpa->vaddr + idx * PAGE_SIZE;
290 }
291 
292 /*
293  * Flushing functions
294  */
295 
296 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
297 {
298 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
299 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
300 	void *vend = vaddr + size;
301 
302 	if (p >= vend)
303 		return;
304 
305 	for (; p < vend; p += clflush_size)
306 		clflushopt(p);
307 }
308 
309 /**
310  * clflush_cache_range - flush a cache range with clflush
311  * @vaddr:	virtual start address
312  * @size:	number of bytes to flush
313  *
314  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
315  * SFENCE to avoid ordering issues.
316  */
317 void clflush_cache_range(void *vaddr, unsigned int size)
318 {
319 	mb();
320 	clflush_cache_range_opt(vaddr, size);
321 	mb();
322 }
323 EXPORT_SYMBOL_GPL(clflush_cache_range);
324 
325 #ifdef CONFIG_ARCH_HAS_PMEM_API
326 void arch_invalidate_pmem(void *addr, size_t size)
327 {
328 	clflush_cache_range(addr, size);
329 }
330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
331 #endif
332 
333 static void __cpa_flush_all(void *arg)
334 {
335 	unsigned long cache = (unsigned long)arg;
336 
337 	/*
338 	 * Flush all to work around Errata in early athlons regarding
339 	 * large page flushing.
340 	 */
341 	__flush_tlb_all();
342 
343 	if (cache && boot_cpu_data.x86 >= 4)
344 		wbinvd();
345 }
346 
347 static void cpa_flush_all(unsigned long cache)
348 {
349 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350 
351 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
352 }
353 
354 static void __cpa_flush_tlb(void *data)
355 {
356 	struct cpa_data *cpa = data;
357 	unsigned int i;
358 
359 	for (i = 0; i < cpa->numpages; i++)
360 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
361 }
362 
363 static void cpa_flush(struct cpa_data *data, int cache)
364 {
365 	struct cpa_data *cpa = data;
366 	unsigned int i;
367 
368 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
369 
370 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
371 		cpa_flush_all(cache);
372 		return;
373 	}
374 
375 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
376 		flush_tlb_all();
377 	else
378 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
379 
380 	if (!cache)
381 		return;
382 
383 	mb();
384 	for (i = 0; i < cpa->numpages; i++) {
385 		unsigned long addr = __cpa_addr(cpa, i);
386 		unsigned int level;
387 
388 		pte_t *pte = lookup_address(addr, &level);
389 
390 		/*
391 		 * Only flush present addresses:
392 		 */
393 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
394 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
395 	}
396 	mb();
397 }
398 
399 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
400 		     unsigned long r2_start, unsigned long r2_end)
401 {
402 	return (r1_start <= r2_end && r1_end >= r2_start) ||
403 		(r2_start <= r1_end && r2_end >= r1_start);
404 }
405 
406 #ifdef CONFIG_PCI_BIOS
407 /*
408  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
409  * based config access (CONFIG_PCI_GOBIOS) support.
410  */
411 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
412 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
413 
414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
415 {
416 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
417 		return _PAGE_NX;
418 	return 0;
419 }
420 #else
421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
422 {
423 	return 0;
424 }
425 #endif
426 
427 /*
428  * The .rodata section needs to be read-only. Using the pfn catches all
429  * aliases.  This also includes __ro_after_init, so do not enforce until
430  * kernel_set_to_readonly is true.
431  */
432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
433 {
434 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
435 
436 	/*
437 	 * Note: __end_rodata is at page aligned and not inclusive, so
438 	 * subtract 1 to get the last enforced PFN in the rodata area.
439 	 */
440 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
441 
442 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
443 		return _PAGE_RW;
444 	return 0;
445 }
446 
447 /*
448  * Protect kernel text against becoming non executable by forbidding
449  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
450  * out of which the kernel actually executes.  Do not protect the low
451  * mapping.
452  *
453  * This does not cover __inittext since that is gone after boot.
454  */
455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
456 {
457 	unsigned long t_end = (unsigned long)_etext - 1;
458 	unsigned long t_start = (unsigned long)_text;
459 
460 	if (overlaps(start, end, t_start, t_end))
461 		return _PAGE_NX;
462 	return 0;
463 }
464 
465 #if defined(CONFIG_X86_64)
466 /*
467  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
468  * kernel text mappings for the large page aligned text, rodata sections
469  * will be always read-only. For the kernel identity mappings covering the
470  * holes caused by this alignment can be anything that user asks.
471  *
472  * This will preserve the large page mappings for kernel text/data at no
473  * extra cost.
474  */
475 static pgprotval_t protect_kernel_text_ro(unsigned long start,
476 					  unsigned long end)
477 {
478 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
479 	unsigned long t_start = (unsigned long)_text;
480 	unsigned int level;
481 
482 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
483 		return 0;
484 	/*
485 	 * Don't enforce the !RW mapping for the kernel text mapping, if
486 	 * the current mapping is already using small page mapping.  No
487 	 * need to work hard to preserve large page mappings in this case.
488 	 *
489 	 * This also fixes the Linux Xen paravirt guest boot failure caused
490 	 * by unexpected read-only mappings for kernel identity
491 	 * mappings. In this paravirt guest case, the kernel text mapping
492 	 * and the kernel identity mapping share the same page-table pages,
493 	 * so the protections for kernel text and identity mappings have to
494 	 * be the same.
495 	 */
496 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
497 		return _PAGE_RW;
498 	return 0;
499 }
500 #else
501 static pgprotval_t protect_kernel_text_ro(unsigned long start,
502 					  unsigned long end)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
509 {
510 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
511 }
512 
513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
514 				  unsigned long start, unsigned long end,
515 				  unsigned long pfn, const char *txt)
516 {
517 	static const char *lvltxt[] = {
518 		[CPA_CONFLICT]	= "conflict",
519 		[CPA_PROTECT]	= "protect",
520 		[CPA_DETECT]	= "detect",
521 	};
522 
523 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
524 		return;
525 
526 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
527 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
528 		(unsigned long long)val);
529 }
530 
531 /*
532  * Certain areas of memory on x86 require very specific protection flags,
533  * for example the BIOS area or kernel text. Callers don't always get this
534  * right (again, ioremap() on BIOS memory is not uncommon) so this function
535  * checks and fixes these known static required protection bits.
536  */
537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
538 					  unsigned long pfn, unsigned long npg,
539 					  unsigned long lpsize, int warnlvl)
540 {
541 	pgprotval_t forbidden, res;
542 	unsigned long end;
543 
544 	/*
545 	 * There is no point in checking RW/NX conflicts when the requested
546 	 * mapping is setting the page !PRESENT.
547 	 */
548 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
549 		return prot;
550 
551 	/* Operate on the virtual address */
552 	end = start + npg * PAGE_SIZE - 1;
553 
554 	res = protect_kernel_text(start, end);
555 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
556 	forbidden = res;
557 
558 	/*
559 	 * Special case to preserve a large page. If the change spawns the
560 	 * full large page mapping then there is no point to split it
561 	 * up. Happens with ftrace and is going to be removed once ftrace
562 	 * switched to text_poke().
563 	 */
564 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
565 		res = protect_kernel_text_ro(start, end);
566 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
567 		forbidden |= res;
568 	}
569 
570 	/* Check the PFN directly */
571 	res = protect_pci_bios(pfn, pfn + npg - 1);
572 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
573 	forbidden |= res;
574 
575 	res = protect_rodata(pfn, pfn + npg - 1);
576 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
577 	forbidden |= res;
578 
579 	return __pgprot(pgprot_val(prot) & ~forbidden);
580 }
581 
582 /*
583  * Validate strict W^X semantics.
