xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 
22 #include <asm/e820/api.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <linux/uaccess.h>
28 #include <asm/pgalloc.h>
29 #include <asm/proto.h>
30 #include <asm/memtype.h>
31 #include <asm/set_memory.h>
32 
33 #include "../mm_internal.h"
34 
35 /*
36  * The current flushing context - we pass it instead of 5 arguments:
37  */
38 struct cpa_data {
39 	unsigned long	*vaddr;
40 	pgd_t		*pgd;
41 	pgprot_t	mask_set;
42 	pgprot_t	mask_clr;
43 	unsigned long	numpages;
44 	unsigned long	curpage;
45 	unsigned long	pfn;
46 	unsigned int	flags;
47 	unsigned int	force_split		: 1,
48 			force_static_prot	: 1,
49 			force_flush_all		: 1;
50 	struct page	**pages;
51 };
52 
53 enum cpa_warn {
54 	CPA_CONFLICT,
55 	CPA_PROTECT,
56 	CPA_DETECT,
57 };
58 
59 static const int cpa_warn_level = CPA_PROTECT;
60 
61 /*
62  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
63  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
64  * entries change the page attribute in parallel to some other cpu
65  * splitting a large page entry along with changing the attribute.
66  */
67 static DEFINE_SPINLOCK(cpa_lock);
68 
69 #define CPA_FLUSHTLB 1
70 #define CPA_ARRAY 2
71 #define CPA_PAGES_ARRAY 4
72 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
73 
74 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
75 {
76 	return __pgprot(cachemode2protval(pcm));
77 }
78 
79 #ifdef CONFIG_PROC_FS
80 static unsigned long direct_pages_count[PG_LEVEL_NUM];
81 
82 void update_page_count(int level, unsigned long pages)
83 {
84 	/* Protect against CPA */
85 	spin_lock(&pgd_lock);
86 	direct_pages_count[level] += pages;
87 	spin_unlock(&pgd_lock);
88 }
89 
90 static void split_page_count(int level)
91 {
92 	if (direct_pages_count[level] == 0)
93 		return;
94 
95 	direct_pages_count[level]--;
96 	if (system_state == SYSTEM_RUNNING) {
97 		if (level == PG_LEVEL_2M)
98 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
99 		else if (level == PG_LEVEL_1G)
100 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
101 	}
102 	direct_pages_count[level - 1] += PTRS_PER_PTE;
103 }
104 
105 void arch_report_meminfo(struct seq_file *m)
106 {
107 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
108 			direct_pages_count[PG_LEVEL_4K] << 2);
109 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
110 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
111 			direct_pages_count[PG_LEVEL_2M] << 11);
112 #else
113 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
114 			direct_pages_count[PG_LEVEL_2M] << 12);
115 #endif
116 	if (direct_gbpages)
117 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
118 			direct_pages_count[PG_LEVEL_1G] << 20);
119 }
120 #else
121 static inline void split_page_count(int level) { }
122 #endif
123 
124 #ifdef CONFIG_X86_CPA_STATISTICS
125 
126 static unsigned long cpa_1g_checked;
127 static unsigned long cpa_1g_sameprot;
128 static unsigned long cpa_1g_preserved;
129 static unsigned long cpa_2m_checked;
130 static unsigned long cpa_2m_sameprot;
131 static unsigned long cpa_2m_preserved;
132 static unsigned long cpa_4k_install;
133 
134 static inline void cpa_inc_1g_checked(void)
135 {
136 	cpa_1g_checked++;
137 }
138 
139 static inline void cpa_inc_2m_checked(void)
140 {
141 	cpa_2m_checked++;
142 }
143 
144 static inline void cpa_inc_4k_install(void)
145 {
146 	data_race(cpa_4k_install++);
147 }
148 
149 static inline void cpa_inc_lp_sameprot(int level)
150 {
151 	if (level == PG_LEVEL_1G)
152 		cpa_1g_sameprot++;
153 	else
154 		cpa_2m_sameprot++;
155 }
156 
157 static inline void cpa_inc_lp_preserved(int level)
158 {
159 	if (level == PG_LEVEL_1G)
160 		cpa_1g_preserved++;
161 	else
162 		cpa_2m_preserved++;
163 }
164 
165 static int cpastats_show(struct seq_file *m, void *p)
166 {
167 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
168 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
169 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
170 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
171 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
172 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
173 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
174 	return 0;
175 }
176 
177 static int cpastats_open(struct inode *inode, struct file *file)
178 {
179 	return single_open(file, cpastats_show, NULL);
180 }
181 
182 static const struct file_operations cpastats_fops = {
183 	.open		= cpastats_open,
184 	.read		= seq_read,
185 	.llseek		= seq_lseek,
186 	.release	= single_release,
187 };
188 
189 static int __init cpa_stats_init(void)
190 {
191 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
192 			    &cpastats_fops);
193 	return 0;
194 }
195 late_initcall(cpa_stats_init);
196 #else
197 static inline void cpa_inc_1g_checked(void) { }
198 static inline void cpa_inc_2m_checked(void) { }
199 static inline void cpa_inc_4k_install(void) { }
200 static inline void cpa_inc_lp_sameprot(int level) { }
201 static inline void cpa_inc_lp_preserved(int level) { }
202 #endif
203 
204 
205 static inline int
206 within(unsigned long addr, unsigned long start, unsigned long end)
207 {
208 	return addr >= start && addr < end;
209 }
210 
211 static inline int
212 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
213 {
214 	return addr >= start && addr <= end;
215 }
216 
217 #ifdef CONFIG_X86_64
218 
219 static inline unsigned long highmap_start_pfn(void)
220 {
221 	return __pa_symbol(_text) >> PAGE_SHIFT;
222 }
223 
224 static inline unsigned long highmap_end_pfn(void)
225 {
226 	/* Do not reference physical address outside the kernel. */
227 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
228 }
229 
230 static bool __cpa_pfn_in_highmap(unsigned long pfn)
231 {
232 	/*
233 	 * Kernel text has an alias mapping at a high address, known
234 	 * here as "highmap".
235 	 */
236 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
237 }
238 
239 #else
240 
241 static bool __cpa_pfn_in_highmap(unsigned long pfn)
242 {
243 	/* There is no highmap on 32-bit */
244 	return false;
245 }
246 
247 #endif
248 
249 /*
250  * See set_mce_nospec().
251  *
252  * Machine check recovery code needs to change cache mode of poisoned pages to
253  * UC to avoid speculative access logging another error. But passing the
254  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
255  * speculative access. So we cheat and flip the top bit of the address. This
256  * works fine for the code that updates the page tables. But at the end of the
257  * process we need to flush the TLB and cache and the non-canonical address
258  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
259  *
260  * But in the common case we already have a canonical address. This code
261  * will fix the top bit if needed and is a no-op otherwise.
262  */
263 static inline unsigned long fix_addr(unsigned long addr)
264 {
265 #ifdef CONFIG_X86_64
266 	return (long)(addr << 1) >> 1;
267 #else
268 	return addr;
269 #endif
270 }
271 
272 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
273 {
274 	if (cpa->flags & CPA_PAGES_ARRAY) {
275 		struct page *page = cpa->pages[idx];
276 
277 		if (unlikely(PageHighMem(page)))
278 			return 0;
279 
280 		return (unsigned long)page_address(page);
281 	}
282 
283 	if (cpa->flags & CPA_ARRAY)
284 		return cpa->vaddr[idx];
285 
286 	return *cpa->vaddr + idx * PAGE_SIZE;
287 }
288 
289 /*
290  * Flushing functions
291  */
292 
293 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
294 {
295 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
296 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
297 	void *vend = vaddr + size;
298 
299 	if (p >= vend)
300 		return;
301 
302 	for (; p < vend; p += clflush_size)
303 		clflushopt(p);
304 }
305 
306 /**
307  * clflush_cache_range - flush a cache range with clflush
308  * @vaddr:	virtual start address
309  * @size:	number of bytes to flush
310  *
311  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
312  * SFENCE to avoid ordering issues.
