1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 #include <linux/libnvdimm.h> 19 #include <linux/vmstat.h> 20 #include <linux/kernel.h> 21 #include <linux/cc_platform.h> 22 23 #include <asm/e820/api.h> 24 #include <asm/processor.h> 25 #include <asm/tlbflush.h> 26 #include <asm/sections.h> 27 #include <asm/setup.h> 28 #include <linux/uaccess.h> 29 #include <asm/pgalloc.h> 30 #include <asm/proto.h> 31 #include <asm/memtype.h> 32 #include <asm/set_memory.h> 33 #include <asm/hyperv-tlfs.h> 34 #include <asm/mshyperv.h> 35 36 #include "../mm_internal.h" 37 38 /* 39 * The current flushing context - we pass it instead of 5 arguments: 40 */ 41 struct cpa_data { 42 unsigned long *vaddr; 43 pgd_t *pgd; 44 pgprot_t mask_set; 45 pgprot_t mask_clr; 46 unsigned long numpages; 47 unsigned long curpage; 48 unsigned long pfn; 49 unsigned int flags; 50 unsigned int force_split : 1, 51 force_static_prot : 1, 52 force_flush_all : 1; 53 struct page **pages; 54 }; 55 56 enum cpa_warn { 57 CPA_CONFLICT, 58 CPA_PROTECT, 59 CPA_DETECT, 60 }; 61 62 static const int cpa_warn_level = CPA_PROTECT; 63 64 /* 65 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 66 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 67 * entries change the page attribute in parallel to some other cpu 68 * splitting a large page entry along with changing the attribute. 69 */ 70 static DEFINE_SPINLOCK(cpa_lock); 71 72 #define CPA_FLUSHTLB 1 73 #define CPA_ARRAY 2 74 #define CPA_PAGES_ARRAY 4 75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 76 77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 78 { 79 return __pgprot(cachemode2protval(pcm)); 80 } 81 82 #ifdef CONFIG_PROC_FS 83 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 84 85 void update_page_count(int level, unsigned long pages) 86 { 87 /* Protect against CPA */ 88 spin_lock(&pgd_lock); 89 direct_pages_count[level] += pages; 90 spin_unlock(&pgd_lock); 91 } 92 93 static void split_page_count(int level) 94 { 95 if (direct_pages_count[level] == 0) 96 return; 97 98 direct_pages_count[level]--; 99 if (system_state == SYSTEM_RUNNING) { 100 if (level == PG_LEVEL_2M) 101 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 102 else if (level == PG_LEVEL_1G) 103 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 104 } 105 direct_pages_count[level - 1] += PTRS_PER_PTE; 106 } 107 108 void arch_report_meminfo(struct seq_file *m) 109 { 110 seq_printf(m, "DirectMap4k: %8lu kB\n", 111 direct_pages_count[PG_LEVEL_4K] << 2); 112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 113 seq_printf(m, "DirectMap2M: %8lu kB\n", 114 direct_pages_count[PG_LEVEL_2M] << 11); 115 #else 116 seq_printf(m, "DirectMap4M: %8lu kB\n", 117 direct_pages_count[PG_LEVEL_2M] << 12); 118 #endif 119 if (direct_gbpages) 120 seq_printf(m, "DirectMap1G: %8lu kB\n", 121 direct_pages_count[PG_LEVEL_1G] << 20); 122 } 123 #else 124 static inline void split_page_count(int level) { } 125 #endif 126 127 #ifdef CONFIG_X86_CPA_STATISTICS 128 129 static unsigned long cpa_1g_checked; 130 static unsigned long cpa_1g_sameprot; 131 static unsigned long cpa_1g_preserved; 132 static unsigned long cpa_2m_checked; 133 static unsigned long cpa_2m_sameprot; 134 static unsigned long cpa_2m_preserved; 135 static unsigned long cpa_4k_install; 136 137 static inline void cpa_inc_1g_checked(void) 138 { 139 cpa_1g_checked++; 140 } 141 142 static inline void cpa_inc_2m_checked(void) 143 { 144 cpa_2m_checked++; 145 } 146 147 static inline void cpa_inc_4k_install(void) 148 { 149 data_race(cpa_4k_install++); 150 } 151 152 static inline void cpa_inc_lp_sameprot(int level) 153 { 154 if (level == PG_LEVEL_1G) 155 cpa_1g_sameprot++; 156 else 157 cpa_2m_sameprot++; 158 } 159 160 static inline void cpa_inc_lp_preserved(int level) 161 { 162 if (level == PG_LEVEL_1G) 163 cpa_1g_preserved++; 164 else 165 cpa_2m_preserved++; 166 } 167 168 static int cpastats_show(struct seq_file *m, void *p) 169 { 170 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 171 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 172 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 173 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 174 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 175 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 176 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 177 return 0; 178 } 179 180 static int cpastats_open(struct inode *inode, struct file *file) 181 { 182 return single_open(file, cpastats_show, NULL); 183 } 184 185 static const struct file_operations cpastats_fops = { 186 .open = cpastats_open, 187 .read = seq_read, 188 .llseek = seq_lseek, 189 .release = single_release, 190 }; 191 192 static int __init cpa_stats_init(void) 193 { 194 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 195 &cpastats_fops); 196 return 0; 197 } 198 late_initcall(cpa_stats_init); 199 #else 200 static inline void cpa_inc_1g_checked(void) { } 201 static inline void cpa_inc_2m_checked(void) { } 202 static inline void cpa_inc_4k_install(void) { } 203 static inline void cpa_inc_lp_sameprot(int level) { } 204 static inline void cpa_inc_lp_preserved(int level) { } 205 #endif 206 207 208 static inline int 209 within(unsigned long addr, unsigned long start, unsigned long end) 210 { 211 return addr >= start && addr < end; 212 } 213 214 static inline int 215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 216 { 217 return addr >= start && addr <= end; 218 } 219 220 #ifdef CONFIG_X86_64 221 222 static inline unsigned long highmap_start_pfn(void) 223 { 224 return __pa_symbol(_text) >> PAGE_SHIFT; 225 } 226 227 static inline unsigned long highmap_end_pfn(void) 228 { 229 /* Do not reference physical address outside the kernel. */ 230 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 231 } 232 233 static bool __cpa_pfn_in_highmap(unsigned long pfn) 234 { 235 /* 236 * Kernel text has an alias mapping at a high address, known 237 * here as "highmap". 238 */ 239 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 240 } 241 242 #else 243 244 static bool __cpa_pfn_in_highmap(unsigned long pfn) 245 { 246 /* There is no highmap on 32-bit */ 247 return false; 248 } 249 250 #endif 251 252 /* 253 * See set_mce_nospec(). 254 * 255 * Machine check recovery code needs to change cache mode of poisoned pages to 256 * UC to avoid speculative access logging another error. But passing the 257 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 258 * speculative access. So we cheat and flip the top bit of the address. This 259 * works fine for the code that updates the page tables. But at the end of the 260 * process we need to flush the TLB and cache and the non-canonical address 261 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 262 * 263 * But in the common case we already have a canonical address. This code 264 * will fix the top bit if needed and is a no-op otherwise. 265 */ 266 static inline unsigned long fix_addr(unsigned long addr) 267 { 268 #ifdef CONFIG_X86_64 269 return (long)(addr << 1) >> 1; 270 #else 271 return addr; 272 #endif 273 } 274 275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 276 { 277 if (cpa->flags & CPA_PAGES_ARRAY) { 278 struct page *page = cpa->pages[idx]; 279 280 if (unlikely(PageHighMem(page))) 281 return 0; 282 283 return (unsigned long)page_address(page); 284 } 285 286 if (cpa->flags & CPA_ARRAY) 287 return cpa->vaddr[idx]; 288 289 return *cpa->vaddr + idx * PAGE_SIZE; 290 } 291 292 /* 293 * Flushing functions 294 */ 295 296 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 297 { 298 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 299 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 300 void *vend = vaddr + size; 301 302 if (p >= vend) 303 return; 304 305 for (; p < vend; p += clflush_size) 306 clflushopt(p); 307 } 308 309 /** 310 * clflush_cache_range - flush a cache range with clflush 311 * @vaddr: virtual start address 312 * @size: number of bytes to flush 313 * 314 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 315 * SFENCE to avoid ordering issues. 