584  */
585 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
586 				  unsigned long pfn, unsigned long npg)
587 {
588 	unsigned long end;
589 
590 	/* Kernel text is rw at boot up */
591 	if (system_state == SYSTEM_BOOTING)
592 		return new;
593 
594 	/*
595 	 * 32-bit has some unfixable W+X issues, like EFI code
596 	 * and writeable data being in the same page.  Disable
597 	 * detection and enforcement there.
598 	 */
599 	if (IS_ENABLED(CONFIG_X86_32))
600 		return new;
601 
602 	/* Only verify when NX is supported: */
603 	if (!(__supported_pte_mask & _PAGE_NX))
604 		return new;
605 
606 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
607 		return new;
608 
609 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
610 		return new;
611 
612 	end = start + npg * PAGE_SIZE - 1;
613 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
614 		  (unsigned long long)pgprot_val(old),
615 		  (unsigned long long)pgprot_val(new),
616 		  start, end, pfn);
617 
618 	/*
619 	 * For now, allow all permission change attempts by returning the
620 	 * attempted permissions.  This can 'return old' to actively
621 	 * refuse the permission change at a later time.
622 	 */
623 	return new;
624 }
625 
626 /*
627  * Lookup the page table entry for a virtual address in a specific pgd.
628  * Return a pointer to the entry and the level of the mapping.
629  */
630 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
631 			     unsigned int *level)
632 {
633 	p4d_t *p4d;
634 	pud_t *pud;
635 	pmd_t *pmd;
636 
637 	*level = PG_LEVEL_NONE;
638 
639 	if (pgd_none(*pgd))
640 		return NULL;
641 
642 	p4d = p4d_offset(pgd, address);
643 	if (p4d_none(*p4d))
644 		return NULL;
645 
646 	*level = PG_LEVEL_512G;
647 	if (p4d_large(*p4d) || !p4d_present(*p4d))
648 		return (pte_t *)p4d;
649 
650 	pud = pud_offset(p4d, address);
651 	if (pud_none(*pud))
652 		return NULL;
653 
654 	*level = PG_LEVEL_1G;
655 	if (pud_large(*pud) || !pud_present(*pud))
656 		return (pte_t *)pud;
657 
658 	pmd = pmd_offset(pud, address);
659 	if (pmd_none(*pmd))
660 		return NULL;
661 
662 	*level = PG_LEVEL_2M;
663 	if (pmd_large(*pmd) || !pmd_present(*pmd))
664 		return (pte_t *)pmd;
665 
666 	*level = PG_LEVEL_4K;
667 
668 	return pte_offset_kernel(pmd, address);
669 }
670 
671 /*
672  * Lookup the page table entry for a virtual address. Return a pointer
673  * to the entry and the level of the mapping.
674  *
675  * Note: We return pud and pmd either when the entry is marked large
676  * or when the present bit is not set. Otherwise we would return a
677  * pointer to a nonexisting mapping.
678  */
679 pte_t *lookup_address(unsigned long address, unsigned int *level)
680 {
681 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
682 }
683 EXPORT_SYMBOL_GPL(lookup_address);
684 
685 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
686 				  unsigned int *level)
687 {
688 	if (cpa->pgd)
689 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
690 					       address, level);
691 
692 	return lookup_address(address, level);
693 }
694 
695 /*
696  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
697  * or NULL if not present.
698  */
699 pmd_t *lookup_pmd_address(unsigned long address)
700 {
701 	pgd_t *pgd;
702 	p4d_t *p4d;
703 	pud_t *pud;
704 
705 	pgd = pgd_offset_k(address);
706 	if (pgd_none(*pgd))
707 		return NULL;
708 
709 	p4d = p4d_offset(pgd, address);
710 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
711 		return NULL;
712 
713 	pud = pud_offset(p4d, address);
714 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
715 		return NULL;
716 
717 	return pmd_offset(pud, address);
718 }
719 
720 /*
721  * This is necessary because __pa() does not work on some
722  * kinds of memory, like vmalloc() or the alloc_remap()
723  * areas on 32-bit NUMA systems.  The percpu areas can
724  * end up in this kind of memory, for instance.
725  *
726  * This could be optimized, but it is only intended to be
727  * used at initialization time, and keeping it
728  * unoptimized should increase the testing coverage for
729  * the more obscure platforms.
730  */
731 phys_addr_t slow_virt_to_phys(void *__virt_addr)
732 {
733 	unsigned long virt_addr = (unsigned long)__virt_addr;
734 	phys_addr_t phys_addr;
735 	unsigned long offset;
736 	enum pg_level level;
737 	pte_t *pte;
738 
739 	pte = lookup_address(virt_addr, &level);
740 	BUG_ON(!pte);
741 
742 	/*
743 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
744 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
745 	 * make 32-PAE kernel work correctly.
746 	 */
747 	switch (level) {
748 	case PG_LEVEL_1G:
749 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
750 		offset = virt_addr & ~PUD_PAGE_MASK;
751 		break;
752 	case PG_LEVEL_2M:
753 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
754 		offset = virt_addr & ~PMD_PAGE_MASK;
755 		break;
756 	default:
757 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
758 		offset = virt_addr & ~PAGE_MASK;
759 	}
760 
761 	return (phys_addr_t)(phys_addr | offset);
762 }
763 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
764 
765 /*
766  * Set the new pmd in all the pgds we know about:
767  */
768 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
769 {
770 	/* change init_mm */
771 	set_pte_atomic(kpte, pte);
772 #ifdef CONFIG_X86_32
773 	if (!SHARED_KERNEL_PMD) {
774 		struct page *page;
775 
776 		list_for_each_entry(page, &pgd_list, lru) {
777 			pgd_t *pgd;
778 			p4d_t *p4d;
779 			pud_t *pud;
780 			pmd_t *pmd;
781 
782 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
783 			p4d = p4d_offset(pgd, address);
784 			pud = pud_offset(p4d, address);
785 			pmd = pmd_offset(pud, address);
786 			set_pte_atomic((pte_t *)pmd, pte);
787 		}
788 	}
789 #endif
790 }
791 
792 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
793 {
794 	/*
795 	 * _PAGE_GLOBAL means "global page" for present PTEs.
796 	 * But, it is also used to indicate _PAGE_PROTNONE
797 	 * for non-present PTEs.
798 	 *
799 	 * This ensures that a _PAGE_GLOBAL PTE going from
800 	 * present to non-present is not confused as
801 	 * _PAGE_PROTNONE.
802 	 */
803 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
804 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
805 
806 	return prot;
807 }
808 
809 static int __should_split_large_page(pte_t *kpte, unsigned long address,
810 				     struct cpa_data *cpa)
811 {
812 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
813 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
814 	pte_t new_pte, *tmp;
815 	enum pg_level level;
816 
817 	/*
818 	 * Check for races, another CPU might have split this page
819 	 * up already:
820 	 */
821 	tmp = _lookup_address_cpa(cpa, address, &level);
822 	if (tmp != kpte)
823 		return 1;
824 
825 	switch (level) {
826 	case PG_LEVEL_2M:
827 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
828 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
829 		cpa_inc_2m_checked();
830 		break;
831 	case PG_LEVEL_1G:
832 		old_prot = pud_pgprot(*(pud_t *)kpte);
833 		old_pfn = pud_pfn(*(pud_t *)kpte);
834 		cpa_inc_1g_checked();
835 		break;
836 	default:
837 		return -EINVAL;
838 	}
839 
840 	psize = page_level_size(level);
841 	pmask = page_level_mask(level);
842 
843 	/*
844 	 * Calculate the number of pages, which fit into this large
845 	 * page starting at address:
846 	 */
847 	lpaddr = (address + psize) & pmask;
848 	numpages = (lpaddr - address) >> PAGE_SHIFT;
849 	if (numpages < cpa->numpages)
850 		cpa->numpages = numpages;
851 
852 	/*
853 	 * We are safe now. Check whether the new pgprot is the same:
854 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
855 	 * up accordingly.