313  */
314 void clflush_cache_range(void *vaddr, unsigned int size)
315 {
316 	mb();
317 	clflush_cache_range_opt(vaddr, size);
318 	mb();
319 }
320 EXPORT_SYMBOL_GPL(clflush_cache_range);
321 
322 #ifdef CONFIG_ARCH_HAS_PMEM_API
323 void arch_invalidate_pmem(void *addr, size_t size)
324 {
325 	clflush_cache_range(addr, size);
326 }
327 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
328 #endif
329 
330 static void __cpa_flush_all(void *arg)
331 {
332 	unsigned long cache = (unsigned long)arg;
333 
334 	/*
335 	 * Flush all to work around Errata in early athlons regarding
336 	 * large page flushing.
337 	 */
338 	__flush_tlb_all();
339 
340 	if (cache && boot_cpu_data.x86 >= 4)
341 		wbinvd();
342 }
343 
344 static void cpa_flush_all(unsigned long cache)
345 {
346 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
347 
348 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
349 }
350 
351 static void __cpa_flush_tlb(void *data)
352 {
353 	struct cpa_data *cpa = data;
354 	unsigned int i;
355 
356 	for (i = 0; i < cpa->numpages; i++)
357 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
358 }
359 
360 static void cpa_flush(struct cpa_data *data, int cache)
361 {
362 	struct cpa_data *cpa = data;
363 	unsigned int i;
364 
365 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
366 
367 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
368 		cpa_flush_all(cache);
369 		return;
370 	}
371 
372 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
373 		flush_tlb_all();
374 	else
375 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
376 
377 	if (!cache)
378 		return;
379 
380 	mb();
381 	for (i = 0; i < cpa->numpages; i++) {
382 		unsigned long addr = __cpa_addr(cpa, i);
383 		unsigned int level;
384 
385 		pte_t *pte = lookup_address(addr, &level);
386 
387 		/*
388 		 * Only flush present addresses:
389 		 */
390 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
391 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
392 	}
393 	mb();
394 }
395 
396 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
397 		     unsigned long r2_start, unsigned long r2_end)
398 {
399 	return (r1_start <= r2_end && r1_end >= r2_start) ||
400 		(r2_start <= r1_end && r2_end >= r1_start);
401 }
402 
403 #ifdef CONFIG_PCI_BIOS
404 /*
405  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
406  * based config access (CONFIG_PCI_GOBIOS) support.
407  */
408 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
409 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
410 
411 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
412 {
413 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
414 		return _PAGE_NX;
415 	return 0;
416 }
417 #else
418 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
419 {
420 	return 0;
421 }
422 #endif
423 
424 /*
425  * The .rodata section needs to be read-only. Using the pfn catches all
426  * aliases.  This also includes __ro_after_init, so do not enforce until
427  * kernel_set_to_readonly is true.
428  */
429 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
430 {
431 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
432 
433 	/*
434 	 * Note: __end_rodata is at page aligned and not inclusive, so
435 	 * subtract 1 to get the last enforced PFN in the rodata area.
436 	 */
437 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
438 
439 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
440 		return _PAGE_RW;
441 	return 0;
442 }
443 
444 /*
445  * Protect kernel text against becoming non executable by forbidding
446  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
447  * out of which the kernel actually executes.  Do not protect the low
448  * mapping.
449  *
450  * This does not cover __inittext since that is gone after boot.
451  */
452 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
453 {
454 	unsigned long t_end = (unsigned long)_etext - 1;
455 	unsigned long t_start = (unsigned long)_text;
456 
457 	if (overlaps(start, end, t_start, t_end))
458 		return _PAGE_NX;
459 	return 0;
460 }
461 
462 #if defined(CONFIG_X86_64)
463 /*
464  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
465  * kernel text mappings for the large page aligned text, rodata sections
466  * will be always read-only. For the kernel identity mappings covering the
467  * holes caused by this alignment can be anything that user asks.
468  *
469  * This will preserve the large page mappings for kernel text/data at no
470  * extra cost.
471  */
472 static pgprotval_t protect_kernel_text_ro(unsigned long start,
473 					  unsigned long end)
474 {
475 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
476 	unsigned long t_start = (unsigned long)_text;
477 	unsigned int level;
478 
479 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
480 		return 0;
481 	/*
482 	 * Don't enforce the !RW mapping for the kernel text mapping, if
483 	 * the current mapping is already using small page mapping.  No
484 	 * need to work hard to preserve large page mappings in this case.
485 	 *
486 	 * This also fixes the Linux Xen paravirt guest boot failure caused
487 	 * by unexpected read-only mappings for kernel identity
488 	 * mappings. In this paravirt guest case, the kernel text mapping
489 	 * and the kernel identity mapping share the same page-table pages,
490 	 * so the protections for kernel text and identity mappings have to
491 	 * be the same.
492 	 */
493 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
494 		return _PAGE_RW;
495 	return 0;
496 }
497 #else
498 static pgprotval_t protect_kernel_text_ro(unsigned long start,
499 					  unsigned long end)
500 {
501 	return 0;
502 }
503 #endif
504 
505 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
506 {
507 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
508 }
509 
510 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
511 				  unsigned long start, unsigned long end,
512 				  unsigned long pfn, const char *txt)
513 {
514 	static const char *lvltxt[] = {
515 		[CPA_CONFLICT]	= "conflict",
516 		[CPA_PROTECT]	= "protect",
517 		[CPA_DETECT]	= "detect",
518 	};
519 
520 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
521 		return;
522 
523 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
524 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
525 		(unsigned long long)val);
526 }
527 
528 /*
529  * Certain areas of memory on x86 require very specific protection flags,
530  * for example the BIOS area or kernel text. Callers don't always get this
531  * right (again, ioremap() on BIOS memory is not uncommon) so this function
532  * checks and fixes these known static required protection bits.
533  */
534 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
535 					  unsigned long pfn, unsigned long npg,
536 					  unsigned long lpsize, int warnlvl)
537 {
538 	pgprotval_t forbidden, res;
539 	unsigned long end;
540 
541 	/*
542 	 * There is no point in checking RW/NX conflicts when the requested
543 	 * mapping is setting the page !PRESENT.
544 	 */
545 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
546 		return prot;
547 
548 	/* Operate on the virtual address */
549 	end = start + npg * PAGE_SIZE - 1;
550 
551 	res = protect_kernel_text(start, end);
552 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
553 	forbidden = res;
554 
555 	/*
556 	 * Special case to preserve a large page. If the change spawns the
557 	 * full large page mapping then there is no point to split it
558 	 * up. Happens with ftrace and is going to be removed once ftrace
559 	 * switched to text_poke().
560 	 */
561 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
562 		res = protect_kernel_text_ro(start, end);
563 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
564 		forbidden |= res;
565 	}
566 
567 	/* Check the PFN directly */
568 	res = protect_pci_bios(pfn, pfn + npg - 1);
569 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
570 	forbidden |= res;
571 
572 	res = protect_rodata(pfn, pfn + npg - 1);
573 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
574 	forbidden |= res;
575 
576 	return __pgprot(pgprot_val(prot) & ~forbidden);
577 }
578 
579 /*
580  * Lookup the page table entry for a virtual address in a specific pgd.
581  * Return a pointer to the entry and the level of the mapping.
582  */
583 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
584 			     unsigned int *level)
585 {
586 	p4d_t *p4d;
587 	pud_t *pud;
588 	pmd_t *pmd;
589 
590 	*level = PG_LEVEL_NONE;
591 
592 	if (pgd_none(*pgd))
593 		return NULL;
594 
595 	p4d = p4d_offset(pgd, address);
596 	if (p4d_none(*p4d))
597 		return NULL;
598 
599 	*level = PG_LEVEL_512G;
600 	if (p4d_large(*p4d) || !p4d_present(*p4d))
601 		return (pte_t *)p4d;
602 
603 	pud = pud_offset(p4d, address);
604 	if (pud_none(*pud))
605 		return NULL;
606 
607 	*level = PG_LEVEL_1G;
608 	if (pud_large(*pud) || !pud_present(*pud))
609 		return (pte_t *)pud;
610 
611 	pmd = pmd_offset(pud, address);
612 	if (pmd_none(*pmd))
613 		return NULL;
614 
615 	*level = PG_LEVEL_2M;
616 	if (pmd_large(*pmd) || !pmd_present(*pmd))
617 		return (pte_t *)pmd;
618 
619 	*level = PG_LEVEL_4K;
620 
621 	return pte_offset_kernel(pmd, address);
622 }
623 
624 /*
625  * Lookup the page table entry for a virtual address. Return a pointer
626  * to the entry and the level of the mapping.
