1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 #include <linux/libnvdimm.h> 19 #include <linux/vmstat.h> 20 #include <linux/kernel.h> 21 22 #include <asm/e820/api.h> 23 #include <asm/processor.h> 24 #include <asm/tlbflush.h> 25 #include <asm/sections.h> 26 #include <asm/setup.h> 27 #include <linux/uaccess.h> 28 #include <asm/pgalloc.h> 29 #include <asm/proto.h> 30 #include <asm/memtype.h> 31 #include <asm/set_memory.h> 32 33 #include "../mm_internal.h" 34 35 /* 36 * The current flushing context - we pass it instead of 5 arguments: 37 */ 38 struct cpa_data { 39 unsigned long *vaddr; 40 pgd_t *pgd; 41 pgprot_t mask_set; 42 pgprot_t mask_clr; 43 unsigned long numpages; 44 unsigned long curpage; 45 unsigned long pfn; 46 unsigned int flags; 47 unsigned int force_split : 1, 48 force_static_prot : 1, 49 force_flush_all : 1; 50 struct page **pages; 51 }; 52 53 enum cpa_warn { 54 CPA_CONFLICT, 55 CPA_PROTECT, 56 CPA_DETECT, 57 }; 58 59 static const int cpa_warn_level = CPA_PROTECT; 60 61 /* 62 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 63 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 64 * entries change the page attribute in parallel to some other cpu 65 * splitting a large page entry along with changing the attribute. 66 */ 67 static DEFINE_SPINLOCK(cpa_lock); 68 69 #define CPA_FLUSHTLB 1 70 #define CPA_ARRAY 2 71 #define CPA_PAGES_ARRAY 4 72 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 73 74 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 75 { 76 return __pgprot(cachemode2protval(pcm)); 77 } 78 79 #ifdef CONFIG_PROC_FS 80 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 81 82 void update_page_count(int level, unsigned long pages) 83 { 84 /* Protect against CPA */ 85 spin_lock(&pgd_lock); 86 direct_pages_count[level] += pages; 87 spin_unlock(&pgd_lock); 88 } 89 90 static void split_page_count(int level) 91 { 92 if (direct_pages_count[level] == 0) 93 return; 94 95 direct_pages_count[level]--; 96 if (system_state == SYSTEM_RUNNING) { 97 if (level == PG_LEVEL_2M) 98 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 99 else if (level == PG_LEVEL_1G) 100 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 101 } 102 direct_pages_count[level - 1] += PTRS_PER_PTE; 103 } 104 105 void arch_report_meminfo(struct seq_file *m) 106 { 107 seq_printf(m, "DirectMap4k: %8lu kB\n", 108 direct_pages_count[PG_LEVEL_4K] << 2); 109 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 110 seq_printf(m, "DirectMap2M: %8lu kB\n", 111 direct_pages_count[PG_LEVEL_2M] << 11); 112 #else 113 seq_printf(m, "DirectMap4M: %8lu kB\n", 114 direct_pages_count[PG_LEVEL_2M] << 12); 115 #endif 116 if (direct_gbpages) 117 seq_printf(m, "DirectMap1G: %8lu kB\n", 118 direct_pages_count[PG_LEVEL_1G] << 20); 119 } 120 #else 121 static inline void split_page_count(int level) { } 122 #endif 123 124 #ifdef CONFIG_X86_CPA_STATISTICS 125 126 static unsigned long cpa_1g_checked; 127 static unsigned long cpa_1g_sameprot; 128 static unsigned long cpa_1g_preserved; 129 static unsigned long cpa_2m_checked; 130 static unsigned long cpa_2m_sameprot; 131 static unsigned long cpa_2m_preserved; 132 static unsigned long cpa_4k_install; 133 134 static inline void cpa_inc_1g_checked(void) 135 { 136 cpa_1g_checked++; 137 } 138 139 static inline void cpa_inc_2m_checked(void) 140 { 141 cpa_2m_checked++; 142 } 143 144 static inline void cpa_inc_4k_install(void) 145 { 146 data_race(cpa_4k_install++); 147 } 148 149 static inline void cpa_inc_lp_sameprot(int level) 150 { 151 if (level == PG_LEVEL_1G) 152 cpa_1g_sameprot++; 153 else 154 cpa_2m_sameprot++; 155 } 156 157 static inline void cpa_inc_lp_preserved(int level) 158 { 159 if (level == PG_LEVEL_1G) 160 cpa_1g_preserved++; 161 else 162 cpa_2m_preserved++; 163 } 164 165 static int cpastats_show(struct seq_file *m, void *p) 166 { 167 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 168 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 169 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 170 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 171 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 172 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 173 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 174 return 0; 175 } 176 177 static int cpastats_open(struct inode *inode, struct file *file) 178 { 179 return single_open(file, cpastats_show, NULL); 180 } 181 182 static const struct file_operations cpastats_fops = { 183 .open = cpastats_open, 184 .read = seq_read, 185 .llseek = seq_lseek, 186 .release = single_release, 187 }; 188 189 static int __init cpa_stats_init(void) 190 { 191 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 192 &cpastats_fops); 193 return 0; 194 } 195 late_initcall(cpa_stats_init); 196 #else 197 static inline void cpa_inc_1g_checked(void) { } 198 static inline void cpa_inc_2m_checked(void) { } 199 static