856 	 */
857 
858 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
859 	req_prot = pgprot_large_2_4k(old_prot);
860 
861 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
862 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
863 
864 	/*
865 	 * req_prot is in format of 4k pages. It must be converted to large
866 	 * page format: the caching mode includes the PAT bit located at
867 	 * different bit positions in the two formats.
868 	 */
869 	req_prot = pgprot_4k_2_large(req_prot);
870 	req_prot = pgprot_clear_protnone_bits(req_prot);
871 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
872 		pgprot_val(req_prot) |= _PAGE_PSE;
873 
874 	/*
875 	 * old_pfn points to the large page base pfn. So we need to add the
876 	 * offset of the virtual address:
877 	 */
878 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
879 	cpa->pfn = pfn;
880 
881 	/*
882 	 * Calculate the large page base address and the number of 4K pages
883 	 * in the large page
884 	 */
885 	lpaddr = address & pmask;
886 	numpages = psize >> PAGE_SHIFT;
887 
888 	/*
889 	 * Sanity check that the existing mapping is correct versus the static
890 	 * protections. static_protections() guards against !PRESENT, so no
891 	 * extra conditional required here.
892 	 */
893 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
894 				      psize, CPA_CONFLICT);
895 
896 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
897 		/*
898 		 * Split the large page and tell the split code to
899 		 * enforce static protections.
900 		 */
901 		cpa->force_static_prot = 1;
902 		return 1;
903 	}
904 
905 	/*
906 	 * Optimization: If the requested pgprot is the same as the current
907 	 * pgprot, then the large page can be preserved and no updates are
908 	 * required independent of alignment and length of the requested
909 	 * range. The above already established that the current pgprot is
910 	 * correct, which in consequence makes the requested pgprot correct
911 	 * as well if it is the same. The static protection scan below will
912 	 * not come to a different conclusion.
913 	 */
914 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
915 		cpa_inc_lp_sameprot(level);
916 		return 0;
917 	}
918 
919 	/*
920 	 * If the requested range does not cover the full page, split it up
921 	 */
922 	if (address != lpaddr || cpa->numpages != numpages)
923 		return 1;
924 
925 	/*
926 	 * Check whether the requested pgprot is conflicting with a static
927 	 * protection requirement in the large page.
928 	 */
929 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
930 				      psize, CPA_DETECT);
931 
932 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
933 
934 	/*
935 	 * If there is a conflict, split the large page.
936 	 *
937 	 * There used to be a 4k wise evaluation trying really hard to
938 	 * preserve the large pages, but experimentation has shown, that this
939 	 * does not help at all. There might be corner cases which would
940 	 * preserve one large page occasionally, but it's really not worth the
941 	 * extra code and cycles for the common case.
942 	 */
943 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
944 		return 1;
945 
946 	/* All checks passed. Update the large page mapping. */
947 	new_pte = pfn_pte(old_pfn, new_prot);
948 	__set_pmd_pte(kpte, address, new_pte);
949 	cpa->flags |= CPA_FLUSHTLB;
950 	cpa_inc_lp_preserved(level);
951 	return 0;
952 }
953 
954 static int should_split_large_page(pte_t *kpte, unsigned long address,
955 				   struct cpa_data *cpa)
956 {
957 	int do_split;
958 
959 	if (cpa->force_split)
960 		return 1;
961 
962 	spin_lock(&pgd_lock);
963 	do_split = __should_split_large_page(kpte, address, cpa);
964 	spin_unlock(&pgd_lock);
965 
966 	return do_split;
967 }
968 
969 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
970 			  pgprot_t ref_prot, unsigned long address,
971 			  unsigned long size)
972 {
973 	unsigned int npg = PFN_DOWN(size);
974 	pgprot_t prot;
975 
976 	/*
977 	 * If should_split_large_page() discovered an inconsistent mapping,
978 	 * remove the invalid protection in the split mapping.
979 	 */
980 	if (!cpa->force_static_prot)
981 		goto set;
982 
983 	/* Hand in lpsize = 0 to enforce the protection mechanism */
984 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
985 
986 	if (pgprot_val(prot) == pgprot_val(ref_prot))
987 		goto set;
988 
989 	/*
990 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
991 	 * fixed trivially as that would require to rescan the newly
992 	 * installed PMD mappings after returning from split_large_page()
993 	 * so an eventual further split can allocate the necessary PTE
994 	 * pages. Warn for now and revisit it in case this actually
995 	 * happens.
996 	 */
997 	if (size == PAGE_SIZE)
998 		ref_prot = prot;
999 	else
1000 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1001 set:
1002 	set_pte(pte, pfn_pte(pfn, ref_prot));
1003 }
1004 
1005 static int
1006 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1007 		   struct page *base)
1008 {
1009 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1010 	pte_t *pbase = (pte_t *)page_address(base);
1011 	unsigned int i, level;
1012 	pgprot_t ref_prot;
1013 	pte_t *tmp;
1014 
1015 	spin_lock(&pgd_lock);
1016 	/*
1017 	 * Check for races, another CPU might have split this page
1018 	 * up for us already:
1019 	 */
1020 	tmp = _lookup_address_cpa(cpa, address, &level);
1021 	if (tmp != kpte) {
1022 		spin_unlock(&pgd_lock);
1023 		return 1;
1024 	}
1025 
1026 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1027 
1028 	switch (level) {
1029 	case PG_LEVEL_2M:
1030 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1031 		/*
1032 		 * Clear PSE (aka _PAGE_PAT) and move
1033 		 * PAT bit to correct position.
1034 		 */
1035 		ref_prot = pgprot_large_2_4k(ref_prot);
1036 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1037 		lpaddr = address & PMD_MASK;
1038 		lpinc = PAGE_SIZE;
1039 		break;
1040 
1041 	case PG_LEVEL_1G:
1042 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1043 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1044 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1045 		lpaddr = address & PUD_MASK;
1046 		lpinc = PMD_SIZE;
1047 		/*
1048 		 * Clear the PSE flags if the PRESENT flag is not set
1049 		 * otherwise pmd_present/pmd_huge will return true
1050 		 * even on a non present pmd.
1051 		 */
1052 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1053 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1054 		break;
1055 
1056 	default:
1057 		spin_unlock(&pgd_lock);
1058 		return 1;
1059 	}
1060 
1061 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1062 
1063 	/*
1064 	 * Get the target pfn from the original entry:
1065 	 */
1066 	pfn = ref_pfn;
1067 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1068 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1069 
1070 	if (virt_addr_valid(address)) {
1071 		unsigned long pfn = PFN_DOWN(__pa(address));
1072 
1073 		if (pfn_range_is_mapped(pfn, pfn + 1))
1074 			split_page_count(level);
1075 	}
1076 
1077 	/*
1078 	 * Install the new, split up pagetable.
1079 	 *
1080 	 * We use the standard kernel pagetable protections for the new
1081 	 * pagetable protections, the actual ptes set above control the
1082 	 * primary protection behavior:
1083 	 */
1084 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1085 
1086 	/*
1087 	 * Do a global flush tlb after splitting the large page
1088 	 * and before we do the actual change page attribute in the PTE.
1089 	 *
1090 	 * Without this, we violate the TLB application note, that says:
1091 	 * "The TLBs may contain both ordinary and large-page
1092 	 *  translations for a 4-KByte range of linear addresses. This
1093 	 *  may occur if software modifies the paging structures so that
1094 	 *  the page size used for the address range changes. If the two
1095 	 *  translations differ with respect to page frame or attributes
1096 	 *  (e.g., permissions), processor behavior is undefined and may
1097 	 *  be implementation-specific."