316 */ 317 void clflush_cache_range(void *vaddr, unsigned int size) 318 { 319 mb(); 320 clflush_cache_range_opt(vaddr, size); 321 mb(); 322 } 323 EXPORT_SYMBOL_GPL(clflush_cache_range); 324 325 #ifdef CONFIG_ARCH_HAS_PMEM_API 326 void arch_invalidate_pmem(void *addr, size_t size) 327 { 328 clflush_cache_range(addr, size); 329 } 330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 331 #endif 332 333 static void __cpa_flush_all(void *arg) 334 { 335 unsigned long cache = (unsigned long)arg; 336 337 /* 338 * Flush all to work around Errata in early athlons regarding 339 * large page flushing. 340 */ 341 __flush_tlb_all(); 342 343 if (cache && boot_cpu_data.x86 >= 4) 344 wbinvd(); 345 } 346 347 static void cpa_flush_all(unsigned long cache) 348 { 349 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 350 351 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 352 } 353 354 static void __cpa_flush_tlb(void *data) 355 { 356 struct cpa_data *cpa = data; 357 unsigned int i; 358 359 for (i = 0; i < cpa->numpages; i++) 360 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 361 } 362 363 static void cpa_flush(struct cpa_data *data, int cache) 364 { 365 struct cpa_data *cpa = data; 366 unsigned int i; 367 368 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 369 370 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 371 cpa_flush_all(cache); 372 return; 373 } 374 375 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 376 flush_tlb_all(); 377 else 378 on_each_cpu(__cpa_flush_tlb, cpa, 1); 379 380 if (!cache) 381 return; 382 383 mb(); 384 for (i = 0; i < cpa->numpages; i++) { 385 unsigned long addr = __cpa_addr(cpa, i); 386 unsigned int level; 387 388 pte_t *pte = lookup_address(addr, &level); 389 390 /* 391 * Only flush present addresses: 392 */ 393 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 394 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 395 } 396 mb(); 397 } 398 399 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 400 unsigned long r2_start, unsigned long r2_end) 401 { 402 return (r1_start <= r2_end && r1_end >= r2_start) || 403 (r2_start <= r1_end && r2_end >= r1_start); 404 } 405 406 #ifdef CONFIG_PCI_BIOS 407 /* 408 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 409 * based config access (CONFIG_PCI_GOBIOS) support. 410 */ 411 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 412 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 413 414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 415 { 416 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 417 return _PAGE_NX; 418 return 0; 419 } 420 #else 421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 422 { 423 return 0; 424 } 425 #endif 426 427 /* 428 * The .rodata section needs to be read-only. Using the pfn catches all 429 * aliases. This also includes __ro_after_init, so do not enforce until 430 * kernel_set_to_readonly is true. 431 */ 432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 433 { 434 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 435 436 /* 437 * Note: __end_rodata is at page aligned and not inclusive, so 438 * subtract 1 to get the last enforced PFN in the rodata area. 439 */ 440 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 441 442 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 443 return _PAGE_RW; 444 return 0; 445 } 446 447 /* 448 * Protect kernel text against becoming non executable by forbidding 449 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 450 * out of which the kernel actually executes. Do not protect the low 451 * mapping. 452 * 453 * This does not cover __inittext since that is gone after boot. 454 */ 455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 456 { 457 unsigned long t_end = (unsigned long)_etext - 1; 458 unsigned long t_start = (unsigned long)_text; 459 460 if (overlaps(start, end, t_start, t_end)) 461 return _PAGE_NX; 462 return 0; 463 } 464 465 #if defined(CONFIG_X86_64) 466 /* 467 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 468 * kernel text mappings for the large page aligned text, rodata sections 469 * will be always read-only. For the kernel identity mappings covering the 470 * holes caused by this alignment can be anything that user asks. 471 * 472 * This will preserve the large page mappings for kernel text/data at no 473 * extra cost. 474 */ 475 static pgprotval_t protect_kernel_text_ro(unsigned long start, 476 unsigned long end) 477 { 478 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 479 unsigned long t_start = (unsigned long)_text; 480 unsigned int level; 481 482 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 483 return 0; 484 /* 485 * Don't enforce the !RW mapping for the kernel text mapping, if 486 * the current mapping is already using small page mapping. No 487 * need to work hard to preserve large page mappings in this case. 488 * 489 * This also fixes the Linux Xen paravirt guest boot failure caused 490 * by unexpected read-only mappings for kernel identity 491 * mappings. In this paravirt guest case, the kernel text mapping 492 * and the kernel identity mapping share the same page-table pages, 493 * so the protections for kernel text and identity mappings have to 494 * be the same. 495 */ 496 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 497 return _PAGE_RW; 498 return 0; 499 } 500 #else 501 static pgprotval_t protect_kernel_text_ro(unsigned long start, 502 unsigned long end) 503 { 504 return 0; 505 } 506 #endif 507 508 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 509 { 510 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 511 } 512 513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 514 unsigned long start, unsigned long end, 515 unsigned long pfn, const char *txt) 516 { 517 static const char *lvltxt[] = { 518 [CPA_CONFLICT] = "conflict", 519 [CPA_PROTECT] = "protect", 520 [CPA_DETECT] = "detect", 521 }; 522 523 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 524 return; 525 526 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 527 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 528 (unsigned long long)val); 529 } 530 531 /* 532 * Certain areas of memory on x86 require very specific protection flags, 533 * for example the BIOS area or kernel text. Callers don't always get this 534 * right (again, ioremap() on BIOS memory is not uncommon) so this function 535 * checks and fixes these known static required protection bits. 536 */ 537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 538 unsigned long pfn, unsigned long npg, 539 unsigned long lpsize, int warnlvl) 540 { 541 pgprotval_t forbidden, res; 542 unsigned long end; 543 544 /* 545 * There is no point in checking RW/NX conflicts when the requested 546 * mapping is setting the page !PRESENT. 547 */ 548 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 549 return prot; 550 551 /* Operate on the virtual address */ 552 end = start + npg * PAGE_SIZE - 1; 553 554 res = protect_kernel_text(start, end); 555 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 556 forbidden = res; 557 558 /* 559 * Special case to preserve a large page. If the change spawns the 560 * full large page mapping then there is no point to split it 561 * up. Happens with ftrace and is going to be removed once ftrace 562 * switched to text_poke(). 563 */ 564 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 565 res = protect_kernel_text_ro(start, end); 566 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 567 forbidden |= res; 568 } 569 570 /* Check the PFN directly */ 571 res = protect_pci_bios(pfn, pfn + npg - 1); 572 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 573 forbidden |= res; 574 575 res = protect_rodata(pfn, pfn + npg - 1); 576 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 577 forbidden |= res; 578 579 return __pgprot(pgprot_val(prot) & ~forbidden); 580 } 581 582 /* 583 * Lookup the page table entry for a virtual address in a specific pgd. 584 * Return a pointer to the entry and the level of the mapping. 