inline void cpa_inc_4k_install(void) { } 200 static inline void cpa_inc_lp_sameprot(int level) { } 201 static inline void cpa_inc_lp_preserved(int level) { } 202 #endif 203 204 205 static inline int 206 within(unsigned long addr, unsigned long start, unsigned long end) 207 { 208 return addr >= start && addr < end; 209 } 210 211 static inline int 212 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 213 { 214 return addr >= start && addr <= end; 215 } 216 217 #ifdef CONFIG_X86_64 218 219 static inline unsigned long highmap_start_pfn(void) 220 { 221 return __pa_symbol(_text) >> PAGE_SHIFT; 222 } 223 224 static inline unsigned long highmap_end_pfn(void) 225 { 226 /* Do not reference physical address outside the kernel. */ 227 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 228 } 229 230 static bool __cpa_pfn_in_highmap(unsigned long pfn) 231 { 232 /* 233 * Kernel text has an alias mapping at a high address, known 234 * here as "highmap". 235 */ 236 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 237 } 238 239 #else 240 241 static bool __cpa_pfn_in_highmap(unsigned long pfn) 242 { 243 /* There is no highmap on 32-bit */ 244 return false; 245 } 246 247 #endif 248 249 /* 250 * See set_mce_nospec(). 251 * 252 * Machine check recovery code needs to change cache mode of poisoned pages to 253 * UC to avoid speculative access logging another error. But passing the 254 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 255 * speculative access. So we cheat and flip the top bit of the address. This 256 * works fine for the code that updates the page tables. But at the end of the 257 * process we need to flush the TLB and cache and the non-canonical address 258 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 259 * 260 * But in the common case we already have a canonical address. This code 261 * will fix the top bit if needed and is a no-op otherwise. 262 */ 263 static inline unsigned long fix_addr(unsigned long addr) 264 { 265 #ifdef CONFIG_X86_64 266 return (long)(addr << 1) >> 1; 267 #else 268 return addr; 269 #endif 270 } 271 272 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 273 { 274 if (cpa->flags & CPA_PAGES_ARRAY) { 275 struct page *page = cpa->pages[idx]; 276 277 if (unlikely(PageHighMem(page))) 278 return 0; 279 280 return (unsigned long)page_address(page); 281 } 282 283 if (cpa->flags & CPA_ARRAY) 284 return cpa->vaddr[idx]; 285 286 return *cpa->vaddr + idx * PAGE_SIZE; 287 } 288 289 /* 290 * Flushing functions 291 */ 292 293 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 294 { 295 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 296 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 297 void *vend = vaddr + size; 298 299 if (p >= vend) 300 return; 301 302 for (; p < vend; p += clflush_size) 303 clflushopt(p); 304 } 305 306 /** 307 * clflush_cache_range - flush a cache range with clflush 308 * @vaddr: virtual start address 309 * @size: number of bytes to flush 310 * 311 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 312 * SFENCE to avoid ordering issues. 313 */ 314 void clflush_cache_range(void *vaddr, unsigned int size) 315 { 316 mb(); 317 clflush_cache_range_opt(vaddr, size); 318 mb(); 319 } 320 EXPORT_SYMBOL_GPL(clflush_cache_range); 321 322 #ifdef CONFIG_ARCH_HAS_PMEM_API 323 void arch_invalidate_pmem(void *addr, size_t size) 324 { 325 clflush_cache_range(addr, size); 326 } 327 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 328 #endif 329 330 static void __cpa_flush_all(void *arg) 331 { 332 unsigned long cache = (unsigned long)arg; 333 334 /* 335 * Flush all to work around Errata in early athlons regarding 336 * large page flushing. 337 */ 338 __flush_tlb_all(); 339 340 if (cache && boot_cpu_data.x86 >= 4) 341 wbinvd(); 342 } 343 344 static void cpa_flush_all(unsigned long cache) 345 { 346 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 347 348 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 349 } 350 351 static void __cpa_flush_tlb(void *data) 352 { 353 struct cpa_data *cpa = data; 354 unsigned int i; 355 356 for (i = 0; i < cpa->numpages; i++) 357 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 358 } 359 360 static void cpa_flush(struct cpa_data *data, int cache) 361 { 362 struct cpa_data *cpa = data; 363 unsigned int i; 364 365 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 366 367 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 368 cpa_flush_all(cache); 369 return; 370 } 371 372 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 373 flush_tlb_all(); 374 else 375 on_each_cpu(__cpa_flush_tlb, cpa, 1); 376 377 if (!cache) 378 return; 379 380 mb(); 381 for (i = 0; i < cpa->numpages; i++) { 382 unsigned long addr = __cpa_addr(cpa, i); 383 unsigned int level; 384 385 pte_t *pte = lookup_address(addr, &level); 386 387 /* 388 * Only flush present addresses: 389 */ 390 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 391 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 392 } 393 mb(); 394 } 395 396 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 397 unsigned long r2_start, unsigned long r2_end) 398 { 399 return (r1_start <= r2_end && r1_end >= r2_start) || 400 (r2_start <= r1_end && r2_end >= r1_start); 401 } 402 403 #ifdef CONFIG_PCI_BIOS 404 /* 405 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 406 * based config access (CONFIG_PCI_GOBIOS) support. 