1098 	 *
1099 	 * We do this global tlb flush inside the cpa_lock, so that we
1100 	 * don't allow any other cpu, with stale tlb entries change the
1101 	 * page attribute in parallel, that also falls into the
1102 	 * just split large page entry.
1103 	 */
1104 	flush_tlb_all();
1105 	spin_unlock(&pgd_lock);
1106 
1107 	return 0;
1108 }
1109 
1110 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1111 			    unsigned long address)
1112 {
1113 	struct page *base;
1114 
1115 	if (!debug_pagealloc_enabled())
1116 		spin_unlock(&cpa_lock);
1117 	base = alloc_pages(GFP_KERNEL, 0);
1118 	if (!debug_pagealloc_enabled())
1119 		spin_lock(&cpa_lock);
1120 	if (!base)
1121 		return -ENOMEM;
1122 
1123 	if (__split_large_page(cpa, kpte, address, base))
1124 		__free_page(base);
1125 
1126 	return 0;
1127 }
1128 
1129 static bool try_to_free_pte_page(pte_t *pte)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < PTRS_PER_PTE; i++)
1134 		if (!pte_none(pte[i]))
1135 			return false;
1136 
1137 	free_page((unsigned long)pte);
1138 	return true;
1139 }
1140 
1141 static bool try_to_free_pmd_page(pmd_t *pmd)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < PTRS_PER_PMD; i++)
1146 		if (!pmd_none(pmd[i]))
1147 			return false;
1148 
1149 	free_page((unsigned long)pmd);
1150 	return true;
1151 }
1152 
1153 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1154 {
1155 	pte_t *pte = pte_offset_kernel(pmd, start);
1156 
1157 	while (start < end) {
1158 		set_pte(pte, __pte(0));
1159 
1160 		start += PAGE_SIZE;
1161 		pte++;
1162 	}
1163 
1164 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1165 		pmd_clear(pmd);
1166 		return true;
1167 	}
1168 	return false;
1169 }
1170 
1171 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1172 			      unsigned long start, unsigned long end)
1173 {
1174 	if (unmap_pte_range(pmd, start, end))
1175 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1176 			pud_clear(pud);
1177 }
1178 
1179 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1180 {
1181 	pmd_t *pmd = pmd_offset(pud, start);
1182 
1183 	/*
1184 	 * Not on a 2MB page boundary?
1185 	 */
1186 	if (start & (PMD_SIZE - 1)) {
1187 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1188 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1189 
1190 		__unmap_pmd_range(pud, pmd, start, pre_end);
1191 
1192 		start = pre_end;
1193 		pmd++;
1194 	}
1195 
1196 	/*
1197 	 * Try to unmap in 2M chunks.
1198 	 */
1199 	while (end - start >= PMD_SIZE) {
1200 		if (pmd_large(*pmd))
1201 			pmd_clear(pmd);
1202 		else
1203 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1204 
1205 		start += PMD_SIZE;
1206 		pmd++;
1207 	}
1208 
1209 	/*
1210 	 * 4K leftovers?
1211 	 */
1212 	if (start < end)
1213 		return __unmap_pmd_range(pud, pmd, start, end);
1214 
1215 	/*
1216 	 * Try again to free the PMD page if haven't succeeded above.
1217 	 */
1218 	if (!pud_none(*pud))
1219 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1220 			pud_clear(pud);
1221 }
1222 
1223 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1224 {
1225 	pud_t *pud = pud_offset(p4d, start);
1226 
1227 	/*
1228 	 * Not on a GB page boundary?
1229 	 */
1230 	if (start & (PUD_SIZE - 1)) {
1231 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1232 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1233 
1234 		unmap_pmd_range(pud, start, pre_end);
1235 
1236 		start = pre_end;
1237 		pud++;
1238 	}
1239 
1240 	/*
1241 	 * Try to unmap in 1G chunks?
1242 	 */
1243 	while (end - start >= PUD_SIZE) {
1244 
1245 		if (pud_large(*pud))
1246 			pud_clear(pud);
1247 		else
1248 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1249 
1250 		start += PUD_SIZE;
1251 		pud++;
1252 	}
1253 
1254 	/*
1255 	 * 2M leftovers?
1256 	 */
1257 	if (start < end)
1258 		unmap_pmd_range(pud, start, end);
1259 
1260 	/*
1261 	 * No need to try to free the PUD page because we'll free it in
1262 	 * populate_pgd's error path
1263 	 */
1264 }
1265 
1266 static int alloc_pte_page(pmd_t *pmd)
1267 {
1268 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1269 	if (!pte)
1270 		return -1;
1271 
1272 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1273 	return 0;
1274 }
1275 
1276 static int alloc_pmd_page(pud_t *pud)
1277 {
1278 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1279 	if (!pmd)
1280 		return -1;
1281 
1282 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1283 	return 0;
1284 }
1285 
1286 static void populate_pte(struct cpa_data *cpa,
1287 			 unsigned long start, unsigned long end,
1288 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1289 {
1290 	pte_t *pte;
1291 
1292 	pte = pte_offset_kernel(pmd, start);
1293 
1294 	pgprot = pgprot_clear_protnone_bits(pgprot);
1295 
1296 	while (num_pages-- && start < end) {
1297 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1298 
1299 		start	 += PAGE_SIZE;
1300 		cpa->pfn++;
1301 		pte++;
1302 	}
1303 }
1304 
1305 static long populate_pmd(struct cpa_data *cpa,
1306 			 unsigned long start, unsigned long end,
1307 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1308 {
1309 	long cur_pages = 0;
1310 	pmd_t *pmd;
1311 	pgprot_t pmd_pgprot;
1312 
1313 	/*
1314 	 * Not on a 2M boundary?
1315 	 */
1316 	if (start & (PMD_SIZE - 1)) {
1317 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1318 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1319 
1320 		pre_end   = min_t(unsigned long, pre_end, next_page);
1321 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1322 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1323 
1324 		/*
1325 		 * Need a PTE page?
1326 		 */
1327 		pmd = pmd_offset(pud, start);
1328 		if (pmd_none(*pmd))
1329 			if (alloc_pte_page(pmd))
1330 				return -1;
1331 
1332 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1333 
1334 		start = pre_end;
1335 	}
1336 
1337 	/*
1338 	 * We mapped them all?
1339 	 */
1340 	if (num_pages == cur_pages)
1341 		return cur_pages;
1342 
1343 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1344 
1345 	while (end - start >= PMD_SIZE) {
1346 
1347 		/*
1348 		 * We cannot use a 1G page so allocate a PMD page if needed.
1349 		 */
1350 		if (pud_none(*pud))
1351 			if (alloc_pmd_page(pud))
1352 				return -1;
1353 
1354 		pmd = pmd_offset(pud, start);
1355 
1356 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1357 					canon_pgprot(pmd_pgprot))));
1358 
1359 		start	  += PMD_SIZE;
1360 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1361 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1362 	}
1363 
1364 	/*
1365 	 * Map trailing 4K pages.
1366 	 */
1367 	if (start < end) {
1368 		pmd = pmd_offset(pud, start);
1369 		if (pmd_none(*pmd))
1370 			if (alloc_pte_page(pmd))
1371 				return -1;
1372 
1373 		populate_pte(cpa, start, end, num_pages - cur_pages,
1374 			     pmd, pgprot);
1375 	}
1376 	return num_pages;
1377 }
1378 
1379 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1380 			pgprot_t pgprot)
1381 {
1382 	pud_t *pud;
1383 	unsigned long end;
1384 	long cur_pages = 0;
1385 	pgprot_t pud_pgprot;
1386 
1387 	end = start + (cpa->numpages << PAGE_SHIFT);
1388 
1389 	/*
1390 	 * Not on a Gb page boundary? => map everything up to it with
1391 	 * smaller pages.