585 */ 586 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 587 unsigned int *level) 588 { 589 p4d_t *p4d; 590 pud_t *pud; 591 pmd_t *pmd; 592 593 *level = PG_LEVEL_NONE; 594 595 if (pgd_none(*pgd)) 596 return NULL; 597 598 p4d = p4d_offset(pgd, address); 599 if (p4d_none(*p4d)) 600 return NULL; 601 602 *level = PG_LEVEL_512G; 603 if (p4d_large(*p4d) || !p4d_present(*p4d)) 604 return (pte_t *)p4d; 605 606 pud = pud_offset(p4d, address); 607 if (pud_none(*pud)) 608 return NULL; 609 610 *level = PG_LEVEL_1G; 611 if (pud_large(*pud) || !pud_present(*pud)) 612 return (pte_t *)pud; 613 614 pmd = pmd_offset(pud, address); 615 if (pmd_none(*pmd)) 616 return NULL; 617 618 *level = PG_LEVEL_2M; 619 if (pmd_large(*pmd) || !pmd_present(*pmd)) 620 return (pte_t *)pmd; 621 622 *level = PG_LEVEL_4K; 623 624 return pte_offset_kernel(pmd, address); 625 } 626 627 /* 628 * Lookup the page table entry for a virtual address. Return a pointer 629 * to the entry and the level of the mapping. 630 * 631 * Note: We return pud and pmd either when the entry is marked large 632 * or when the present bit is not set. Otherwise we would return a 633 * pointer to a nonexisting mapping. 634 */ 635 pte_t *lookup_address(unsigned long address, unsigned int *level) 636 { 637 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 638 } 639 EXPORT_SYMBOL_GPL(lookup_address); 640 641 /* 642 * Lookup the page table entry for a virtual address in a given mm. Return a 643 * pointer to the entry and the level of the mapping. 644 */ 645 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, 646 unsigned int *level) 647 { 648 return lookup_address_in_pgd(pgd_offset(mm, address), address, level); 649 } 650 EXPORT_SYMBOL_GPL(lookup_address_in_mm); 651 652 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 653 unsigned int *level) 654 { 655 if (cpa->pgd) 656 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 657 address, level); 658 659 return lookup_address(address, level); 660 } 661 662 /* 663 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 664 * or NULL if not present. 665 */ 666 pmd_t *lookup_pmd_address(unsigned long address) 667 { 668 pgd_t *pgd; 669 p4d_t *p4d; 670 pud_t *pud; 671 672 pgd = pgd_offset_k(address); 673 if (pgd_none(*pgd)) 674 return NULL; 675 676 p4d = p4d_offset(pgd, address); 677 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 678 return NULL; 679 680 pud = pud_offset(p4d, address); 681 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 682 return NULL; 683 684 return pmd_offset(pud, address); 685 } 686 687 /* 688 * This is necessary because __pa() does not work on some 689 * kinds of memory, like vmalloc() or the alloc_remap() 690 * areas on 32-bit NUMA systems. The percpu areas can 691 * end up in this kind of memory, for instance. 692 * 693 * This could be optimized, but it is only intended to be 694 * used at initialization time, and keeping it 695 * unoptimized should increase the testing coverage for 696 * the more obscure platforms. 697 */ 698 phys_addr_t slow_virt_to_phys(void *__virt_addr) 699 { 700 unsigned long virt_addr = (unsigned long)__virt_addr; 701 phys_addr_t phys_addr; 702 unsigned long offset; 703 enum pg_level level; 704 pte_t *pte; 705 706 pte = lookup_address(virt_addr, &level); 707 BUG_ON(!pte); 708 709 /* 710 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 711 * before being left-shifted PAGE_SHIFT bits -- this trick is to 712 * make 32-PAE kernel work correctly. 713 */ 714 switch (level) { 715 case PG_LEVEL_1G: 716 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 717 offset = virt_addr & ~PUD_PAGE_MASK; 718 break; 719 case PG_LEVEL_2M: 720 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 721 offset = virt_addr & ~PMD_PAGE_MASK; 722 break; 723 default: 724 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 725 offset = virt_addr & ~PAGE_MASK; 726 } 727 728 return (phys_addr_t)(phys_addr | offset); 729 } 730 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 731 732 /* 733 * Set the new pmd in all the pgds we know about: 734 */ 735 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 736 { 737 /* change init_mm */ 738 set_pte_atomic(kpte, pte); 739 #ifdef CONFIG_X86_32 740 if (!SHARED_KERNEL_PMD) { 741 struct page *page; 742 743 list_for_each_entry(page, &pgd_list, lru) { 744 pgd_t *pgd; 745 p4d_t *p4d; 746 pud_t *pud; 747 pmd_t *pmd; 748 749 pgd = (pgd_t *)page_address(page) + pgd_index(address); 750 p4d = p4d_offset(pgd, address); 751 pud = pud_offset(p4d, address); 752 pmd = pmd_offset(pud, address); 753 set_pte_atomic((pte_t *)pmd, pte); 754 } 755 } 756 #endif 757 } 758 759 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 760 { 761 /* 762 * _PAGE_GLOBAL means "global page" for present PTEs. 763 * But, it is also used to indicate _PAGE_PROTNONE 764 * for non-present PTEs. 765 * 766 * This ensures that a _PAGE_GLOBAL PTE going from 767 * present to non-present is not confused as 768 * _PAGE_PROTNONE. 769 */ 770 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 771 pgprot_val(prot) &= ~_PAGE_GLOBAL; 772 773 return prot; 774 } 775 776 static int __should_split_large_page(pte_t *kpte, unsigned long address, 777 struct cpa_data *cpa) 778 { 779 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 780 pgprot_t old_prot, new_prot, req_prot, chk_prot; 781 pte_t new_pte, *tmp; 782 enum pg_level level; 783 784 /* 785 * Check for races, another CPU might have split this page 786 * up already: 787 */ 788 tmp = _lookup_address_cpa(cpa, address, &level); 789 if (tmp != kpte) 790 return 1; 791 792 switch (level) { 793 case PG_LEVEL_2M: 794 old_prot = pmd_pgprot(*(pmd_t *)kpte); 795 old_pfn = pmd_pfn(*(pmd_t *)kpte); 796 cpa_inc_2m_checked(); 797 break; 798 case PG_LEVEL_1G: 799 old_prot = pud_pgprot(*(pud_t *)kpte); 800 old_pfn = pud_pfn(*(pud_t *)kpte); 801 cpa_inc_1g_checked(); 802 break; 803 default: 804 return -EINVAL; 805 } 806 807 psize = page_level_size(level); 808 pmask = page_level_mask(level); 809 810 /* 811 * Calculate the number of pages, which fit into this large 812 * page starting at address: 813 */ 814 lpaddr = (address + psize) & pmask; 815 numpages = (lpaddr - address) >> PAGE_SHIFT; 816 if (numpages < cpa->numpages) 817 cpa->numpages = numpages; 818 819 /* 820 * We are safe now. Check whether the new pgprot is the same: 821 * Convert protection attributes to 4k-format, as cpa->mask* are set 822 * up accordingly. 823 */ 824 825 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 826 req_prot = pgprot_large_2_4k(old_prot); 827 828 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 829 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 830 831 /* 832 * req_prot is in format of 4k pages. It must be converted to large 833 * page format: the caching mode includes the PAT bit located at 834 * different bit positions in the two formats. 835 */ 836 req_prot = pgprot_4k_2_large(req_prot); 837 req_prot = pgprot_clear_protnone_bits(req_prot); 838 if (pgprot_val(req_prot) & _PAGE_PRESENT) 839 pgprot_val(req_prot) |= _PAGE_PSE; 840 841 /* 842 * old_pfn points to the large page base pfn. So we need to add the 843 * offset of the virtual address: 844 */ 845 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 846 cpa->pfn = pfn; 847 848 /* 849 * Calculate the large page base address and the number of 4K pages 850 * in the large page 851 */ 852 lpaddr = address & pmask; 853 numpages = psize >> PAGE_SHIFT; 854 855 /* 856 * Sanity check that the existing mapping is correct versus the static 857 * protections. static_protections() guards against !PRESENT, so no 858 * extra conditional required here. 859 */ 860 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 861 psize, CPA_CONFLICT); 862 863 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 864 /* 865 * Split the large page and tell the split code to 866 * enforce static protections. 