407 */ 408 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 409 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 410 411 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 412 { 413 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 414 return _PAGE_NX; 415 return 0; 416 } 417 #else 418 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 419 { 420 return 0; 421 } 422 #endif 423 424 /* 425 * The .rodata section needs to be read-only. Using the pfn catches all 426 * aliases. This also includes __ro_after_init, so do not enforce until 427 * kernel_set_to_readonly is true. 428 */ 429 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 430 { 431 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 432 433 /* 434 * Note: __end_rodata is at page aligned and not inclusive, so 435 * subtract 1 to get the last enforced PFN in the rodata area. 436 */ 437 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 438 439 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 440 return _PAGE_RW; 441 return 0; 442 } 443 444 /* 445 * Protect kernel text against becoming non executable by forbidding 446 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 447 * out of which the kernel actually executes. Do not protect the low 448 * mapping. 449 * 450 * This does not cover __inittext since that is gone after boot. 451 */ 452 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 453 { 454 unsigned long t_end = (unsigned long)_etext - 1; 455 unsigned long t_start = (unsigned long)_text; 456 457 if (overlaps(start, end, t_start, t_end)) 458 return _PAGE_NX; 459 return 0; 460 } 461 462 #if defined(CONFIG_X86_64) 463 /* 464 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 465 * kernel text mappings for the large page aligned text, rodata sections 466 * will be always read-only. For the kernel identity mappings covering the 467 * holes caused by this alignment can be anything that user asks. 468 * 469 * This will preserve the large page mappings for kernel text/data at no 470 * extra cost. 471 */ 472 static pgprotval_t protect_kernel_text_ro(unsigned long start, 473 unsigned long end) 474 { 475 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 476 unsigned long t_start = (unsigned long)_text; 477 unsigned int level; 478 479 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 480 return 0; 481 /* 482 * Don't enforce the !RW mapping for the kernel text mapping, if 483 * the current mapping is already using small page mapping. No 484 * need to work hard to preserve large page mappings in this case. 485 * 486 * This also fixes the Linux Xen paravirt guest boot failure caused 487 * by unexpected read-only mappings for kernel identity 488 * mappings. In this paravirt guest case, the kernel text mapping 489 * and the kernel identity mapping share the same page-table pages, 490 * so the protections for kernel text and identity mappings have to 491 * be the same. 492 */ 493 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 494 return _PAGE_RW; 495 return 0; 496 } 497 #else 498 static pgprotval_t protect_kernel_text_ro(unsigned long start, 499 unsigned long end) 500 { 501 return 0; 502 } 503 #endif 504 505 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 506 { 507 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 508 } 509 510 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 511 unsigned long start, unsigned long end, 512 unsigned long pfn, const char *txt) 513 { 514 static const char *lvltxt[] = { 515 [CPA_CONFLICT] = "conflict", 516 [CPA_PROTECT] = "protect", 517 [CPA_DETECT] = "detect", 518 }; 519 520 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 521 return; 522 523 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 524 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 525 (unsigned long long)val); 526 } 527 528 /* 529 * Certain areas of memory on x86 require very specific protection flags, 530 * for example the BIOS area or kernel text. Callers don't always get this 531 * right (again, ioremap() on BIOS memory is not uncommon) so this function 532 * checks and fixes these known static required protection bits. 533 */ 534 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 535 unsigned long pfn, unsigned long npg, 536 unsigned long lpsize, int warnlvl) 537 { 538 pgprotval_t forbidden, res; 539 unsigned long end; 540 541 /* 542 * There is no point in checking RW/NX conflicts when the requested 543 * mapping is setting the page !PRESENT. 