1392 	 */
1393 	if (start & (PUD_SIZE - 1)) {
1394 		unsigned long pre_end;
1395 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1396 
1397 		pre_end   = min_t(unsigned long, end, next_page);
1398 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1399 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1400 
1401 		pud = pud_offset(p4d, start);
1402 
1403 		/*
1404 		 * Need a PMD page?
1405 		 */
1406 		if (pud_none(*pud))
1407 			if (alloc_pmd_page(pud))
1408 				return -1;
1409 
1410 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1411 					 pud, pgprot);
1412 		if (cur_pages < 0)
1413 			return cur_pages;
1414 
1415 		start = pre_end;
1416 	}
1417 
1418 	/* We mapped them all? */
1419 	if (cpa->numpages == cur_pages)
1420 		return cur_pages;
1421 
1422 	pud = pud_offset(p4d, start);
1423 	pud_pgprot = pgprot_4k_2_large(pgprot);
1424 
1425 	/*
1426 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1427 	 */
1428 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1429 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1430 				   canon_pgprot(pud_pgprot))));
1431 
1432 		start	  += PUD_SIZE;
1433 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1434 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1435 		pud++;
1436 	}
1437 
1438 	/* Map trailing leftover */
1439 	if (start < end) {
1440 		long tmp;
1441 
1442 		pud = pud_offset(p4d, start);
1443 		if (pud_none(*pud))
1444 			if (alloc_pmd_page(pud))
1445 				return -1;
1446 
1447 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1448 				   pud, pgprot);
1449 		if (tmp < 0)
1450 			return cur_pages;
1451 
1452 		cur_pages += tmp;
1453 	}
1454 	return cur_pages;
1455 }
1456 
1457 /*
1458  * Restrictions for kernel page table do not necessarily apply when mapping in
1459  * an alternate PGD.
1460  */
1461 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1462 {
1463 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1464 	pud_t *pud = NULL;	/* shut up gcc */
1465 	p4d_t *p4d;
1466 	pgd_t *pgd_entry;
1467 	long ret;
1468 
1469 	pgd_entry = cpa->pgd + pgd_index(addr);
1470 
1471 	if (pgd_none(*pgd_entry)) {
1472 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1473 		if (!p4d)
1474 			return -1;
1475 
1476 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1477 	}
1478 
1479 	/*
1480 	 * Allocate a PUD page and hand it down for mapping.
1481 	 */
1482 	p4d = p4d_offset(pgd_entry, addr);
1483 	if (p4d_none(*p4d)) {
1484 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1485 		if (!pud)
1486 			return -1;
1487 
1488 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1489 	}
1490 
1491 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1492 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1493 
1494 	ret = populate_pud(cpa, addr, p4d, pgprot);
1495 	if (ret < 0) {
1496 		/*
1497 		 * Leave the PUD page in place in case some other CPU or thread
1498 		 * already found it, but remove any useless entries we just
1499 		 * added to it.
1500 		 */
1501 		unmap_pud_range(p4d, addr,
1502 				addr + (cpa->numpages << PAGE_SHIFT));
1503 		return ret;
1504 	}
1505 
1506 	cpa->numpages = ret;
1507 	return 0;
1508 }
1509 
1510 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1511 			       int primary)
1512 {
1513 	if (cpa->pgd) {
1514 		/*
1515 		 * Right now, we only execute this code path when mapping
1516 		 * the EFI virtual memory map regions, no other users
1517 		 * provide a ->pgd value. This may change in the future.
1518 		 */
1519 		return populate_pgd(cpa, vaddr);
1520 	}
1521 
1522 	/*
1523 	 * Ignore all non primary paths.
1524 	 */
1525 	if (!primary) {
1526 		cpa->numpages = 1;
1527 		return 0;
1528 	}
1529 
1530 	/*
1531 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1532 	 * to have holes.
1533 	 * Also set numpages to '1' indicating that we processed cpa req for
1534 	 * one virtual address page and its pfn. TBD: numpages can be set based
1535 	 * on the initial value and the level returned by lookup_address().
1536 	 */
1537 	if (within(vaddr, PAGE_OFFSET,
1538 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1539 		cpa->numpages = 1;
1540 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1541 		return 0;
1542 
1543 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1544 		/* Faults in the highmap are OK, so do not warn: */
1545 		return -EFAULT;
1546 	} else {
1547 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1548 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1549 			*cpa->vaddr);
1550 
1551 		return -EFAULT;
1552 	}
1553 }
1554 
1555 static int __change_page_attr(struct cpa_data *cpa, int primary)
1556 {
1557 	unsigned long address;
1558 	int do_split, err;
1559 	unsigned int level;
1560 	pte_t *kpte, old_pte;
1561 
1562 	address = __cpa_addr(cpa, cpa->curpage);
1563 repeat:
1564 	kpte = _lookup_address_cpa(cpa, address, &level);
1565 	if (!kpte)
1566 		return __cpa_process_fault(cpa, address, primary);
1567 
1568 	old_pte = *kpte;
1569 	if (pte_none(old_pte))
1570 		return __cpa_process_fault(cpa, address, primary);
1571 
1572 	if (level == PG_LEVEL_4K) {
1573 		pte_t new_pte;
1574 		pgprot_t old_prot = pte_pgprot(old_pte);
1575 		pgprot_t new_prot = pte_pgprot(old_pte);
1576 		unsigned long pfn = pte_pfn(old_pte);
1577 
1578 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1579 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1580 
1581 		cpa_inc_4k_install();
1582 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1583 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1584 					      CPA_PROTECT);
1585 
1586 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1587 
1588 		new_prot = pgprot_clear_protnone_bits(new_prot);
1589 
1590 		/*
1591 		 * We need to keep the pfn from the existing PTE,
1592 		 * after all we're only going to change it's attributes
1593 		 * not the memory it points to
1594 		 */
1595 		new_pte = pfn_pte(pfn, new_prot);
1596 		cpa->pfn = pfn;
1597 		/*
1598 		 * Do we really change anything ?
1599 		 */
1600 		if (pte_val(old_pte) != pte_val(new_pte)) {
1601 			set_pte_atomic(kpte, new_pte);
1602 			cpa->flags |= CPA_FLUSHTLB;
1603 		}
1604 		cpa->numpages = 1;
1605 		return 0;
1606 	}
1607 
1608 	/*
1609 	 * Check, whether we can keep the large page intact
1610 	 * and just change the pte:
1611 	 */
1612 	do_split = should_split_large_page(kpte, address, cpa);
1613 	/*
1614 	 * When the range fits into the existing large page,
1615 	 * return. cp->numpages and cpa->tlbflush have been updated in
1616 	 * try_large_page:
1617 	 */
1618 	if (do_split <= 0)
1619 		return do_split;
1620 
1621 	/*
1622 	 * We have to split the large page:
1623 	 */
1624 	err = split_large_page(cpa, kpte, address);
1625 	if (!err)
1626 		goto repeat;
1627 
1628 	return err;
1629 }
1630 
1631 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1632 
1633 static int cpa_process_alias(struct cpa_data *cpa)
1634 {
1635 	struct cpa_data alias_cpa;
1636 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1637 	unsigned long vaddr;
1638 	int ret;
1639 
1640 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1641 		return 0;
1642 
1643 	/*
1644 	 * No need to redo, when the primary call touched the direct
1645 	 * mapping already:
1646 	 */
1647 	vaddr = __cpa_addr(cpa, cpa->curpage);
1648 	if (!(within(vaddr, PAGE_OFFSET,
1649 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1650 
1651 		alias_cpa = *cpa;
1652 		alias_cpa.vaddr = &laddr;
1653 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1654 		alias_cpa.curpage = 0;
1655 
1656 		cpa->force_flush_all = 1;
1657 
1658 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1659 		if (ret)
1660 			return ret;
1661 	}
1662 
1663 #ifdef CONFIG_X86_64
1664 	/*
1665 	 * If the primary call didn't touch the high mapping already
1666 	 * and the physical address is inside the kernel map, we need
1667 	 * to touch the high mapped kernel as well:
1668 	 */
1669 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1670 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1671 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1672 					       __START_KERNEL_map - phys_base;
1673 		alias_cpa = *cpa;
1674 		alias_cpa.vaddr = &temp_cpa_vaddr;
1675 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1676 		alias_cpa.curpage = 0;
1677 
1678 		cpa->force_flush_all = 1;
1679 		/*
1680 		 * The high mapping range is imprecise, so ignore the
1681 		 * return value.