867 */ 868 cpa->force_static_prot = 1; 869 return 1; 870 } 871 872 /* 873 * Optimization: If the requested pgprot is the same as the current 874 * pgprot, then the large page can be preserved and no updates are 875 * required independent of alignment and length of the requested 876 * range. The above already established that the current pgprot is 877 * correct, which in consequence makes the requested pgprot correct 878 * as well if it is the same. The static protection scan below will 879 * not come to a different conclusion. 880 */ 881 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 882 cpa_inc_lp_sameprot(level); 883 return 0; 884 } 885 886 /* 887 * If the requested range does not cover the full page, split it up 888 */ 889 if (address != lpaddr || cpa->numpages != numpages) 890 return 1; 891 892 /* 893 * Check whether the requested pgprot is conflicting with a static 894 * protection requirement in the large page. 895 */ 896 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 897 psize, CPA_DETECT); 898 899 /* 900 * If there is a conflict, split the large page. 901 * 902 * There used to be a 4k wise evaluation trying really hard to 903 * preserve the large pages, but experimentation has shown, that this 904 * does not help at all. There might be corner cases which would 905 * preserve one large page occasionally, but it's really not worth the 906 * extra code and cycles for the common case. 907 */ 908 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 909 return 1; 910 911 /* All checks passed. Update the large page mapping. */ 912 new_pte = pfn_pte(old_pfn, new_prot); 913 __set_pmd_pte(kpte, address, new_pte); 914 cpa->flags |= CPA_FLUSHTLB; 915 cpa_inc_lp_preserved(level); 916 return 0; 917 } 918 919 static int should_split_large_page(pte_t *kpte, unsigned long address, 920 struct cpa_data *cpa) 921 { 922 int do_split; 923 924 if (cpa->force_split) 925 return 1; 926 927 spin_lock(&pgd_lock); 928 do_split = __should_split_large_page(kpte, address, cpa); 929 spin_unlock(&pgd_lock); 930 931 return do_split; 932 } 933 934 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 935 pgprot_t ref_prot, unsigned long address, 936 unsigned long size) 937 { 938 unsigned int npg = PFN_DOWN(size); 939 pgprot_t prot; 940 941 /* 942 * If should_split_large_page() discovered an inconsistent mapping, 943 * remove the invalid protection in the split mapping. 944 */ 945 if (!cpa->force_static_prot) 946 goto set; 947 948 /* Hand in lpsize = 0 to enforce the protection mechanism */ 949 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 950 951 if (pgprot_val(prot) == pgprot_val(ref_prot)) 952 goto set; 953 954 /* 955 * If this is splitting a PMD, fix it up. PUD splits cannot be 956 * fixed trivially as that would require to rescan the newly 957 * installed PMD mappings after returning from split_large_page() 958 * so an eventual further split can allocate the necessary PTE 959 * pages. Warn for now and revisit it in case this actually 960 * happens. 961 */ 962 if (size == PAGE_SIZE) 963 ref_prot = prot; 964 else 965 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 966 set: 967 set_pte(pte, pfn_pte(pfn, ref_prot)); 968 } 969 970 static int 971 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 972 struct page *base) 973 { 974 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 975 pte_t *pbase = (pte_t *)page_address(base); 976 unsigned int i, level; 977 pgprot_t ref_prot; 978 pte_t *tmp; 979 980 spin_lock(&pgd_lock); 981 /* 982 * Check for races, another CPU might have split this page 983 * up for us already: 984 */ 985 tmp = _lookup_address_cpa(cpa, address, &level); 986 if (tmp != kpte) { 987 spin_unlock(&pgd_lock); 988 return 1; 989 } 990 991 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 992 993 switch (level) { 994 case PG_LEVEL_2M: 995 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 996 /* 997 * Clear PSE (aka _PAGE_PAT) and move 998 * PAT bit to correct position. 999 */ 1000 ref_prot = pgprot_large_2_4k(ref_prot); 1001 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 1002 lpaddr = address & PMD_MASK; 1003 lpinc = PAGE_SIZE; 1004 break; 1005 1006 case PG_LEVEL_1G: 1007 ref_prot = pud_pgprot(*(pud_t *)kpte); 1008 ref_pfn = pud_pfn(*(pud_t *)kpte); 1009 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; 1010 lpaddr = address & PUD_MASK; 1011 lpinc = PMD_SIZE; 1012 /* 1013 * Clear the PSE flags if the PRESENT flag is not set 1014 * otherwise pmd_present/pmd_huge will return true 1015 * even on a non present pmd. 1016 */ 1017 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1018 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1019 break; 1020 1021 default: 1022 spin_unlock(&pgd_lock); 1023 return 1; 1024 } 1025 1026 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1027 1028 /* 1029 * Get the target pfn from the original entry: 1030 */ 1031 pfn = ref_pfn; 1032 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1033 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1034 1035 if (virt_addr_valid(address)) { 1036 unsigned long pfn = PFN_DOWN(__pa(address)); 1037 1038 if (pfn_range_is_mapped(pfn, pfn + 1)) 1039 split_page_count(level); 1040 } 1041 1042 /* 1043 * Install the new, split up pagetable. 1044 * 1045 * We use the standard kernel pagetable protections for the new 1046 * pagetable protections, the actual ptes set above control the 1047 * primary protection behavior: 1048 */ 1049 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1050 1051 /* 1052 * Do a global flush tlb after splitting the large page 1053 * and before we do the actual change page attribute in the PTE. 1054 * 1055 * Without this, we violate the TLB application note, that says: 1056 * "The TLBs may contain both ordinary and large-page 1057 * translations for a 4-KByte range of linear addresses. This 1058 * may occur if software modifies the paging structures so that 1059 * the page size used for the address range changes. If the two 1060 * translations differ with respect to page frame or attributes 1061 * (e.g., permissions), processor behavior is undefined and may 1062 * be implementation-specific." 1063 * 1064 * We do this global tlb flush inside the cpa_lock, so that we 1065 * don't allow any other cpu, with stale tlb entries change the 1066 * page attribute in parallel, that also falls into the 1067 * just split large page entry. 1068 */ 1069 flush_tlb_all(); 1070 spin_unlock(&pgd_lock); 1071 1072 return 0; 1073 } 1074 1075 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1076 unsigned long address) 1077 { 1078 struct page *base; 1079 1080 if (!debug_pagealloc_enabled()) 1081 spin_unlock(&cpa_lock); 1082 base = alloc_pages(GFP_KERNEL, 0); 1083 if (!debug_pagealloc_enabled()) 1084 spin_lock(&cpa_lock); 1085 if (!base) 1086 return -ENOMEM; 1087 1088 if (__split_large_page(cpa, kpte, address, base)) 1089 __free_page(base); 1090 1091 return 0; 1092 } 1093 1094 static bool try_to_free_pte_page(pte_t *pte) 1095 { 1096 int i; 1097 1098 for (i = 0; i < PTRS_PER_PTE; i++) 1099 if (!pte_none(pte[i])) 1100 return false; 1101 1102 free_page((unsigned long)pte); 1103 return true; 1104 } 1105 1106 static bool try_to_free_pmd_page(pmd_t *pmd) 1107 { 1108 int i; 1109 1110 for (i = 0; i < PTRS_PER_PMD; i++) 1111 if (!pmd_none(pmd[i])) 1112 return false; 1113 1114 free_page((unsigned long)pmd); 1115 return true; 1116 } 1117 1118 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1119 { 1120 pte_t *pte = pte_offset_kernel(pmd, start); 1121 1122 while (start < end) { 1123 set_pte(pte, __pte(0)); 1124 1125 start += PAGE_SIZE; 1126 pte++; 1127 } 1128 1129 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1130 pmd_clear(pmd); 1131 return true; 1132 } 1133 return false; 1134 } 1135 1136 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1137 unsigned long start, unsigned long end) 1138 { 1139 if (unmap_pte_range(pmd, start, end)) 1140 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1141 pud_clear(pud); 1142 } 1143 1144 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1145 { 1146 pmd_t *pmd = pmd_offset(pud, start); 1147 1148 /* 1149 * Not on a 2MB page boundary? 