627  *
628  * Note: We return pud and pmd either when the entry is marked large
629  * or when the present bit is not set. Otherwise we would return a
630  * pointer to a nonexisting mapping.
631  */
632 pte_t *lookup_address(unsigned long address, unsigned int *level)
633 {
634 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
635 }
636 EXPORT_SYMBOL_GPL(lookup_address);
637 
638 /*
639  * Lookup the page table entry for a virtual address in a given mm. Return a
640  * pointer to the entry and the level of the mapping.
641  */
642 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
643 			    unsigned int *level)
644 {
645 	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
646 }
647 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
648 
649 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
650 				  unsigned int *level)
651 {
652 	if (cpa->pgd)
653 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
654 					       address, level);
655 
656 	return lookup_address(address, level);
657 }
658 
659 /*
660  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
661  * or NULL if not present.
662  */
663 pmd_t *lookup_pmd_address(unsigned long address)
664 {
665 	pgd_t *pgd;
666 	p4d_t *p4d;
667 	pud_t *pud;
668 
669 	pgd = pgd_offset_k(address);
670 	if (pgd_none(*pgd))
671 		return NULL;
672 
673 	p4d = p4d_offset(pgd, address);
674 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
675 		return NULL;
676 
677 	pud = pud_offset(p4d, address);
678 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
679 		return NULL;
680 
681 	return pmd_offset(pud, address);
682 }
683 
684 /*
685  * This is necessary because __pa() does not work on some
686  * kinds of memory, like vmalloc() or the alloc_remap()
687  * areas on 32-bit NUMA systems.  The percpu areas can
688  * end up in this kind of memory, for instance.
689  *
690  * This could be optimized, but it is only intended to be
691  * used at initialization time, and keeping it
692  * unoptimized should increase the testing coverage for
693  * the more obscure platforms.
694  */
695 phys_addr_t slow_virt_to_phys(void *__virt_addr)
696 {
697 	unsigned long virt_addr = (unsigned long)__virt_addr;
698 	phys_addr_t phys_addr;
699 	unsigned long offset;
700 	enum pg_level level;
701 	pte_t *pte;
702 
703 	pte = lookup_address(virt_addr, &level);
704 	BUG_ON(!pte);
705 
706 	/*
707 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
708 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
709 	 * make 32-PAE kernel work correctly.
710 	 */
711 	switch (level) {
712 	case PG_LEVEL_1G:
713 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
714 		offset = virt_addr & ~PUD_PAGE_MASK;
715 		break;
716 	case PG_LEVEL_2M:
717 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
718 		offset = virt_addr & ~PMD_PAGE_MASK;
719 		break;
720 	default:
721 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
722 		offset = virt_addr & ~PAGE_MASK;
723 	}
724 
725 	return (phys_addr_t)(phys_addr | offset);
726 }
727 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
728 
729 /*
730  * Set the new pmd in all the pgds we know about:
731  */
732 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
733 {
734 	/* change init_mm */
735 	set_pte_atomic(kpte, pte);
736 #ifdef CONFIG_X86_32
737 	if (!SHARED_KERNEL_PMD) {
738 		struct page *page;
739 
740 		list_for_each_entry(page, &pgd_list, lru) {
741 			pgd_t *pgd;
742 			p4d_t *p4d;
743 			pud_t *pud;
744 			pmd_t *pmd;
745 
746 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
747 			p4d = p4d_offset(pgd, address);
748 			pud = pud_offset(p4d, address);
749 			pmd = pmd_offset(pud, address);
750 			set_pte_atomic((pte_t *)pmd, pte);
751 		}
752 	}
753 #endif
754 }
755 
756 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
757 {
758 	/*
759 	 * _PAGE_GLOBAL means "global page" for present PTEs.
760 	 * But, it is also used to indicate _PAGE_PROTNONE
761 	 * for non-present PTEs.
762 	 *
763 	 * This ensures that a _PAGE_GLOBAL PTE going from
764 	 * present to non-present is not confused as
765 	 * _PAGE_PROTNONE.
766 	 */
767 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
768 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
769 
770 	return prot;
771 }
772 
773 static int __should_split_large_page(pte_t *kpte, unsigned long address,
774 				     struct cpa_data *cpa)
775 {
776 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
777 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
778 	pte_t new_pte, *tmp;
779 	enum pg_level level;
780 
781 	/*
782 	 * Check for races, another CPU might have split this page
783 	 * up already:
784 	 */
785 	tmp = _lookup_address_cpa(cpa, address, &level);
786 	if (tmp != kpte)
787 		return 1;
788 
789 	switch (level) {
790 	case PG_LEVEL_2M:
791 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
792 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
793 		cpa_inc_2m_checked();
794 		break;
795 	case PG_LEVEL_1G:
796 		old_prot = pud_pgprot(*(pud_t *)kpte);
797 		old_pfn = pud_pfn(*(pud_t *)kpte);
798 		cpa_inc_1g_checked();
799 		break;
800 	default:
801 		return -EINVAL;
802 	}
803 
804 	psize = page_level_size(level);
805 	pmask = page_level_mask(level);
806 
807 	/*
808 	 * Calculate the number of pages, which fit into this large
809 	 * page starting at address:
810 	 */
811 	lpaddr = (address + psize) & pmask;
812 	numpages = (lpaddr - address) >> PAGE_SHIFT;
813 	if (numpages < cpa->numpages)
814 		cpa->numpages = numpages;
815 
816 	/*
817 	 * We are safe now. Check whether the new pgprot is the same:
818 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
819 	 * up accordingly.
820 	 */
821 
822 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
823 	req_prot = pgprot_large_2_4k(old_prot);
824 
825 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
826 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
827 
828 	/*
829 	 * req_prot is in format of 4k pages. It must be converted to large
830 	 * page format: the caching mode includes the PAT bit located at
831 	 * different bit positions in the two formats.
832 	 */
833 	req_prot = pgprot_4k_2_large(req_prot);
834 	req_prot = pgprot_clear_protnone_bits(req_prot);
835 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
836 		pgprot_val(req_prot) |= _PAGE_PSE;
837 
838 	/*
839 	 * old_pfn points to the large page base pfn. So we need to add the
840 	 * offset of the virtual address:
841 	 */
842 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
843 	cpa->pfn = pfn;
844 
845 	/*
846 	 * Calculate the large page base address and the number of 4K pages
847 	 * in the large page
848 	 */
849 	lpaddr = address & pmask;
850 	numpages = psize >> PAGE_SHIFT;
851 
852 	/*
853 	 * Sanity check that the existing mapping is correct versus the static
854 	 * protections. static_protections() guards against !PRESENT, so no
855 	 * extra conditional required here.
856 	 */
857 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
858 				      psize, CPA_CONFLICT);
859 
860 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
861 		/*
862 		 * Split the large page and tell the split code to
863 		 * enforce static protections.
864 		 */
865 		cpa->force_static_prot = 1;
866 		return 1;
867 	}
868 
869 	/*
870 	 * Optimization: If the requested pgprot is the same as the current
871 	 * pgprot, then the large page can be preserved and no updates are
872 	 * required independent of alignment and length of the requested
873 	 * range. The above already established that the current pgprot is
874 	 * correct, which in consequence makes the requested pgprot correct
875 	 * as well if it is the same. The static protection scan below will
876 	 * not come to a different conclusion.
877 	 */
878 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
879 		cpa_inc_lp_sameprot(level);
880 		return 0;
881 	}
882 
883 	/*
884 	 * If the requested range does not cover the full page, split it up
885 	 */
886 	if (address != lpaddr || cpa->numpages != numpages)
887 		return 1;
888 
889 	/*
890 	 * Check whether the requested pgprot is conflicting with a static
891 	 * protection requirement in the large page.
892 	 */
893 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
894 				      psize, CPA_DETECT);
895 
896 	/*
897 	 * If there is a conflict, split the large page.
898 	 *
899 	 * There used to be a 4k wise evaluation trying really hard to
900 	 * preserve the large pages, but experimentation has shown, that this
901 	 * does not help at all. There might be corner cases which would
902 	 * preserve one large page occasionally, but it's really not worth the
903 	 * extra code and cycles for the common case.