1682 		 */
1683 		__change_page_attr_set_clr(&alias_cpa, 0);
1684 	}
1685 #endif
1686 
1687 	return 0;
1688 }
1689 
1690 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1691 {
1692 	unsigned long numpages = cpa->numpages;
1693 	unsigned long rempages = numpages;
1694 	int ret = 0;
1695 
1696 	while (rempages) {
1697 		/*
1698 		 * Store the remaining nr of pages for the large page
1699 		 * preservation check.
1700 		 */
1701 		cpa->numpages = rempages;
1702 		/* for array changes, we can't use large page */
1703 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1704 			cpa->numpages = 1;
1705 
1706 		if (!debug_pagealloc_enabled())
1707 			spin_lock(&cpa_lock);
1708 		ret = __change_page_attr(cpa, checkalias);
1709 		if (!debug_pagealloc_enabled())
1710 			spin_unlock(&cpa_lock);
1711 		if (ret)
1712 			goto out;
1713 
1714 		if (checkalias) {
1715 			ret = cpa_process_alias(cpa);
1716 			if (ret)
1717 				goto out;
1718 		}
1719 
1720 		/*
1721 		 * Adjust the number of pages with the result of the
1722 		 * CPA operation. Either a large page has been
1723 		 * preserved or a single page update happened.
1724 		 */
1725 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1726 		rempages -= cpa->numpages;
1727 		cpa->curpage += cpa->numpages;
1728 	}
1729 
1730 out:
1731 	/* Restore the original numpages */
1732 	cpa->numpages = numpages;
1733 	return ret;
1734 }
1735 
1736 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1737 				    pgprot_t mask_set, pgprot_t mask_clr,
1738 				    int force_split, int in_flag,
1739 				    struct page **pages)
1740 {
1741 	struct cpa_data cpa;
1742 	int ret, cache, checkalias;
1743 
1744 	memset(&cpa, 0, sizeof(cpa));
1745 
1746 	/*
1747 	 * Check, if we are requested to set a not supported
1748 	 * feature.  Clearing non-supported features is OK.
1749 	 */
1750 	mask_set = canon_pgprot(mask_set);
1751 
1752 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1753 		return 0;
1754 
1755 	/* Ensure we are PAGE_SIZE aligned */
1756 	if (in_flag & CPA_ARRAY) {
1757 		int i;
1758 		for (i = 0; i < numpages; i++) {
1759 			if (addr[i] & ~PAGE_MASK) {
1760 				addr[i] &= PAGE_MASK;
1761 				WARN_ON_ONCE(1);
1762 			}
1763 		}
1764 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1765 		/*
1766 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1767 		 * No need to check in that case
1768 		 */
1769 		if (*addr & ~PAGE_MASK) {
1770 			*addr &= PAGE_MASK;
1771 			/*
1772 			 * People should not be passing in unaligned addresses:
1773 			 */
1774 			WARN_ON_ONCE(1);
1775 		}
1776 	}
1777 
1778 	/* Must avoid aliasing mappings in the highmem code */
1779 	kmap_flush_unused();
1780 
1781 	vm_unmap_aliases();
1782 
1783 	cpa.vaddr = addr;
1784 	cpa.pages = pages;
1785 	cpa.numpages = numpages;
1786 	cpa.mask_set = mask_set;
1787 	cpa.mask_clr = mask_clr;
1788 	cpa.flags = 0;
1789 	cpa.curpage = 0;
1790 	cpa.force_split = force_split;
1791 
1792 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1793 		cpa.flags |= in_flag;
1794 
1795 	/* No alias checking for _NX bit modifications */
1796 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1797 	/* Has caller explicitly disabled alias checking? */
1798 	if (in_flag & CPA_NO_CHECK_ALIAS)
1799 		checkalias = 0;
1800 
1801 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1802 
1803 	/*
1804 	 * Check whether we really changed something:
1805 	 */
1806 	if (!(cpa.flags & CPA_FLUSHTLB))
1807 		goto out;
1808 
1809 	/*
1810 	 * No need to flush, when we did not set any of the caching
1811 	 * attributes:
1812 	 */
1813 	cache = !!pgprot2cachemode(mask_set);
1814 
1815 	/*
1816 	 * On error; flush everything to be sure.
1817 	 */
1818 	if (ret) {
1819 		cpa_flush_all(cache);
1820 		goto out;
1821 	}
1822 
1823 	cpa_flush(&cpa, cache);
1824 out:
1825 	return ret;
1826 }
1827 
1828 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1829 				       pgprot_t mask, int array)
1830 {
1831 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1832 		(array ? CPA_ARRAY : 0), NULL);
1833 }
1834 
1835 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1836 					 pgprot_t mask, int array)
1837 {
1838 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1839 		(array ? CPA_ARRAY : 0), NULL);
1840 }
1841 
1842 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1843 				       pgprot_t mask)
1844 {
1845 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1846 		CPA_PAGES_ARRAY, pages);
1847 }
1848 
1849 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1850 					 pgprot_t mask)
1851 {
1852 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1853 		CPA_PAGES_ARRAY, pages);
1854 }
1855 
1856 /*
1857  * __set_memory_prot is an internal helper for callers that have been passed
1858  * a pgprot_t value from upper layers and a reservation has already been taken.
1859  * If you want to set the pgprot to a specific page protocol, use the
1860  * set_memory_xx() functions.
1861  */
1862 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1863 {
1864 	return change_page_attr_set_clr(&addr, numpages, prot,
1865 					__pgprot(~pgprot_val(prot)), 0, 0,
1866 					NULL);
1867 }
1868 
1869 int _set_memory_uc(unsigned long addr, int numpages)
1870 {
1871 	/*
1872 	 * for now UC MINUS. see comments in ioremap()
1873 	 * If you really need strong UC use ioremap_uc(), but note
1874 	 * that you cannot override IO areas with set_memory_*() as
1875 	 * these helpers cannot work with IO memory.