1150 */ 1151 if (start & (PMD_SIZE - 1)) { 1152 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1153 unsigned long pre_end = min_t(unsigned long, end, next_page); 1154 1155 __unmap_pmd_range(pud, pmd, start, pre_end); 1156 1157 start = pre_end; 1158 pmd++; 1159 } 1160 1161 /* 1162 * Try to unmap in 2M chunks. 1163 */ 1164 while (end - start >= PMD_SIZE) { 1165 if (pmd_large(*pmd)) 1166 pmd_clear(pmd); 1167 else 1168 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1169 1170 start += PMD_SIZE; 1171 pmd++; 1172 } 1173 1174 /* 1175 * 4K leftovers? 1176 */ 1177 if (start < end) 1178 return __unmap_pmd_range(pud, pmd, start, end); 1179 1180 /* 1181 * Try again to free the PMD page if haven't succeeded above. 1182 */ 1183 if (!pud_none(*pud)) 1184 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1185 pud_clear(pud); 1186 } 1187 1188 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1189 { 1190 pud_t *pud = pud_offset(p4d, start); 1191 1192 /* 1193 * Not on a GB page boundary? 1194 */ 1195 if (start & (PUD_SIZE - 1)) { 1196 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1197 unsigned long pre_end = min_t(unsigned long, end, next_page); 1198 1199 unmap_pmd_range(pud, start, pre_end); 1200 1201 start = pre_end; 1202 pud++; 1203 } 1204 1205 /* 1206 * Try to unmap in 1G chunks? 1207 */ 1208 while (end - start >= PUD_SIZE) { 1209 1210 if (pud_large(*pud)) 1211 pud_clear(pud); 1212 else 1213 unmap_pmd_range(pud, start, start + PUD_SIZE); 1214 1215 start += PUD_SIZE; 1216 pud++; 1217 } 1218 1219 /* 1220 * 2M leftovers? 1221 */ 1222 if (start < end) 1223 unmap_pmd_range(pud, start, end); 1224 1225 /* 1226 * No need to try to free the PUD page because we'll free it in 1227 * populate_pgd's error path 1228 */ 1229 } 1230 1231 static int alloc_pte_page(pmd_t *pmd) 1232 { 1233 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1234 if (!pte) 1235 return -1; 1236 1237 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1238 return 0; 1239 } 1240 1241 static int alloc_pmd_page(pud_t *pud) 1242 { 1243 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1244 if (!pmd) 1245 return -1; 1246 1247 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1248 return 0; 1249 } 1250 1251 static void populate_pte(struct cpa_data *cpa, 1252 unsigned long start, unsigned long end, 1253 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1254 { 1255 pte_t *pte; 1256 1257 pte = pte_offset_kernel(pmd, start); 1258 1259 pgprot = pgprot_clear_protnone_bits(pgprot); 1260 1261 while (num_pages-- && start < end) { 1262 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1263 1264 start += PAGE_SIZE; 1265 cpa->pfn++; 1266 pte++; 1267 } 1268 } 1269 1270 static long populate_pmd(struct cpa_data *cpa, 1271 unsigned long start, unsigned long end, 1272 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1273 { 1274 long cur_pages = 0; 1275 pmd_t *pmd; 1276 pgprot_t pmd_pgprot; 1277 1278 /* 1279 * Not on a 2M boundary? 1280 */ 1281 if (start & (PMD_SIZE - 1)) { 1282 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1283 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1284 1285 pre_end = min_t(unsigned long, pre_end, next_page); 1286 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1287 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1288 1289 /* 1290 * Need a PTE page? 1291 */ 1292 pmd = pmd_offset(pud, start); 1293 if (pmd_none(*pmd)) 1294 if (alloc_pte_page(pmd)) 1295 return -1; 1296 1297 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1298 1299 start = pre_end; 1300 } 1301 1302 /* 1303 * We mapped them all? 1304 */ 1305 if (num_pages == cur_pages) 1306 return cur_pages; 1307 1308 pmd_pgprot = pgprot_4k_2_large(pgprot); 1309 1310 while (end - start >= PMD_SIZE) { 1311 1312 /* 1313 * We cannot use a 1G page so allocate a PMD page if needed. 1314 */ 1315 if (pud_none(*pud)) 1316 if (alloc_pmd_page(pud)) 1317 return -1; 1318 1319 pmd = pmd_offset(pud, start); 1320 1321 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1322 canon_pgprot(pmd_pgprot)))); 1323 1324 start += PMD_SIZE; 1325 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1326 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1327 } 1328 1329 /* 1330 * Map trailing 4K pages. 1331 */ 1332 if (start < end) { 1333 pmd = pmd_offset(pud, start); 1334 if (pmd_none(*pmd)) 1335 if (alloc_pte_page(pmd)) 1336 return -1; 1337 1338 populate_pte(cpa, start, end, num_pages - cur_pages, 1339 pmd, pgprot); 1340 } 1341 return num_pages; 1342 } 1343 1344 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1345 pgprot_t pgprot) 1346 { 1347 pud_t *pud; 1348 unsigned long end; 1349 long cur_pages = 0; 1350 pgprot_t pud_pgprot; 1351 1352 end = start + (cpa->numpages << PAGE_SHIFT); 1353 1354 /* 1355 * Not on a Gb page boundary? => map everything up to it with 1356 * smaller pages. 1357 */ 1358 if (start & (PUD_SIZE - 1)) { 1359 unsigned long pre_end; 1360 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1361 1362 pre_end = min_t(unsigned long, end, next_page); 1363 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1364 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1365 1366 pud = pud_offset(p4d, start); 1367 1368 /* 1369 * Need a PMD page? 1370 */ 1371 if (pud_none(*pud)) 1372 if (alloc_pmd_page(pud)) 1373 return -1; 1374 1375 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1376 pud, pgprot); 1377 if (cur_pages < 0) 1378 return cur_pages; 1379 1380 start = pre_end; 1381 } 1382 1383 /* We mapped them all? */ 1384 if (cpa->numpages == cur_pages) 1385 return cur_pages; 1386 1387 pud = pud_offset(p4d, start); 1388 pud_pgprot = pgprot_4k_2_large(pgprot); 1389 1390 /* 1391 * Map everything starting from the Gb boundary, possibly with 1G pages 1392 */ 1393 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1394 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1395 canon_pgprot(pud_pgprot)))); 1396 1397 start += PUD_SIZE; 1398 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1399 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1400 pud++; 1401 } 1402 1403 /* Map trailing leftover */ 1404 if (start < end) { 1405 long tmp; 1406 1407 pud = pud_offset(p4d, start); 1408 if (pud_none(*pud)) 1409 if (alloc_pmd_page(pud)) 1410 return -1; 1411 1412 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1413 pud, pgprot); 1414 if (tmp < 0) 1415 return cur_pages; 1416 1417 cur_pages += tmp; 1418 } 1419 return cur_pages; 1420 } 1421 1422 /* 1423 * Restrictions for kernel page table do not necessarily apply when mapping in 1424 * an alternate PGD. 1425 */ 1426 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1427 { 1428 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1429 pud_t *pud = NULL; /* shut up gcc */ 1430 p4d_t *p4d; 1431 pgd_t *pgd_entry; 1432 long ret; 1433 1434 pgd_entry = cpa->pgd + pgd_index(addr); 1435 1436 if (pgd_none(*pgd_entry)) { 1437 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1438 if (!p4d) 1439 return -1; 1440 1441 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1442 } 1443 1444 /* 1445 * Allocate a PUD page and hand it down for mapping. 1446 */ 1447 p4d = p4d_offset(pgd_entry, addr); 1448 if (p4d_none(*p4d)) { 1449 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1450 if (!pud) 1451 return -1; 1452 1453 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1454 } 1455 1456 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1457 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1458 1459 ret = populate_pud(cpa, addr, p4d, pgprot); 1460 if (ret < 0) { 1461 /* 1462 * Leave the PUD page in place in case some other CPU or thread 1463 * already found it, but remove any useless entries we just 1464 * added to it. 1465 */ 1466 unmap_pud_range(p4d, addr, 1467 addr + (cpa->numpages << PAGE_SHIFT)); 1468 return ret; 1469 } 1470 1471 cpa->numpages = ret; 1472 return 0; 1473 } 1474 1475 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1476 int primary) 1477 { 1478 if (cpa->pgd) { 1479 /* 1480 * Right now, we only execute this code path when mapping 1481 * the EFI virtual memory map regions, no other users 1482 * provide a ->pgd value. This may change in the future. 