904 	 */
905 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
906 		return 1;
907 
908 	/* All checks passed. Update the large page mapping. */
909 	new_pte = pfn_pte(old_pfn, new_prot);
910 	__set_pmd_pte(kpte, address, new_pte);
911 	cpa->flags |= CPA_FLUSHTLB;
912 	cpa_inc_lp_preserved(level);
913 	return 0;
914 }
915 
916 static int should_split_large_page(pte_t *kpte, unsigned long address,
917 				   struct cpa_data *cpa)
918 {
919 	int do_split;
920 
921 	if (cpa->force_split)
922 		return 1;
923 
924 	spin_lock(&pgd_lock);
925 	do_split = __should_split_large_page(kpte, address, cpa);
926 	spin_unlock(&pgd_lock);
927 
928 	return do_split;
929 }
930 
931 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
932 			  pgprot_t ref_prot, unsigned long address,
933 			  unsigned long size)
934 {
935 	unsigned int npg = PFN_DOWN(size);
936 	pgprot_t prot;
937 
938 	/*
939 	 * If should_split_large_page() discovered an inconsistent mapping,
940 	 * remove the invalid protection in the split mapping.
941 	 */
942 	if (!cpa->force_static_prot)
943 		goto set;
944 
945 	/* Hand in lpsize = 0 to enforce the protection mechanism */
946 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
947 
948 	if (pgprot_val(prot) == pgprot_val(ref_prot))
949 		goto set;
950 
951 	/*
952 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
953 	 * fixed trivially as that would require to rescan the newly
954 	 * installed PMD mappings after returning from split_large_page()
955 	 * so an eventual further split can allocate the necessary PTE
956 	 * pages. Warn for now and revisit it in case this actually
957 	 * happens.
958 	 */
959 	if (size == PAGE_SIZE)
960 		ref_prot = prot;
961 	else
962 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
963 set:
964 	set_pte(pte, pfn_pte(pfn, ref_prot));
965 }
966 
967 static int
968 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
969 		   struct page *base)
970 {
971 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
972 	pte_t *pbase = (pte_t *)page_address(base);
973 	unsigned int i, level;
974 	pgprot_t ref_prot;
975 	pte_t *tmp;
976 
977 	spin_lock(&pgd_lock);
978 	/*
979 	 * Check for races, another CPU might have split this page
980 	 * up for us already:
981 	 */
982 	tmp = _lookup_address_cpa(cpa, address, &level);
983 	if (tmp != kpte) {
984 		spin_unlock(&pgd_lock);
985 		return 1;
986 	}
987 
988 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
989 
990 	switch (level) {
991 	case PG_LEVEL_2M:
992 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
993 		/*
994 		 * Clear PSE (aka _PAGE_PAT) and move
995 		 * PAT bit to correct position.
996 		 */
997 		ref_prot = pgprot_large_2_4k(ref_prot);
998 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
999 		lpaddr = address & PMD_MASK;
1000 		lpinc = PAGE_SIZE;
1001 		break;
1002 
1003 	case PG_LEVEL_1G:
1004 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1005 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1006 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1007 		lpaddr = address & PUD_MASK;
1008 		lpinc = PMD_SIZE;
1009 		/*
1010 		 * Clear the PSE flags if the PRESENT flag is not set
1011 		 * otherwise pmd_present/pmd_huge will return true
1012 		 * even on a non present pmd.
1013 		 */
1014 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1015 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1016 		break;
1017 
1018 	default:
1019 		spin_unlock(&pgd_lock);
1020 		return 1;
1021 	}
1022 
1023 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1024 
1025 	/*
1026 	 * Get the target pfn from the original entry:
1027 	 */
1028 	pfn = ref_pfn;
1029 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1030 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1031 
1032 	if (virt_addr_valid(address)) {
1033 		unsigned long pfn = PFN_DOWN(__pa(address));
1034 
1035 		if (pfn_range_is_mapped(pfn, pfn + 1))
1036 			split_page_count(level);
1037 	}
1038 
1039 	/*
1040 	 * Install the new, split up pagetable.
1041 	 *
1042 	 * We use the standard kernel pagetable protections for the new
1043 	 * pagetable protections, the actual ptes set above control the
1044 	 * primary protection behavior:
1045 	 */
1046 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1047 
1048 	/*
1049 	 * Do a global flush tlb after splitting the large page
1050 	 * and before we do the actual change page attribute in the PTE.
1051 	 *
1052 	 * Without this, we violate the TLB application note, that says:
1053 	 * "The TLBs may contain both ordinary and large-page
1054 	 *  translations for a 4-KByte range of linear addresses. This
1055 	 *  may occur if software modifies the paging structures so that
1056 	 *  the page size used for the address range changes. If the two
1057 	 *  translations differ with respect to page frame or attributes
1058 	 *  (e.g., permissions), processor behavior is undefined and may
1059 	 *  be implementation-specific."
1060 	 *
1061 	 * We do this global tlb flush inside the cpa_lock, so that we
1062 	 * don't allow any other cpu, with stale tlb entries change the
1063 	 * page attribute in parallel, that also falls into the
1064 	 * just split large page entry.
1065 	 */
1066 	flush_tlb_all();
1067 	spin_unlock(&pgd_lock);
1068 
1069 	return 0;
1070 }
1071 
1072 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1073 			    unsigned long address)
1074 {
1075 	struct page *base;
1076 
1077 	if (!debug_pagealloc_enabled())
1078 		spin_unlock(&cpa_lock);
1079 	base = alloc_pages(GFP_KERNEL, 0);
1080 	if (!debug_pagealloc_enabled())
1081 		spin_lock(&cpa_lock);
1082 	if (!base)
1083 		return -ENOMEM;
1084 
1085 	if (__split_large_page(cpa, kpte, address, base))
1086 		__free_page(base);
1087 
1088 	return 0;
1089 }
1090 
1091 static bool try_to_free_pte_page(pte_t *pte)
1092 {
1093 	int i;
1094 
1095 	for (i = 0; i < PTRS_PER_PTE; i++)
1096 		if (!pte_none(pte[i]))
1097 			return false;
1098 
1099 	free_page((unsigned long)pte);
1100 	return true;
1101 }
1102 
1103 static bool try_to_free_pmd_page(pmd_t *pmd)
1104 {
1105 	int i;
1106 
1107 	for (i = 0; i < PTRS_PER_PMD; i++)
1108 		if (!pmd_none(pmd[i]))
1109 			return false;
1110 
1111 	free_page((unsigned long)pmd);
1112 	return true;
1113 }
1114 
1115 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1116 {
1117 	pte_t *pte = pte_offset_kernel(pmd, start);
1118 
1119 	while (start < end) {
1120 		set_pte(pte, __pte(0));
1121 
1122 		start += PAGE_SIZE;
1123 		pte++;
1124 	}
1125 
1126 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1127 		pmd_clear(pmd);
1128 		return true;
1129 	}
1130 	return false;
1131 }
1132 
1133 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1134 			      unsigned long start, unsigned long end)
1135 {
1136 	if (unmap_pte_range(pmd, start, end))
1137 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1138 			pud_clear(pud);
1139 }
1140 
1141 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1142 {
1143 	pmd_t *pmd = pmd_offset(pud, start);
1144 
1145 	/*
1146 	 * Not on a 2MB page boundary?
1147 	 */
1148 	if (start & (PMD_SIZE - 1)) {
1149 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1150 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1151 
1152 		__unmap_pmd_range(pud, pmd, start, pre_end);
1153 
1154 		start = pre_end;
1155 		pmd++;
1156 	}
1157 
1158 	/*
1159 	 * Try to unmap in 2M chunks.
1160 	 */
1161 	while (end - start >= PMD_SIZE) {
1162 		if (pmd_large(*pmd))
1163 			pmd_clear(pmd);
1164 		else
1165 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1166 
1167 		start += PMD_SIZE;
1168 		pmd++;
1169 	}
1170 
1171 	/*
1172 	 * 4K leftovers?
1173 	 */
1174 	if (start < end)
1175 		return __unmap_pmd_range(pud, pmd, start, end);
1176 
1177 	/*
1178 	 * Try again to free the PMD page if haven't succeeded above.
1179 	 */
1180 	if (!pud_none(*pud))
1181 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1182 			pud_clear(pud);
1183 }
1184 
1185 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1186 {
1187 	pud_t *pud = pud_offset(p4d, start);
1188 
1189 	/*
1190 	 * Not on a GB page boundary?