1876 	 */
1877 	return change_page_attr_set(&addr, numpages,
1878 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1879 				    0);
1880 }
1881 
1882 int set_memory_uc(unsigned long addr, int numpages)
1883 {
1884 	int ret;
1885 
1886 	/*
1887 	 * for now UC MINUS. see comments in ioremap()
1888 	 */
1889 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1891 	if (ret)
1892 		goto out_err;
1893 
1894 	ret = _set_memory_uc(addr, numpages);
1895 	if (ret)
1896 		goto out_free;
1897 
1898 	return 0;
1899 
1900 out_free:
1901 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1902 out_err:
1903 	return ret;
1904 }
1905 EXPORT_SYMBOL(set_memory_uc);
1906 
1907 int _set_memory_wc(unsigned long addr, int numpages)
1908 {
1909 	int ret;
1910 
1911 	ret = change_page_attr_set(&addr, numpages,
1912 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1913 				   0);
1914 	if (!ret) {
1915 		ret = change_page_attr_set_clr(&addr, numpages,
1916 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1917 					       __pgprot(_PAGE_CACHE_MASK),
1918 					       0, 0, NULL);
1919 	}
1920 	return ret;
1921 }
1922 
1923 int set_memory_wc(unsigned long addr, int numpages)
1924 {
1925 	int ret;
1926 
1927 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1928 		_PAGE_CACHE_MODE_WC, NULL);
1929 	if (ret)
1930 		return ret;
1931 
1932 	ret = _set_memory_wc(addr, numpages);
1933 	if (ret)
1934 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1935 
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL(set_memory_wc);
1939 
1940 int _set_memory_wt(unsigned long addr, int numpages)
1941 {
1942 	return change_page_attr_set(&addr, numpages,
1943 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1944 }
1945 
1946 int _set_memory_wb(unsigned long addr, int numpages)
1947 {
1948 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1949 	return change_page_attr_clear(&addr, numpages,
1950 				      __pgprot(_PAGE_CACHE_MASK), 0);
1951 }
1952 
1953 int set_memory_wb(unsigned long addr, int numpages)
1954 {
1955 	int ret;
1956 
1957 	ret = _set_memory_wb(addr, numpages);
1958 	if (ret)
1959 		return ret;
1960 
1961 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL(set_memory_wb);
1965 
1966 /* Prevent speculative access to a page by marking it not-present */
1967 #ifdef CONFIG_X86_64
1968 int set_mce_nospec(unsigned long pfn)
1969 {
1970 	unsigned long decoy_addr;
1971 	int rc;
1972 
1973 	/* SGX pages are not in the 1:1 map */
1974 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
1975 		return 0;
1976 	/*
1977 	 * We would like to just call:
1978 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
1979 	 * but doing that would radically increase the odds of a
1980 	 * speculative access to the poison page because we'd have
1981 	 * the virtual address of the kernel 1:1 mapping sitting
1982 	 * around in registers.
1983 	 * Instead we get tricky.  We create a non-canonical address
1984 	 * that looks just like the one we want, but has bit 63 flipped.
1985 	 * This relies on set_memory_XX() properly sanitizing any __pa()
1986 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
1987 	 */
1988 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1989 
1990 	rc = set_memory_np(decoy_addr, 1);
1991 	if (rc)
1992 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1993 	return rc;
1994 }
1995 
1996 static int set_memory_p(unsigned long *addr, int numpages)
1997 {
1998 	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1999 }
2000 
2001 /* Restore full speculative operation to the pfn. */
2002 int clear_mce_nospec(unsigned long pfn)
2003 {
2004 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2005 
2006 	return set_memory_p(&addr, 1);
2007 }
2008 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2009 #endif /* CONFIG_X86_64 */
2010 
2011 int set_memory_x(unsigned long addr, int numpages)
2012 {
2013 	if (!(__supported_pte_mask & _PAGE_NX))
2014 		return 0;
2015 
2016 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2017 }
2018 
2019 int set_memory_nx(unsigned long addr, int numpages)
2020 {
2021 	if (!(__supported_pte_mask & _PAGE_NX))
2022 		return 0;
2023 
2024 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2025 }
2026 
2027 int set_memory_ro(unsigned long addr, int numpages)
2028 {
2029 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2030 }
2031 
2032 int set_memory_rw(unsigned long addr, int numpages)
2033 {
2034 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2035 }
2036 
2037 int set_memory_np(unsigned long addr, int numpages)
2038 {
2039 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2040 }
2041 
2042 int set_memory_np_noalias(unsigned long addr, int numpages)
2043 {
2044 	int cpa_flags = CPA_NO_CHECK_ALIAS;
2045 
2046 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2047 					__pgprot(_PAGE_PRESENT), 0,
2048 					cpa_flags, NULL);
2049 }
2050 
2051 int set_memory_4k(unsigned long addr, int numpages)
2052 {
2053 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2054 					__pgprot(0), 1, 0, NULL);
2055 }
2056 
2057 int set_memory_nonglobal(unsigned long addr, int numpages)
2058 {
2059 	return change_page_attr_clear(&addr, numpages,
2060 				      __pgprot(_PAGE_GLOBAL), 0);
2061 }
2062 
2063 int set_memory_global(unsigned long addr, int numpages)
2064 {
2065 	return change_page_attr_set(&addr, numpages,
2066 				    __pgprot(_PAGE_GLOBAL), 0);
2067 }
2068 
2069 /*
2070  * __set_memory_enc_pgtable() is used for the hypervisors that get
2071  * informed about "encryption" status via page tables.
2072  */
2073 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2074 {
2075 	pgprot_t empty = __pgprot(0);
2076 	struct cpa_data cpa;
2077 	int ret;
2078 
2079 	/* Should not be working on unaligned addresses */
2080 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2081 		addr &= PAGE_MASK;
2082 
2083 	memset(&cpa, 0, sizeof(cpa));
2084 	cpa.vaddr = &addr;
2085 	cpa.numpages = numpages;
2086 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2087 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2088 	cpa.pgd = init_mm.pgd;
2089 
2090 	/* Must avoid aliasing mappings in the highmem code */
2091 	kmap_flush_unused();
2092 	vm_unmap_aliases();
2093 
2094 	/* Flush the caches as needed before changing the encryption attribute. */
2095 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2096 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2097 
2098 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2099 	x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2100 
2101 	ret = __change_page_attr_set_clr(&cpa, 1);
2102 
2103 	/*
2104 	 * After changing the encryption attribute, we need to flush TLBs again
2105 	 * in case any speculative TLB caching occurred (but no need to flush
2106 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2107 	 * flushing gets optimized in the cpa_flush() path use the same logic
2108 	 * as above.