1483 */ 1484 return populate_pgd(cpa, vaddr); 1485 } 1486 1487 /* 1488 * Ignore all non primary paths. 1489 */ 1490 if (!primary) { 1491 cpa->numpages = 1; 1492 return 0; 1493 } 1494 1495 /* 1496 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1497 * to have holes. 1498 * Also set numpages to '1' indicating that we processed cpa req for 1499 * one virtual address page and its pfn. TBD: numpages can be set based 1500 * on the initial value and the level returned by lookup_address(). 1501 */ 1502 if (within(vaddr, PAGE_OFFSET, 1503 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1504 cpa->numpages = 1; 1505 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1506 return 0; 1507 1508 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1509 /* Faults in the highmap are OK, so do not warn: */ 1510 return -EFAULT; 1511 } else { 1512 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1513 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1514 *cpa->vaddr); 1515 1516 return -EFAULT; 1517 } 1518 } 1519 1520 static int __change_page_attr(struct cpa_data *cpa, int primary) 1521 { 1522 unsigned long address; 1523 int do_split, err; 1524 unsigned int level; 1525 pte_t *kpte, old_pte; 1526 1527 address = __cpa_addr(cpa, cpa->curpage); 1528 repeat: 1529 kpte = _lookup_address_cpa(cpa, address, &level); 1530 if (!kpte) 1531 return __cpa_process_fault(cpa, address, primary); 1532 1533 old_pte = *kpte; 1534 if (pte_none(old_pte)) 1535 return __cpa_process_fault(cpa, address, primary); 1536 1537 if (level == PG_LEVEL_4K) { 1538 pte_t new_pte; 1539 pgprot_t new_prot = pte_pgprot(old_pte); 1540 unsigned long pfn = pte_pfn(old_pte); 1541 1542 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1543 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1544 1545 cpa_inc_4k_install(); 1546 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1547 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1548 CPA_PROTECT); 1549 1550 new_prot = pgprot_clear_protnone_bits(new_prot); 1551 1552 /* 1553 * We need to keep the pfn from the existing PTE, 1554 * after all we're only going to change it's attributes 1555 * not the memory it points to 1556 */ 1557 new_pte = pfn_pte(pfn, new_prot); 1558 cpa->pfn = pfn; 1559 /* 1560 * Do we really change anything ? 1561 */ 1562 if (pte_val(old_pte) != pte_val(new_pte)) { 1563 set_pte_atomic(kpte, new_pte); 1564 cpa->flags |= CPA_FLUSHTLB; 1565 } 1566 cpa->numpages = 1; 1567 return 0; 1568 } 1569 1570 /* 1571 * Check, whether we can keep the large page intact 1572 * and just change the pte: 1573 */ 1574 do_split = should_split_large_page(kpte, address, cpa); 1575 /* 1576 * When the range fits into the existing large page, 1577 * return. cp->numpages and cpa->tlbflush have been updated in 1578 * try_large_page: 1579 */ 1580 if (do_split <= 0) 1581 return do_split; 1582 1583 /* 1584 * We have to split the large page: 1585 */ 1586 err = split_large_page(cpa, kpte, address); 1587 if (!err) 1588 goto repeat; 1589 1590 return err; 1591 } 1592 1593 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); 1594 1595 static int cpa_process_alias(struct cpa_data *cpa) 1596 { 1597 struct cpa_data alias_cpa; 1598 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1599 unsigned long vaddr; 1600 int ret; 1601 1602 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1603 return 0; 1604 1605 /* 1606 * No need to redo, when the primary call touched the direct 1607 * mapping already: 1608 */ 1609 vaddr = __cpa_addr(cpa, cpa->curpage); 1610 if (!(within(vaddr, PAGE_OFFSET, 1611 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1612 1613 alias_cpa = *cpa; 1614 alias_cpa.vaddr = &laddr; 1615 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1616 alias_cpa.curpage = 0; 1617 1618 cpa->force_flush_all = 1; 1619 1620 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1621 if (ret) 1622 return ret; 1623 } 1624 1625 #ifdef CONFIG_X86_64 1626 /* 1627 * If the primary call didn't touch the high mapping already 1628 * and the physical address is inside the kernel map, we need 1629 * to touch the high mapped kernel as well: 1630 */ 1631 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1632 __cpa_pfn_in_highmap(cpa->pfn)) { 1633 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1634 __START_KERNEL_map - phys_base; 1635 alias_cpa = *cpa; 1636 alias_cpa.vaddr = &temp_cpa_vaddr; 1637 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1638 alias_cpa.curpage = 0; 1639 1640 cpa->force_flush_all = 1; 1641 /* 1642 * The high mapping range is imprecise, so ignore the 1643 * return value. 1644 */ 1645 __change_page_attr_set_clr(&alias_cpa, 0); 1646 } 1647 #endif 1648 1649 return 0; 1650 } 1651 1652 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) 1653 { 1654 unsigned long numpages = cpa->numpages; 1655 unsigned long rempages = numpages; 1656 int ret = 0; 1657 1658 while (rempages) { 1659 /* 1660 * Store the remaining nr of pages for the large page 1661 * preservation check. 1662 */ 1663 cpa->numpages = rempages; 1664 /* for array changes, we can't use large page */ 1665 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1666 cpa->numpages = 1; 1667 1668 if (!debug_pagealloc_enabled()) 1669 spin_lock(&cpa_lock); 1670 ret = __change_page_attr(cpa, checkalias); 1671 if (!debug_pagealloc_enabled()) 1672 spin_unlock(&cpa_lock); 1673 if (ret) 1674 goto out; 1675 1676 if (checkalias) { 1677 ret = cpa_process_alias(cpa); 1678 if (ret) 1679 goto out; 1680 } 1681 1682 /* 1683 * Adjust the number of pages with the result of the 1684 * CPA operation. Either a large page has been 1685 * preserved or a single page update happened. 1686 */ 1687 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1688 rempages -= cpa->numpages; 1689 cpa->curpage += cpa->numpages; 1690 } 1691 1692 out: 1693 /* Restore the original numpages */ 1694 cpa->numpages = numpages; 1695 return ret; 1696 } 1697 1698 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1699 pgprot_t mask_set, pgprot_t mask_clr, 1700 int force_split, int in_flag, 1701 struct page **pages) 1702 { 1703 struct cpa_data cpa; 1704 int ret, cache, checkalias; 1705 1706 memset(&cpa, 0, sizeof(cpa)); 1707 1708 /* 1709 * Check, if we are requested to set a not supported 1710 * feature. Clearing non-supported features is OK. 1711 */ 1712 mask_set = canon_pgprot(mask_set); 1713 1714 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1715 return 0; 1716 1717 /* Ensure we are PAGE_SIZE aligned */ 1718 if (in_flag & CPA_ARRAY) { 1719 int i; 1720 for (i = 0; i < numpages; i++) { 1721 if (addr[i] & ~PAGE_MASK) { 1722 addr[i] &= PAGE_MASK; 1723 WARN_ON_ONCE(1); 1724 } 1725 } 1726 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1727 /* 1728 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1729 * No need to check in that case 1730 */ 1731 if (*addr & ~PAGE_MASK) { 1732 *addr &= PAGE_MASK; 1733 /* 1734 * People should not be passing in unaligned addresses: 1735 */ 1736 WARN_ON_ONCE(1); 1737 } 1738 } 1739 1740 /* Must avoid aliasing mappings in the highmem code */ 1741 kmap_flush_unused(); 1742 1743 vm_unmap_aliases(); 1744 1745 cpa.vaddr = addr; 1746 cpa.pages = pages; 1747 cpa.numpages = numpages; 1748 cpa.mask_set = mask_set; 1749 cpa.mask_clr = mask_clr; 1750 cpa.flags = 0; 1751 cpa.curpage = 0; 1752 cpa.force_split = force_split; 1753 1754 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1755 cpa.flags |= in_flag; 1756 1757 /* No alias checking for _NX bit modifications */ 1758 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; 1759 /* Has caller explicitly disabled alias checking? */ 1760 if (in_flag & CPA_NO_CHECK_ALIAS) 1761 checkalias = 0; 1762 1763 ret = __change_page_attr_set_clr(&cpa, checkalias); 1764 1765 /* 1766 * Check whether we really changed something: 1767 */ 1768 if (!