1191 	 */
1192 	if (start & (PUD_SIZE - 1)) {
1193 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1194 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1195 
1196 		unmap_pmd_range(pud, start, pre_end);
1197 
1198 		start = pre_end;
1199 		pud++;
1200 	}
1201 
1202 	/*
1203 	 * Try to unmap in 1G chunks?
1204 	 */
1205 	while (end - start >= PUD_SIZE) {
1206 
1207 		if (pud_large(*pud))
1208 			pud_clear(pud);
1209 		else
1210 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1211 
1212 		start += PUD_SIZE;
1213 		pud++;
1214 	}
1215 
1216 	/*
1217 	 * 2M leftovers?
1218 	 */
1219 	if (start < end)
1220 		unmap_pmd_range(pud, start, end);
1221 
1222 	/*
1223 	 * No need to try to free the PUD page because we'll free it in
1224 	 * populate_pgd's error path
1225 	 */
1226 }
1227 
1228 static int alloc_pte_page(pmd_t *pmd)
1229 {
1230 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1231 	if (!pte)
1232 		return -1;
1233 
1234 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1235 	return 0;
1236 }
1237 
1238 static int alloc_pmd_page(pud_t *pud)
1239 {
1240 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1241 	if (!pmd)
1242 		return -1;
1243 
1244 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1245 	return 0;
1246 }
1247 
1248 static void populate_pte(struct cpa_data *cpa,
1249 			 unsigned long start, unsigned long end,
1250 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1251 {
1252 	pte_t *pte;
1253 
1254 	pte = pte_offset_kernel(pmd, start);
1255 
1256 	pgprot = pgprot_clear_protnone_bits(pgprot);
1257 
1258 	while (num_pages-- && start < end) {
1259 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1260 
1261 		start	 += PAGE_SIZE;
1262 		cpa->pfn++;
1263 		pte++;
1264 	}
1265 }
1266 
1267 static long populate_pmd(struct cpa_data *cpa,
1268 			 unsigned long start, unsigned long end,
1269 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1270 {
1271 	long cur_pages = 0;
1272 	pmd_t *pmd;
1273 	pgprot_t pmd_pgprot;
1274 
1275 	/*
1276 	 * Not on a 2M boundary?
1277 	 */
1278 	if (start & (PMD_SIZE - 1)) {
1279 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1280 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1281 
1282 		pre_end   = min_t(unsigned long, pre_end, next_page);
1283 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1284 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1285 
1286 		/*
1287 		 * Need a PTE page?
1288 		 */
1289 		pmd = pmd_offset(pud, start);
1290 		if (pmd_none(*pmd))
1291 			if (alloc_pte_page(pmd))
1292 				return -1;
1293 
1294 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1295 
1296 		start = pre_end;
1297 	}
1298 
1299 	/*
1300 	 * We mapped them all?
1301 	 */
1302 	if (num_pages == cur_pages)
1303 		return cur_pages;
1304 
1305 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1306 
1307 	while (end - start >= PMD_SIZE) {
1308 
1309 		/*
1310 		 * We cannot use a 1G page so allocate a PMD page if needed.
1311 		 */
1312 		if (pud_none(*pud))
1313 			if (alloc_pmd_page(pud))
1314 				return -1;
1315 
1316 		pmd = pmd_offset(pud, start);
1317 
1318 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1319 					canon_pgprot(pmd_pgprot))));
1320 
1321 		start	  += PMD_SIZE;
1322 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1323 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1324 	}
1325 
1326 	/*
1327 	 * Map trailing 4K pages.
1328 	 */
1329 	if (start < end) {
1330 		pmd = pmd_offset(pud, start);
1331 		if (pmd_none(*pmd))
1332 			if (alloc_pte_page(pmd))
1333 				return -1;
1334 
1335 		populate_pte(cpa, start, end, num_pages - cur_pages,
1336 			     pmd, pgprot);
1337 	}
1338 	return num_pages;
1339 }
1340 
1341 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1342 			pgprot_t pgprot)
1343 {
1344 	pud_t *pud;
1345 	unsigned long end;
1346 	long cur_pages = 0;
1347 	pgprot_t pud_pgprot;
1348 
1349 	end = start + (cpa->numpages << PAGE_SHIFT);
1350 
1351 	/*
1352 	 * Not on a Gb page boundary? => map everything up to it with
1353 	 * smaller pages.
1354 	 */
1355 	if (start & (PUD_SIZE - 1)) {
1356 		unsigned long pre_end;
1357 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1358 
1359 		pre_end   = min_t(unsigned long, end, next_page);
1360 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1361 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1362 
1363 		pud = pud_offset(p4d, start);
1364 
1365 		/*
1366 		 * Need a PMD page?
1367 		 */
1368 		if (pud_none(*pud))
1369 			if (alloc_pmd_page(pud))
1370 				return -1;
1371 
1372 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1373 					 pud, pgprot);
1374 		if (cur_pages < 0)
1375 			return cur_pages;
1376 
1377 		start = pre_end;
1378 	}
1379 
1380 	/* We mapped them all? */
1381 	if (cpa->numpages == cur_pages)
1382 		return cur_pages;
1383 
1384 	pud = pud_offset(p4d, start);
1385 	pud_pgprot = pgprot_4k_2_large(pgprot);
1386 
1387 	/*
1388 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1389 	 */
1390 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1391 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1392 				   canon_pgprot(pud_pgprot))));
1393 
1394 		start	  += PUD_SIZE;
1395 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1396 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1397 		pud++;
1398 	}
1399 
1400 	/* Map trailing leftover */
1401 	if (start < end) {
1402 		long tmp;
1403 
1404 		pud = pud_offset(p4d, start);
1405 		if (pud_none(*pud))
1406 			if (alloc_pmd_page(pud))
1407 				return -1;
1408 
1409 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1410 				   pud, pgprot);
1411 		if (tmp < 0)
1412 			return cur_pages;
1413 
1414 		cur_pages += tmp;
1415 	}
1416 	return cur_pages;
1417 }
1418 
1419 /*
1420  * Restrictions for kernel page table do not necessarily apply when mapping in
1421  * an alternate PGD.
1422  */
1423 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1424 {
1425 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1426 	pud_t *pud = NULL;	/* shut up gcc */
1427 	p4d_t *p4d;
1428 	pgd_t *pgd_entry;
1429 	long ret;
1430 
1431 	pgd_entry = cpa->pgd + pgd_index(addr);
1432 
1433 	if (pgd_none(*pgd_entry)) {
1434 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1435 		if (!p4d)
1436 			return -1;
1437 
1438 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1439 	}
1440 
1441 	/*
1442 	 * Allocate a PUD page and hand it down for mapping.
1443 	 */
1444 	p4d = p4d_offset(pgd_entry, addr);
1445 	if (p4d_none(*p4d)) {
1446 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1447 		if (!pud)
1448 			return -1;
1449 
1450 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1451 	}
1452 
1453 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1454 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1455 
1456 	ret = populate_pud(cpa, addr, p4d, pgprot);
1457 	if (ret < 0) {
1458 		/*
1459 		 * Leave the PUD page in place in case some other CPU or thread
1460 		 * already found it, but remove any useless entries we just
1461 		 * added to it.
1462 		 */
1463 		unmap_pud_range(p4d, addr,
1464 				addr + (cpa->numpages << PAGE_SHIFT));
1465 		return ret;
1466 	}
1467 
1468 	cpa->numpages = ret;
1469 	return 0;
1470 }
1471 
1472 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1473 			       int primary)
1474 {
1475 	if (cpa->pgd) {
1476 		/*
1477 		 * Right now, we only execute this code path when mapping
1478 		 * the EFI virtual memory map regions, no other users
1479 		 * provide a ->pgd value. This may change in the future.
1480 		 */
1481 		return populate_pgd(cpa, vaddr);
1482 	}
1483 
1484 	/*
1485 	 * Ignore all non primary paths.
1486 	 */
1487 	if (!primary) {
1488 		cpa->numpages = 1;
1489 		return 0;
1490 	}
1491 
1492 	/*
1493 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1494 	 * to have holes.
1495 	 * Also set numpages to '1' indicating that we processed cpa req for
1496 	 * one virtual address page and its pfn. TBD: numpages can be set based
1497 	 * on the initial value and the level returned by lookup_address().