2109 	 */
2110 	cpa_flush(&cpa, 0);
2111 
2112 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2113 	if (!ret) {
2114 		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2115 			ret = -EIO;
2116 	}
2117 
2118 	return ret;
2119 }
2120 
2121 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2122 {
2123 	if (hv_is_isolation_supported())
2124 		return hv_set_mem_host_visibility(addr, numpages, !enc);
2125 
2126 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2127 		return __set_memory_enc_pgtable(addr, numpages, enc);
2128 
2129 	return 0;
2130 }
2131 
2132 int set_memory_encrypted(unsigned long addr, int numpages)
2133 {
2134 	return __set_memory_enc_dec(addr, numpages, true);
2135 }
2136 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2137 
2138 int set_memory_decrypted(unsigned long addr, int numpages)
2139 {
2140 	return __set_memory_enc_dec(addr, numpages, false);
2141 }
2142 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2143 
2144 int set_pages_uc(struct page *page, int numpages)
2145 {
2146 	unsigned long addr = (unsigned long)page_address(page);
2147 
2148 	return set_memory_uc(addr, numpages);
2149 }
2150 EXPORT_SYMBOL(set_pages_uc);
2151 
2152 static int _set_pages_array(struct page **pages, int numpages,
2153 		enum page_cache_mode new_type)
2154 {
2155 	unsigned long start;
2156 	unsigned long end;
2157 	enum page_cache_mode set_type;
2158 	int i;
2159 	int free_idx;
2160 	int ret;
2161 
2162 	for (i = 0; i < numpages; i++) {
2163 		if (PageHighMem(pages[i]))
2164 			continue;
2165 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2166 		end = start + PAGE_SIZE;
2167 		if (memtype_reserve(start, end, new_type, NULL))
2168 			goto err_out;
2169 	}
2170 
2171 	/* If WC, set to UC- first and then WC */
2172 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2173 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2174 
2175 	ret = cpa_set_pages_array(pages, numpages,
2176 				  cachemode2pgprot(set_type));
2177 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2178 		ret = change_page_attr_set_clr(NULL, numpages,
2179 					       cachemode2pgprot(
2180 						_PAGE_CACHE_MODE_WC),
2181 					       __pgprot(_PAGE_CACHE_MASK),
2182 					       0, CPA_PAGES_ARRAY, pages);
2183 	if (ret)
2184 		goto err_out;
2185 	return 0; /* Success */
2186 err_out:
2187 	free_idx = i;
2188 	for (i = 0; i < free_idx; i++) {
2189 		if (PageHighMem(pages[i]))
2190 			continue;
2191 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2192 		end = start + PAGE_SIZE;
2193 		memtype_free(start, end);
2194 	}
2195 	return -EINVAL;
2196 }
2197 
2198 int set_pages_array_uc(struct page **pages, int numpages)
2199 {
2200 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2201 }
2202 EXPORT_SYMBOL(set_pages_array_uc);
2203 
2204 int set_pages_array_wc(struct page **pages, int numpages)
2205 {
2206 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2207 }
2208 EXPORT_SYMBOL(set_pages_array_wc);
2209 
2210 int set_pages_wb(struct page *page, int numpages)
2211 {
2212 	unsigned long addr = (unsigned long)page_address(page);
2213 
2214 	return set_memory_wb(addr, numpages);
2215 }
2216 EXPORT_SYMBOL(set_pages_wb);
2217 
2218 int set_pages_array_wb(struct page **pages, int numpages)
2219 {
2220 	int retval;
2221 	unsigned long start;
2222 	unsigned long end;
2223 	int i;
2224 
2225 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2226 	retval = cpa_clear_pages_array(pages, numpages,
2227 			__pgprot(_PAGE_CACHE_MASK));
2228 	if (retval)
2229 		return retval;
2230 
2231 	for (i = 0; i < numpages; i++) {
2232 		if (PageHighMem(pages[i]))
2233 			continue;
2234 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2235 		end = start + PAGE_SIZE;
2236 		memtype_free(start, end);
2237 	}
2238 
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL(set_pages_array_wb);
2242 
2243 int set_pages_ro(struct page *page, int numpages)
2244 {
2245 	unsigned long addr = (unsigned long)page_address(page);
2246 
2247 	return set_memory_ro(addr, numpages);
2248 }
2249 
2250 int set_pages_rw(struct page *page, int numpages)
2251 {
2252 	unsigned long addr = (unsigned long)page_address(page);
2253 
2254 	return set_memory_rw(addr, numpages);
2255 }
2256 
2257 static int __set_pages_p(struct page *page, int numpages)
2258 {
2259 	unsigned long tempaddr = (unsigned long) page_address(page);
2260 	struct cpa_data cpa = { .vaddr = &tempaddr,
2261 				.pgd = NULL,
2262 				.numpages = numpages,
2263 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2264 				.mask_clr = __pgprot(0),
2265 				.flags = 0};
2266 
2267 	/*
2268 	 * No alias checking needed for setting present flag. otherwise,
2269 	 * we may need to break large pages for 64-bit kernel text
2270 	 * mappings (this adds to complexity if we want to do this from
2271 	 * atomic context especially). Let's keep it simple!
2272 	 */
2273 	return __change_page_attr_set_clr(&cpa, 0);
2274 }
2275 
2276 static int __set_pages_np(struct page *page, int numpages)
2277 {
2278 	unsigned long tempaddr = (unsigned long) page_address(page);
2279 	struct cpa_data cpa = { .vaddr = &tempaddr,
2280 				.pgd = NULL,
2281 				.numpages = numpages,
2282 				.mask_set = __pgprot(0),
2283 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2284 				.flags = 0};
2285 
2286 	/*
2287 	 * No alias checking needed for setting not present flag. otherwise,
2288 	 * we may need to break large pages for 64-bit kernel text
2289 	 * mappings (this adds to complexity if we want to do this from
2290 	 * atomic context especially). Let's keep it simple!
2291 	 */
2292 	return __change_page_attr_set_clr(&cpa, 0);
2293 }
2294 
2295 int set_direct_map_invalid_noflush(struct page *page)
2296 {
2297 	return __set_pages_np(page, 1);
2298 }
2299 
2300 int set_direct_map_default_noflush(struct page *page)
2301 {
2302 	return __set_pages_p(page, 1);
2303 }
2304 
2305 #ifdef CONFIG_DEBUG_PAGEALLOC
2306 void __kernel_map_pages(struct page *page, int numpages, int enable)
2307 {
2308 	if (PageHighMem(page))
2309 		return;
2310 	if (!enable) {
2311 		debug_check_no_locks_freed(page_address(page),
2312 					   numpages * PAGE_SIZE);
2313 	}
2314 
2315 	/*
2316 	 * The return value is ignored as the calls cannot fail.
2317 	 * Large pages for identity mappings are not used at boot time
2318 	 * and hence no memory allocations during large page split.
2319 	 */
2320 	if (enable)
2321 		__set_pages_p(page, numpages);
2322 	else
2323 		__set_pages_np(page, numpages);
2324 
2325 	/*
2326 	 * We should perform an IPI and flush all tlbs,
2327 	 * but that can deadlock->flush only current cpu.
2328 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2329 	 * CR3 reload in __native_flush_tlb().
2330 	 */
2331 	preempt_disable();
2332 	__flush_tlb_all();
2333 	preempt_enable();
2334 
2335 	arch_flush_lazy_mmu_mode();
2336 }
2337 #endif /* CONFIG_DEBUG_PAGEALLOC */
2338 
2339 bool kernel_page_present(struct page *page)
2340 {
2341 	unsigned int level;
2342 	pte_t *pte;
2343 
2344 	if (PageHighMem(page))
2345 		return false;
2346 
2347 	pte = lookup_address((unsigned long)page_address(page), &level);
2348 	return (pte_val(*pte) & _PAGE_PRESENT);
2349 }
2350 
2351 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2352 				   unsigned numpages, unsigned long page_flags)
2353 {
2354 	int retval = -EINVAL;
2355 
2356 	struct cpa_data cpa = {
2357 		.vaddr = &address,
2358 		.pfn = pfn,
2359 		.pgd = pgd,
2360 		.numpages = numpages,
2361 		.mask_set = __pgprot(0),
2362 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2363 		.flags = 0,
2364 	};
2365 
2366 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2367 
2368 	if (!(__supported_pte_mask & _PAGE_NX))
2369 		goto out;
2370 
2371 	if (!(page_flags & _PAGE_ENC))
2372 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2373 
2374 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2375 
2376 	retval = __change_page_attr_set_clr(&cpa, 0);
2377 	__flush_tlb_all();
2378 
2379 out:
2380 	return retval;
2381 }
2382 
2383 /*
2384  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2385  * function shouldn't be used in an SMP environment. Presently, it's used only
2386  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2387  */
2388 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2389 				     unsigned long numpages)
2390 {
2391 	int retval;
2392 
2393 	/*
2394 	 * The typical sequence for unmapping is to find a pte through
2395 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2396 	 * the address is already mapped) and change it's protections. As pfn is
2397 	 * the *target* of a mapping, it's not useful while unmapping.
2398 	 */
2399 	struct cpa_data cpa = {
2400 		.vaddr		= &address,
2401 		.pfn		= 0,
2402 		.pgd		= pgd,
2403 		.numpages	= numpages,
2404 		.mask_set	= __pgprot(0),
2405 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2406 		.flags		= 0,
2407 	};
2408 
2409 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2410 
2411 	retval = __change_page_attr_set_clr(&cpa, 0);
2412 	__flush_tlb_all();
2413 
2414 	return retval;
2415 }
2416 
2417 /*
2418  * The testcases use internal knowledge of the implementation that shouldn't
2419  * be exposed to the rest of the kernel. Include these directly here.
2420  */
2421 #ifdef CONFIG_CPA_DEBUG
2422 #include "cpa-test.c"
2423 #endif
2424