(cpa.flags & CPA_FLUSHTLB)) 1769 goto out; 1770 1771 /* 1772 * No need to flush, when we did not set any of the caching 1773 * attributes: 1774 */ 1775 cache = !!pgprot2cachemode(mask_set); 1776 1777 /* 1778 * On error; flush everything to be sure. 1779 */ 1780 if (ret) { 1781 cpa_flush_all(cache); 1782 goto out; 1783 } 1784 1785 cpa_flush(&cpa, cache); 1786 out: 1787 return ret; 1788 } 1789 1790 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1791 pgprot_t mask, int array) 1792 { 1793 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1794 (array ? CPA_ARRAY : 0), NULL); 1795 } 1796 1797 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1798 pgprot_t mask, int array) 1799 { 1800 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1801 (array ? CPA_ARRAY : 0), NULL); 1802 } 1803 1804 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1805 pgprot_t mask) 1806 { 1807 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1808 CPA_PAGES_ARRAY, pages); 1809 } 1810 1811 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1812 pgprot_t mask) 1813 { 1814 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1815 CPA_PAGES_ARRAY, pages); 1816 } 1817 1818 /* 1819 * _set_memory_prot is an internal helper for callers that have been passed 1820 * a pgprot_t value from upper layers and a reservation has already been taken. 1821 * If you want to set the pgprot to a specific page protocol, use the 1822 * set_memory_xx() functions. 1823 */ 1824 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1825 { 1826 return change_page_attr_set_clr(&addr, numpages, prot, 1827 __pgprot(~pgprot_val(prot)), 0, 0, 1828 NULL); 1829 } 1830 1831 int _set_memory_uc(unsigned long addr, int numpages) 1832 { 1833 /* 1834 * for now UC MINUS. see comments in ioremap() 1835 * If you really need strong UC use ioremap_uc(), but note 1836 * that you cannot override IO areas with set_memory_*() as 1837 * these helpers cannot work with IO memory. 1838 */ 1839 return change_page_attr_set(&addr, numpages, 1840 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1841 0); 1842 } 1843 1844 int set_memory_uc(unsigned long addr, int numpages) 1845 { 1846 int ret; 1847 1848 /* 1849 * for now UC MINUS. see comments in ioremap() 1850 */ 1851 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1852 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1853 if (ret) 1854 goto out_err; 1855 1856 ret = _set_memory_uc(addr, numpages); 1857 if (ret) 1858 goto out_free; 1859 1860 return 0; 1861 1862 out_free: 1863 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1864 out_err: 1865 return ret; 1866 } 1867 EXPORT_SYMBOL(set_memory_uc); 1868 1869 int _set_memory_wc(unsigned long addr, int numpages) 1870 { 1871 int ret; 1872 1873 ret = change_page_attr_set(&addr, numpages, 1874 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1875 0); 1876 if (!ret) { 1877 ret = change_page_attr_set_clr(&addr, numpages, 1878 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1879 __pgprot(_PAGE_CACHE_MASK), 1880 0, 0, NULL); 1881 } 1882 return ret; 1883 } 1884 1885 int set_memory_wc(unsigned long addr, int numpages) 1886 { 1887 int ret; 1888 1889 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1890 _PAGE_CACHE_MODE_WC, NULL); 1891 if (ret) 1892 return ret; 1893 1894 ret = _set_memory_wc(addr, numpages); 1895 if (ret) 1896 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1897 1898 return ret; 1899 } 1900 EXPORT_SYMBOL(set_memory_wc); 1901 1902 int _set_memory_wt(unsigned long addr, int numpages) 1903 { 1904 return change_page_attr_set(&addr, numpages, 1905 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1906 } 1907 1908 int _set_memory_wb(unsigned long addr, int numpages) 1909 { 1910 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1911 return change_page_attr_clear(&addr, numpages, 1912 __pgprot(_PAGE_CACHE_MASK), 0); 1913 } 1914 1915 int set_memory_wb(unsigned long addr, int numpages) 1916 { 1917 int ret; 1918 1919 ret = _set_memory_wb(addr, numpages); 1920 if (ret) 1921 return ret; 1922 1923 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1924 return 0; 1925 } 1926 EXPORT_SYMBOL(set_memory_wb); 1927 1928 int set_memory_x(unsigned long addr, int numpages) 1929 { 1930 if (!(__supported_pte_mask & _PAGE_NX)) 1931 return 0; 1932 1933 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 1934 } 1935 1936 int set_memory_nx(unsigned long addr, int numpages) 1937 { 1938 if (!(__supported_pte_mask & _PAGE_NX)) 1939 return 0; 1940 1941 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 1942 } 1943 1944 int set_memory_ro(unsigned long addr, int numpages) 1945 { 1946 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 1947 } 1948 1949 int set_memory_rw(unsigned long addr, int numpages) 1950 { 1951 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 1952 } 1953 1954 int set_memory_np(unsigned long addr, int numpages) 1955 { 1956 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 1957 } 1958 1959 int set_memory_np_noalias(unsigned long addr, int numpages) 1960 { 1961 int cpa_flags = CPA_NO_CHECK_ALIAS; 1962 1963 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1964 __pgprot(_PAGE_PRESENT), 0, 1965 cpa_flags, NULL); 1966 } 1967 1968 int set_memory_4k(unsigned long addr, int numpages) 1969 { 1970 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1971 __pgprot(0), 1, 0, NULL); 1972 } 1973 1974 int set_memory_nonglobal(unsigned long addr, int numpages) 1975 { 1976 return change_page_attr_clear(&addr, numpages, 1977 __pgprot(_PAGE_GLOBAL), 0); 1978 } 1979 1980 int set_memory_global(unsigned long addr, int numpages) 1981 { 1982 return change_page_attr_set(&addr, numpages, 1983 __pgprot(_PAGE_GLOBAL), 0); 1984 } 1985 1986 /* 1987 * __set_memory_enc_pgtable() is used for the hypervisors that get 1988 * informed about "encryption" status via page tables. 1989 */ 1990 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) 1991 { 1992 pgprot_t empty = __pgprot(0); 1993 struct cpa_data cpa; 1994 int ret; 1995 1996 /* Should not be working on unaligned addresses */ 1997 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 1998 addr &= PAGE_MASK; 1999 2000 memset(&cpa, 0, sizeof(cpa)); 2001 cpa.vaddr = &addr; 2002 cpa.numpages = numpages; 2003 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); 2004 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); 2005 cpa.pgd = init_mm.pgd; 2006 2007 /* Must avoid aliasing mappings in the highmem code */ 2008 kmap_flush_unused(); 2009 vm_unmap_aliases(); 2010 2011 /* Flush the caches as needed before changing the encryption attribute. */ 2012 if (x86_platform.guest.enc_tlb_flush_required(enc)) 2013 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); 2014 2015 /* Notify hypervisor that we are about to set/clr encryption attribute. */ 2016 x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); 2017 2018 ret = __change_page_attr_set_clr(&cpa, 1); 2019 2020 /* 2021 * After changing the encryption attribute, we need to flush TLBs again 2022 * in case any speculative TLB caching occurred (but no need to flush 2023 * caches again). We could just use cpa_flush_all(), but in case TLB 2024 * flushing gets optimized in the cpa_flush() path use the same logic 2025 * as above. 