1498 	 */
1499 	if (within(vaddr, PAGE_OFFSET,
1500 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1501 		cpa->numpages = 1;
1502 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1503 		return 0;
1504 
1505 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1506 		/* Faults in the highmap are OK, so do not warn: */
1507 		return -EFAULT;
1508 	} else {
1509 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1510 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1511 			*cpa->vaddr);
1512 
1513 		return -EFAULT;
1514 	}
1515 }
1516 
1517 static int __change_page_attr(struct cpa_data *cpa, int primary)
1518 {
1519 	unsigned long address;
1520 	int do_split, err;
1521 	unsigned int level;
1522 	pte_t *kpte, old_pte;
1523 
1524 	address = __cpa_addr(cpa, cpa->curpage);
1525 repeat:
1526 	kpte = _lookup_address_cpa(cpa, address, &level);
1527 	if (!kpte)
1528 		return __cpa_process_fault(cpa, address, primary);
1529 
1530 	old_pte = *kpte;
1531 	if (pte_none(old_pte))
1532 		return __cpa_process_fault(cpa, address, primary);
1533 
1534 	if (level == PG_LEVEL_4K) {
1535 		pte_t new_pte;
1536 		pgprot_t new_prot = pte_pgprot(old_pte);
1537 		unsigned long pfn = pte_pfn(old_pte);
1538 
1539 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1540 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1541 
1542 		cpa_inc_4k_install();
1543 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1544 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1545 					      CPA_PROTECT);
1546 
1547 		new_prot = pgprot_clear_protnone_bits(new_prot);
1548 
1549 		/*
1550 		 * We need to keep the pfn from the existing PTE,
1551 		 * after all we're only going to change it's attributes
1552 		 * not the memory it points to
1553 		 */
1554 		new_pte = pfn_pte(pfn, new_prot);
1555 		cpa->pfn = pfn;
1556 		/*
1557 		 * Do we really change anything ?
1558 		 */
1559 		if (pte_val(old_pte) != pte_val(new_pte)) {
1560 			set_pte_atomic(kpte, new_pte);
1561 			cpa->flags |= CPA_FLUSHTLB;
1562 		}
1563 		cpa->numpages = 1;
1564 		return 0;
1565 	}
1566 
1567 	/*
1568 	 * Check, whether we can keep the large page intact
1569 	 * and just change the pte:
1570 	 */
1571 	do_split = should_split_large_page(kpte, address, cpa);
1572 	/*
1573 	 * When the range fits into the existing large page,
1574 	 * return. cp->numpages and cpa->tlbflush have been updated in
1575 	 * try_large_page:
1576 	 */
1577 	if (do_split <= 0)
1578 		return do_split;
1579 
1580 	/*
1581 	 * We have to split the large page:
1582 	 */
1583 	err = split_large_page(cpa, kpte, address);
1584 	if (!err)
1585 		goto repeat;
1586 
1587 	return err;
1588 }
1589 
1590 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1591 
1592 static int cpa_process_alias(struct cpa_data *cpa)
1593 {
1594 	struct cpa_data alias_cpa;
1595 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1596 	unsigned long vaddr;
1597 	int ret;
1598 
1599 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1600 		return 0;
1601 
1602 	/*
1603 	 * No need to redo, when the primary call touched the direct
1604 	 * mapping already:
1605 	 */
1606 	vaddr = __cpa_addr(cpa, cpa->curpage);
1607 	if (!(within(vaddr, PAGE_OFFSET,
1608 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1609 
1610 		alias_cpa = *cpa;
1611 		alias_cpa.vaddr = &laddr;
1612 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1613 		alias_cpa.curpage = 0;
1614 
1615 		cpa->force_flush_all = 1;
1616 
1617 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1618 		if (ret)
1619 			return ret;
1620 	}
1621 
1622 #ifdef CONFIG_X86_64
1623 	/*
1624 	 * If the primary call didn't touch the high mapping already
1625 	 * and the physical address is inside the kernel map, we need
1626 	 * to touch the high mapped kernel as well:
1627 	 */
1628 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1629 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1630 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1631 					       __START_KERNEL_map - phys_base;
1632 		alias_cpa = *cpa;
1633 		alias_cpa.vaddr = &temp_cpa_vaddr;
1634 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1635 		alias_cpa.curpage = 0;
1636 
1637 		cpa->force_flush_all = 1;
1638 		/*
1639 		 * The high mapping range is imprecise, so ignore the
1640 		 * return value.
1641 		 */
1642 		__change_page_attr_set_clr(&alias_cpa, 0);
1643 	}
1644 #endif
1645 
1646 	return 0;
1647 }
1648 
1649 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1650 {
1651 	unsigned long numpages = cpa->numpages;
1652 	unsigned long rempages = numpages;
1653 	int ret = 0;
1654 
1655 	while (rempages) {
1656 		/*
1657 		 * Store the remaining nr of pages for the large page
1658 		 * preservation check.
1659 		 */
1660 		cpa->numpages = rempages;
1661 		/* for array changes, we can't use large page */
1662 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1663 			cpa->numpages = 1;
1664 
1665 		if (!debug_pagealloc_enabled())
1666 			spin_lock(&cpa_lock);
1667 		ret = __change_page_attr(cpa, checkalias);
1668 		if (!debug_pagealloc_enabled())
1669 			spin_unlock(&cpa_lock);
1670 		if (ret)
1671 			goto out;
1672 
1673 		if (checkalias) {
1674 			ret = cpa_process_alias(cpa);
1675 			if (ret)
1676 				goto out;
1677 		}
1678 
1679 		/*
1680 		 * Adjust the number of pages with the result of the
1681 		 * CPA operation. Either a large page has been
1682 		 * preserved or a single page update happened.
1683 		 */
1684 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1685 		rempages -= cpa->numpages;
1686 		cpa->curpage += cpa->numpages;
1687 	}
1688 
1689 out:
1690 	/* Restore the original numpages */
1691 	cpa->numpages = numpages;
1692 	return ret;
1693 }
1694 
1695 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1696 				    pgprot_t mask_set, pgprot_t mask_clr,
1697 				    int force_split, int in_flag,
1698 				    struct page **pages)
1699 {
1700 	struct cpa_data cpa;
1701 	int ret, cache, checkalias;
1702 
1703 	memset(&cpa, 0, sizeof(cpa));
1704 
1705 	/*
1706 	 * Check, if we are requested to set a not supported
1707 	 * feature.  Clearing non-supported features is OK.
1708 	 */
1709 	mask_set = canon_pgprot(mask_set);
1710 
1711 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1712 		return 0;
1713 
1714 	/* Ensure we are PAGE_SIZE aligned */
1715 	if (in_flag & CPA_ARRAY) {
1716 		int i;
1717 		for (i = 0; i < numpages; i++) {
1718 			if (addr[i] & ~PAGE_MASK) {
1719 				addr[i] &= PAGE_MASK;
1720 				WARN_ON_ONCE(1);
1721 			}
1722 		}
1723 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1724 		/*
1725 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1726 		 * No need to check in that case
1727 		 */
1728 		if (*addr & ~PAGE_MASK) {
1729 			*addr &= PAGE_MASK;
1730 			/*
1731 			 * People should not be passing in unaligned addresses:
1732 			 */
1733 			WARN_ON_ONCE(1);
1734 		}
1735 	}
1736 
1737 	/* Must avoid aliasing mappings in the highmem code */
1738 	kmap_flush_unused();
1739 
1740 	vm_unmap_aliases();
1741 
1742 	cpa.vaddr = addr;
1743 	cpa.pages = pages;
1744 	cpa.numpages = numpages;
1745 	cpa.mask_set = mask_set;
1746 	cpa.mask_clr = mask_clr;
1747 	cpa.flags = 0;
1748 	cpa.curpage = 0;
1749 	cpa.force_split = force_split;
1750 
1751 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1752 		cpa.flags |= in_flag;
1753 
1754 	/* No alias checking for _NX bit modifications */
1755 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1756 	/* Has caller explicitly disabled alias checking? */
1757 	if (in_flag & CPA_NO_CHECK_ALIAS)
1758 		checkalias = 0;
1759 
1760 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1761 
1762 	/*
1763 	 * Check whether we really changed something:
1764 	 */
1765 	if (!(cpa.flags & CPA_FLUSHTLB))
1766 		goto out;
1767 
1768 	/*
1769 	 * No need to flush, when we did not set any of the caching
1770 	 * attributes:
1771 	 */
1772 	cache = !!pgprot2cachemode(mask_set);
1773 
1774 	/*
1775 	 * On error; flush everything to be sure.