2026 */ 2027 cpa_flush(&cpa, 0); 2028 2029 /* Notify hypervisor that we have successfully set/clr encryption attribute. */ 2030 if (!ret) { 2031 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc)) 2032 ret = -EIO; 2033 } 2034 2035 return ret; 2036 } 2037 2038 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 2039 { 2040 if (hv_is_isolation_supported()) 2041 return hv_set_mem_host_visibility(addr, numpages, !enc); 2042 2043 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 2044 return __set_memory_enc_pgtable(addr, numpages, enc); 2045 2046 return 0; 2047 } 2048 2049 int set_memory_encrypted(unsigned long addr, int numpages) 2050 { 2051 return __set_memory_enc_dec(addr, numpages, true); 2052 } 2053 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2054 2055 int set_memory_decrypted(unsigned long addr, int numpages) 2056 { 2057 return __set_memory_enc_dec(addr, numpages, false); 2058 } 2059 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2060 2061 int set_pages_uc(struct page *page, int numpages) 2062 { 2063 unsigned long addr = (unsigned long)page_address(page); 2064 2065 return set_memory_uc(addr, numpages); 2066 } 2067 EXPORT_SYMBOL(set_pages_uc); 2068 2069 static int _set_pages_array(struct page **pages, int numpages, 2070 enum page_cache_mode new_type) 2071 { 2072 unsigned long start; 2073 unsigned long end; 2074 enum page_cache_mode set_type; 2075 int i; 2076 int free_idx; 2077 int ret; 2078 2079 for (i = 0; i < numpages; i++) { 2080 if (PageHighMem(pages[i])) 2081 continue; 2082 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2083 end = start + PAGE_SIZE; 2084 if (memtype_reserve(start, end, new_type, NULL)) 2085 goto err_out; 2086 } 2087 2088 /* If WC, set to UC- first and then WC */ 2089 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2090 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2091 2092 ret = cpa_set_pages_array(pages, numpages, 2093 cachemode2pgprot(set_type)); 2094 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2095 ret = change_page_attr_set_clr(NULL, numpages, 2096 cachemode2pgprot( 2097 _PAGE_CACHE_MODE_WC), 2098 __pgprot(_PAGE_CACHE_MASK), 2099 0, CPA_PAGES_ARRAY, pages); 2100 if (ret) 2101 goto err_out; 2102 return 0; /* Success */ 2103 err_out: 2104 free_idx = i; 2105 for (i = 0; i < free_idx; i++) { 2106 if (PageHighMem(pages[i])) 2107 continue; 2108 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2109 end = start + PAGE_SIZE; 2110 memtype_free(start, end); 2111 } 2112 return -EINVAL; 2113 } 2114 2115 int set_pages_array_uc(struct page **pages, int numpages) 2116 { 2117 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2118 } 2119 EXPORT_SYMBOL(set_pages_array_uc); 2120 2121 int set_pages_array_wc(struct page **pages, int numpages) 2122 { 2123 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2124 } 2125 EXPORT_SYMBOL(set_pages_array_wc); 2126 2127 int set_pages_wb(struct page *page, int numpages) 2128 { 2129 unsigned long addr = (unsigned long)page_address(page); 2130 2131 return set_memory_wb(addr, numpages); 2132 } 2133 EXPORT_SYMBOL(set_pages_wb); 2134 2135 int set_pages_array_wb(struct page **pages, int numpages) 2136 { 2137 int retval; 2138 unsigned long start; 2139 unsigned long end; 2140 int i; 2141 2142 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2143 retval = cpa_clear_pages_array(pages, numpages, 2144 __pgprot(_PAGE_CACHE_MASK)); 2145 if (retval) 2146 return retval; 2147 2148 for (i = 0; i < numpages; i++) { 2149 if (PageHighMem(pages[i])) 2150 continue; 2151 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2152 end = start + PAGE_SIZE; 2153 memtype_free(start, end); 2154 } 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL(set_pages_array_wb); 2159 2160 int set_pages_ro(struct page *page, int numpages) 2161 { 2162 unsigned long addr = (unsigned long)page_address(page); 2163 2164 return set_memory_ro(addr, numpages); 2165 } 2166 2167 int set_pages_rw(struct page *page, int numpages) 2168 { 2169 unsigned long addr = (unsigned long)page_address(page); 2170 2171 return set_memory_rw(addr, numpages); 2172 } 2173 2174 static int __set_pages_p(struct page *page, int numpages) 2175 { 2176 unsigned long tempaddr = (unsigned long) page_address(page); 2177 struct cpa_data cpa = { .vaddr = &tempaddr, 2178 .pgd = NULL, 2179 .numpages = numpages, 2180 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2181 .mask_clr = __pgprot(0), 2182 .flags = 0}; 2183 2184 /* 2185 * No alias checking needed for setting present flag. otherwise, 2186 * we may need to break large pages for 64-bit kernel text 2187 * mappings (this adds to complexity if we want to do this from 2188 * atomic context especially). Let's keep it simple! 2189 */ 2190 return __change_page_attr_set_clr(&cpa, 0); 2191 } 2192 2193 static int __set_pages_np(struct page *page, int numpages) 2194 { 2195 unsigned long tempaddr = (unsigned long) page_address(page); 2196 struct cpa_data cpa = { .vaddr = &tempaddr, 2197 .pgd = NULL, 2198 .numpages = numpages, 2199 .mask_set = __pgprot(0), 2200 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2201 .flags = 0}; 2202 2203 /* 2204 * No alias checking needed for setting not present flag. otherwise, 2205 * we may need to break large pages for 64-bit kernel text 2206 * mappings (this adds to complexity if we want to do this from 2207 * atomic context especially). Let's keep it simple! 2208 */ 2209 return __change_page_attr_set_clr(&cpa, 0); 2210 } 2211 2212 int set_direct_map_invalid_noflush(struct page *page) 2213 { 2214 return __set_pages_np(page, 1); 2215 } 2216 2217 int set_direct_map_default_noflush(struct page *page) 2218 { 2219 return __set_pages_p(page, 1); 2220 } 2221 2222 #ifdef CONFIG_DEBUG_PAGEALLOC 2223 void __kernel_map_pages(struct page *page, int numpages, int enable) 2224 { 2225 if (PageHighMem(page)) 2226 return; 2227 if (!enable) { 2228 debug_check_no_locks_freed(page_address(page), 2229 numpages * PAGE_SIZE); 2230 } 2231 2232 /* 2233 * The return value is ignored as the calls cannot fail. 2234 * Large pages for identity mappings are not used at boot time 2235 * and hence no memory allocations during large page split. 2236 */ 2237 if (enable) 2238 __set_pages_p(page, numpages); 2239 else 2240 __set_pages_np(page, numpages); 2241 2242 /* 2243 * We should perform an IPI and flush all tlbs, 2244 * but that can deadlock->flush only current cpu. 2245 * Preemption needs to be disabled around __flush_tlb_all() due to 2246 * CR3 reload in __native_flush_tlb(). 2247 */ 2248 preempt_disable(); 2249 __flush_tlb_all(); 2250 preempt_enable(); 2251 2252 arch_flush_lazy_mmu_mode(); 2253 } 2254 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2255 2256 bool kernel_page_present(struct page *page) 2257 { 2258 unsigned int level; 2259 pte_t *pte; 2260 2261 if (PageHighMem(page)) 2262 return false; 2263 2264 pte = lookup_address((unsigned long)page_address(page), &level); 2265 return (pte_val(*pte) & _PAGE_PRESENT); 2266 } 2267 2268 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2269 unsigned numpages, unsigned long page_flags) 2270 { 2271 int retval = -EINVAL; 2272 2273 struct cpa_data cpa = { 2274 .vaddr = &address, 2275 .pfn = pfn, 2276 .pgd = pgd, 2277 .numpages = numpages, 2278 .mask_set = __pgprot(0), 2279 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2280 .flags = 0, 2281 }; 2282 2283 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2284 2285 if (!(__supported_pte_mask & _PAGE_NX)) 2286 goto out; 2287 2288 if (!(page_flags & _PAGE_ENC)) 2289 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2290 2291 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2292 2293 retval = __change_page_attr_set_clr(&cpa, 0); 2294 __flush_tlb_all(); 2295 2296 out: 2297 return retval; 2298 } 2299 2300 /* 2301 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2302 * function shouldn't be used in an SMP environment. Presently, it's used only 2303 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2304 */ 2305 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2306 unsigned long numpages) 2307 { 2308 int retval; 2309 2310 /* 2311 * The typical sequence for unmapping is to find a pte through 2312 * lookup_address_in_pgd() (ideally, it should never return NULL because 2313 * the address is already mapped) and change it's protections. As pfn is 2314 * the *target* of a mapping, it's not useful while unmapping. 2315 */ 2316 struct cpa_data cpa = { 2317 .vaddr = &address, 2318 .pfn = 0, 2319 .pgd = pgd, 2320 .numpages = numpages, 2321 .mask_set = __pgprot(0), 2322 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2323 .flags = 0, 2324 }; 2325 2326 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2327 2328 retval = __change_page_attr_set_clr(&cpa, 0); 2329 __flush_tlb_all(); 2330 2331 return retval; 2332 } 2333 2334 /* 2335 * The testcases use internal knowledge of the implementation that shouldn't 2336 * be exposed to the rest of the kernel. Include these directly here. 2337 */ 2338 #ifdef CONFIG_CPA_DEBUG 2339 #include "cpa-test.c" 2340 #endif 2341