1776 	 */
1777 	if (ret) {
1778 		cpa_flush_all(cache);
1779 		goto out;
1780 	}
1781 
1782 	cpa_flush(&cpa, cache);
1783 out:
1784 	return ret;
1785 }
1786 
1787 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1788 				       pgprot_t mask, int array)
1789 {
1790 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1791 		(array ? CPA_ARRAY : 0), NULL);
1792 }
1793 
1794 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1795 					 pgprot_t mask, int array)
1796 {
1797 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1798 		(array ? CPA_ARRAY : 0), NULL);
1799 }
1800 
1801 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1802 				       pgprot_t mask)
1803 {
1804 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1805 		CPA_PAGES_ARRAY, pages);
1806 }
1807 
1808 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1809 					 pgprot_t mask)
1810 {
1811 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1812 		CPA_PAGES_ARRAY, pages);
1813 }
1814 
1815 /*
1816  * _set_memory_prot is an internal helper for callers that have been passed
1817  * a pgprot_t value from upper layers and a reservation has already been taken.
1818  * If you want to set the pgprot to a specific page protocol, use the
1819  * set_memory_xx() functions.
1820  */
1821 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1822 {
1823 	return change_page_attr_set_clr(&addr, numpages, prot,
1824 					__pgprot(~pgprot_val(prot)), 0, 0,
1825 					NULL);
1826 }
1827 
1828 int _set_memory_uc(unsigned long addr, int numpages)
1829 {
1830 	/*
1831 	 * for now UC MINUS. see comments in ioremap()
1832 	 * If you really need strong UC use ioremap_uc(), but note
1833 	 * that you cannot override IO areas with set_memory_*() as
1834 	 * these helpers cannot work with IO memory.
1835 	 */
1836 	return change_page_attr_set(&addr, numpages,
1837 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1838 				    0);
1839 }
1840 
1841 int set_memory_uc(unsigned long addr, int numpages)
1842 {
1843 	int ret;
1844 
1845 	/*
1846 	 * for now UC MINUS. see comments in ioremap()
1847 	 */
1848 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1849 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1850 	if (ret)
1851 		goto out_err;
1852 
1853 	ret = _set_memory_uc(addr, numpages);
1854 	if (ret)
1855 		goto out_free;
1856 
1857 	return 0;
1858 
1859 out_free:
1860 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1861 out_err:
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(set_memory_uc);
1865 
1866 int _set_memory_wc(unsigned long addr, int numpages)
1867 {
1868 	int ret;
1869 
1870 	ret = change_page_attr_set(&addr, numpages,
1871 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1872 				   0);
1873 	if (!ret) {
1874 		ret = change_page_attr_set_clr(&addr, numpages,
1875 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1876 					       __pgprot(_PAGE_CACHE_MASK),
1877 					       0, 0, NULL);
1878 	}
1879 	return ret;
1880 }
1881 
1882 int set_memory_wc(unsigned long addr, int numpages)
1883 {
1884 	int ret;
1885 
1886 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1887 		_PAGE_CACHE_MODE_WC, NULL);
1888 	if (ret)
1889 		return ret;
1890 
1891 	ret = _set_memory_wc(addr, numpages);
1892 	if (ret)
1893 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1894 
1895 	return ret;
1896 }
1897 EXPORT_SYMBOL(set_memory_wc);
1898 
1899 int _set_memory_wt(unsigned long addr, int numpages)
1900 {
1901 	return change_page_attr_set(&addr, numpages,
1902 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1903 }
1904 
1905 int _set_memory_wb(unsigned long addr, int numpages)
1906 {
1907 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1908 	return change_page_attr_clear(&addr, numpages,
1909 				      __pgprot(_PAGE_CACHE_MASK), 0);
1910 }
1911 
1912 int set_memory_wb(unsigned long addr, int numpages)
1913 {
1914 	int ret;
1915 
1916 	ret = _set_memory_wb(addr, numpages);
1917 	if (ret)
1918 		return ret;
1919 
1920 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL(set_memory_wb);
1924 
1925 int set_memory_x(unsigned long addr, int numpages)
1926 {
1927 	if (!(__supported_pte_mask & _PAGE_NX))
1928 		return 0;
1929 
1930 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1931 }
1932 
1933 int set_memory_nx(unsigned long addr, int numpages)
1934 {
1935 	if (!(__supported_pte_mask & _PAGE_NX))
1936 		return 0;
1937 
1938 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1939 }
1940 
1941 int set_memory_ro(unsigned long addr, int numpages)
1942 {
1943 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1944 }
1945 
1946 int set_memory_rw(unsigned long addr, int numpages)
1947 {
1948 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1949 }
1950 
1951 int set_memory_np(unsigned long addr, int numpages)
1952 {
1953 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1954 }
1955 
1956 int set_memory_np_noalias(unsigned long addr, int numpages)
1957 {
1958 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1959 
1960 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1961 					__pgprot(_PAGE_PRESENT), 0,
1962 					cpa_flags, NULL);
1963 }
1964 
1965 int set_memory_4k(unsigned long addr, int numpages)
1966 {
1967 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1968 					__pgprot(0), 1, 0, NULL);
1969 }
1970 
1971 int set_memory_nonglobal(unsigned long addr, int numpages)
1972 {
1973 	return change_page_attr_clear(&addr, numpages,
1974 				      __pgprot(_PAGE_GLOBAL), 0);
1975 }
1976 
1977 int set_memory_global(unsigned long addr, int numpages)
1978 {
1979 	return change_page_attr_set(&addr, numpages,
1980 				    __pgprot(_PAGE_GLOBAL), 0);
1981 }
1982 
1983 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1984 {
1985 	struct cpa_data cpa;
1986 	int ret;
1987 
1988 	/* Nothing to do if memory encryption is not active */
1989 	if (!mem_encrypt_active())
1990 		return 0;
1991 
1992 	/* Should not be working on unaligned addresses */
1993 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1994 		addr &= PAGE_MASK;
1995 
1996 	memset(&cpa, 0, sizeof(cpa));
1997 	cpa.vaddr = &addr;
1998 	cpa.numpages = numpages;
1999 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2000 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2001 	cpa.pgd = init_mm.pgd;
2002 
2003 	/* Must avoid aliasing mappings in the highmem code */
2004 	kmap_flush_unused();
2005 	vm_unmap_aliases();
2006 
2007 	/*
2008 	 * Before changing the encryption attribute, we need to flush caches.
2009 	 */
2010 	cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
2011 
2012 	ret = __change_page_attr_set_clr(&cpa, 1);
2013 
2014 	/*
2015 	 * After changing the encryption attribute, we need to flush TLBs again
2016 	 * in case any speculative TLB caching occurred (but no need to flush
2017 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2018 	 * flushing gets optimized in the cpa_flush() path use the same logic
2019 	 * as above.
2020 	 */
2021 	cpa_flush(&cpa, 0);
2022 
2023 	return ret;
2024 }
2025 
2026 int set_memory_encrypted(unsigned long addr, int numpages)
2027 {
2028 	return __set_memory_enc_dec(addr, numpages, true);
2029 }
2030 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2031 
2032 int set_memory_decrypted(unsigned long addr, int numpages)
2033 {
2034 	return __set_memory_enc_dec(addr, numpages, false);
2035 }
2036 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2037 
2038 int set_pages_uc(struct page *page, int numpages)
2039 {
2040 	unsigned long addr = (unsigned long)page_address(page);
2041 
2042 	return set_memory_uc(addr, numpages);
2043 }
2044 EXPORT_SYMBOL(set_pages_uc);
2045 
2046 static int _set_pages_array(struct page **pages, int numpages,
2047 		enum page_cache_mode new_type)
2048 {
2049 	unsigned long start;
2050 	unsigned long end;
2051 	enum page_cache_mode set_type;
2052 	int i;
2053 	int free_idx;
2054 	int ret;
2055 
2056 	for (i = 0; i < numpages; i++) {
2057 		if (PageHighMem(pages[i]))
2058 			continue;
2059 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2060 		end = start + PAGE_SIZE;
2061 		if (memtype_reserve(start, end, new_type, NULL))
2062 			goto err_out;
2063 	}
2064 
2065 	/* If WC, set to UC- first and then WC */
2066 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2067 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2068 
2069 	ret = cpa_set_pages_array(pages, numpages,
2070 				  cachemode2pgprot(set_type));
2071 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2072 		ret = change_page_attr_set_clr(NULL, numpages,
2073 					       cachemode2pgprot(
2074 						_PAGE_CACHE_MODE_WC),
2075 					       __pgprot(_PAGE_CACHE_MASK),
2076 					       0, CPA_PAGES_ARRAY, pages);
2077 	if (ret)
2078 		goto err_out;
2079 	return 0; /* Success */
2080 err_out:
2081 	free_idx = i;
2082 	for (i = 0; i < free_idx; i++) {
2083 		if (PageHighMem(pages[i]))
2084 			continue;
2085 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2086 		end = start + PAGE_SIZE;
2087 		memtype_free(start, end);
2088 	}
2089 	return -EINVAL;
2090 }
2091 
2092 int set_pages_array_uc(struct page **pages, int numpages)
2093 {
2094 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2095 }
2096 EXPORT_SYMBOL(set_pages_array_uc);
2097 
2098 int set_pages_array_wc(struct page **pages, int numpages)
2099 {
2100 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2101 }
2102 EXPORT_SYMBOL(set_pages_array_wc);
2103 
2104 int set_pages_array_wt(struct page **pages, int numpages)
2105 {
2106 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2107 }
2108 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2109 
2110 int set_pages_wb(struct page *page, int numpages)
2111 {
2112 	unsigned long addr = (unsigned long)page_address(page);
2113 
2114 	return set_memory_wb(addr, numpages);
2115 }
2116 EXPORT_SYMBOL(set_pages_wb);
2117 
2118 int set_pages_array_wb(struct page **pages, int numpages)
2119 {
2120 	int retval;
2121 	unsigned long start;
2122 	unsigned long end;
2123 	int i;
2124 
2125 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2126 	retval = cpa_clear_pages_array(pages, numpages,
2127 			__pgprot(_PAGE_CACHE_MASK));
2128 	if (retval)
2129 		return retval;
2130 
2131 	for (i = 0; i < numpages; i++) {
2132 		if (PageHighMem(pages[i]))
2133 			continue;
2134 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2135 		end = start + PAGE_SIZE;
2136 		memtype_free(start, end);
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(set_pages_array_wb);
2142 
2143 int set_pages_ro(struct page *page, int numpages)
2144 {
2145 	unsigned long addr = (unsigned long)page_address(page);
2146 
2147 	return set_memory_ro(addr, numpages);
2148 }
2149 
2150 int set_pages_rw(struct page *page, int numpages)
2151 {
2152 	unsigned long addr = (unsigned long)page_address(page);
2153 
2154 	return set_memory_rw(addr, numpages);
2155 }
2156 
2157 static int __set_pages_p(struct page *page, int numpages)
2158 {
2159 	unsigned long tempaddr = (unsigned long) page_address(page);
2160 	struct cpa_data cpa = { .vaddr = &tempaddr,
2161 				.pgd = NULL,
2162 				.numpages = numpages,
2163 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2164 				.mask_clr = __pgprot(0),
2165 				.flags = 0};
2166 
2167 	/*
2168 	 * No alias checking needed for setting present flag. otherwise,
2169 	 * we may need to break large pages for 64-bit kernel text
2170 	 * mappings (this adds to complexity if we want to do this from
2171 	 * atomic context especially). Let's keep it simple!
2172 	 */
2173 	return __change_page_attr_set_clr(&cpa, 0);
2174 }
2175 
2176 static int __set_pages_np(struct page *page, int numpages)
2177 {
2178 	unsigned long tempaddr = (unsigned long) page_address(page);
2179 	struct cpa_data cpa = { .vaddr = &tempaddr,
2180 				.pgd = NULL,
2181 				.numpages = numpages,
2182 				.mask_set = __pgprot(0),
2183 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2184 				.flags = 0};
2185 
2186 	/*
2187 	 * No alias checking needed for setting not present flag. otherwise,
2188 	 * we may need to break large pages for 64-bit kernel text
2189 	 * mappings (this adds to complexity if we want to do this from
2190 	 * atomic context especially). Let's keep it simple!
2191 	 */
2192 	return __change_page_attr_set_clr(&cpa, 0);
2193 }
2194 
2195 int set_direct_map_invalid_noflush(struct page *page)
2196 {
2197 	return __set_pages_np(page, 1);
2198 }
2199 
2200 int set_direct_map_default_noflush(struct page *page)
2201 {
2202 	return __set_pages_p(page, 1);
2203 }
2204 
2205 #ifdef CONFIG_DEBUG_PAGEALLOC
2206 void __kernel_map_pages(struct page *page, int numpages, int enable)
2207 {
2208 	if (PageHighMem(page))
2209 		return;
2210 	if (!enable) {
2211 		debug_check_no_locks_freed(page_address(page),
2212 					   numpages * PAGE_SIZE);
2213 	}
2214 
2215 	/*
2216 	 * The return value is ignored as the calls cannot fail.
2217 	 * Large pages for identity mappings are not used at boot time
2218 	 * and hence no memory allocations during large page split.
2219 	 */
2220 	if (enable)
2221 		__set_pages_p(page, numpages);
2222 	else
2223 		__set_pages_np(page, numpages);
2224 
2225 	/*
2226 	 * We should perform an IPI and flush all tlbs,
2227 	 * but that can deadlock->flush only current cpu.
2228 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2229 	 * CR3 reload in __native_flush_tlb().
2230 	 */
2231 	preempt_disable();
2232 	__flush_tlb_all();
2233 	preempt_enable();
2234 
2235 	arch_flush_lazy_mmu_mode();
2236 }
2237 #endif /* CONFIG_DEBUG_PAGEALLOC */
2238 
2239 bool kernel_page_present(struct page *page)
2240 {
2241 	unsigned int level;
2242 	pte_t *pte;
2243 
2244 	if (PageHighMem(page))
2245 		return false;
2246 
2247 	pte = lookup_address((unsigned long)page_address(page), &level);
2248 	return (pte_val(*pte) & _PAGE_PRESENT);
2249 }
2250 
2251 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2252 				   unsigned numpages, unsigned long page_flags)
2253 {
2254 	int retval = -EINVAL;
2255 
2256 	struct cpa_data cpa = {
2257 		.vaddr = &address,
2258 		.pfn = pfn,
2259 		.pgd = pgd,
2260 		.numpages = numpages,
2261 		.mask_set = __pgprot(0),
2262 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2263 		.flags = 0,
2264 	};
2265 
2266 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2267 
2268 	if (!(__supported_pte_mask & _PAGE_NX))
2269 		goto out;
2270 
2271 	if (!(page_flags & _PAGE_ENC))
2272 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2273 
2274 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2275 
2276 	retval = __change_page_attr_set_clr(&cpa, 0);
2277 	__flush_tlb_all();
2278 
2279 out:
2280 	return retval;
2281 }
2282 
2283 /*
2284  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2285  * function shouldn't be used in an SMP environment. Presently, it's used only
2286  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2287  */
2288 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2289 				     unsigned long numpages)
2290 {
2291 	int retval;
2292 
2293 	/*
2294 	 * The typical sequence for unmapping is to find a pte through
2295 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2296 	 * the address is already mapped) and change it's protections. As pfn is
2297 	 * the *target* of a mapping, it's not useful while unmapping.
2298 	 */
2299 	struct cpa_data cpa = {
2300 		.vaddr		= &address,
2301 		.pfn		= 0,
2302 		.pgd		= pgd,
2303 		.numpages	= numpages,
2304 		.mask_set	= __pgprot(0),
2305 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2306 		.flags		= 0,
2307 	};
2308 
2309 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2310 
2311 	retval = __change_page_attr_set_clr(&cpa, 0);
2312 	__flush_tlb_all();
2313 
2314 	return retval;
2315 }
2316 
2317 /*
2318  * The testcases use internal knowledge of the implementation that shouldn't
2319  * be exposed to the rest of the kernel. Include these directly here.
2320  */
2321 #ifdef CONFIG_CPA_DEBUG
2322 #include "cpa-test.c"
2323 #endif
2324