544 */ 545 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 546 return prot; 547 548 /* Operate on the virtual address */ 549 end = start + npg * PAGE_SIZE - 1; 550 551 res = protect_kernel_text(start, end); 552 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 553 forbidden = res; 554 555 /* 556 * Special case to preserve a large page. If the change spawns the 557 * full large page mapping then there is no point to split it 558 * up. Happens with ftrace and is going to be removed once ftrace 559 * switched to text_poke(). 560 */ 561 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 562 res = protect_kernel_text_ro(start, end); 563 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 564 forbidden |= res; 565 } 566 567 /* Check the PFN directly */ 568 res = protect_pci_bios(pfn, pfn + npg - 1); 569 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 570 forbidden |= res; 571 572 res = protect_rodata(pfn, pfn + npg - 1); 573 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 574 forbidden |= res; 575 576 return __pgprot(pgprot_val(prot) & ~forbidden); 577 } 578 579 /* 580 * Lookup the page table entry for a virtual address in a specific pgd. 581 * Return a pointer to the entry and the level of the mapping. 582 */ 583 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 584 unsigned int *level) 585 { 586 p4d_t *p4d; 587 pud_t *pud; 588 pmd_t *pmd; 589 590 *level = PG_LEVEL_NONE; 591 592 if (pgd_none(*pgd)) 593 return NULL; 594 595 p4d = p4d_offset(pgd, address); 596 if (p4d_none(*p4d)) 597 return NULL; 598 599 *level = PG_LEVEL_512G; 600 if (p4d_large(*p4d) || !p4d_present(*p4d)) 601 return (pte_t *)p4d; 602 603 pud = pud_offset(p4d, address); 604 if (pud_none(*pud)) 605 return NULL; 606 607 *level = PG_LEVEL_1G; 608 if (pud_large(*pud) || !pud_present(*pud)) 609 return (pte_t *)pud; 610 611 pmd = pmd_offset(pud, address); 612 if (pmd_none(*pmd)) 613 return NULL; 614 615 *level = PG_LEVEL_2M; 616 if (pmd_large(*pmd) || !pmd_present(*pmd)) 617 return (pte_t *)pmd; 618 619 *level = PG_LEVEL_4K; 620 621 return pte_offset_kernel(pmd, address); 622 } 623 624 /* 625 * Lookup the page table entry for a virtual address. Return a pointer 626 * to the entry and the level of the mapping. 627 * 628 * Note: We return pud and pmd either when the entry is marked large 629 * or when the present bit is not set. Otherwise we would return a 630 * pointer to a nonexisting mapping. 631 */ 632 pte_t *lookup_address(unsigned long address, unsigned int *level) 633 { 634 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 635 } 636 EXPORT_SYMBOL_GPL(lookup_address); 637 638 /* 639 * Lookup the page table entry for a virtual address in a given mm. Return a 640 * pointer to the entry and the level of the mapping. 641 */ 642 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, 643 unsigned int *level) 644 { 645 return lookup_address_in_pgd(pgd_offset(mm, address), address, level); 646 } 647 EXPORT_SYMBOL_GPL(lookup_address_in_mm); 648 649 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 650 unsigned int *level) 651 { 652 if (cpa->pgd) 653 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 654 address, level); 655 656 return lookup_address(address, level); 657 } 658 659 /* 660 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 661 * or NULL if not present. 662 */ 663 pmd_t *lookup_pmd_address(unsigned long address) 664 { 665 pgd_t *pgd; 666 p4d_t *p4d; 667 pud_t *pud; 668 669 pgd = pgd_offset_k(address); 670 if (pgd_none(*pgd)) 671 return NULL; 672 673 p4d = p4d_offset(pgd, address); 674 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 675 return NULL; 676 677 pud = pud_offset(p4d, address); 678 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 679 return NULL; 680 681 return pmd_offset(pud, address); 682 } 683 684 /* 685 * This is necessary because __pa() does not work on some 686 * kinds of memory, like vmalloc() or the alloc_remap() 687 * areas on 32-bit NUMA systems. The percpu areas can 688 * end up in this kind of memory, for instance. 689 * 690 * This could be optimized, but it is only intended to be 691 * used at initialization time, and keeping it 692 * unoptimized should increase the testing coverage for 693 * the more obscure platforms. 694 */ 695 phys_addr_t slow_virt_to_phys(void *__virt_addr) 696 { 697 unsigned long virt_addr = (unsigned long)__virt_addr; 698 phys_addr_t phys_addr; 699 unsigned long offset; 700 enum pg_level level; 701 pte_t *pte; 702 703 pte = lookup_address(virt_addr, &level); 704 BUG_ON(!pte); 705 706 /* 707 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 708 * before being left-shifted PAGE_SHIFT bits -- this trick is to 709 * make 32-PAE kernel work correctly. 710 */ 711 switch (level) { 712 case PG_LEVEL_1G: 713 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 714 offset = virt_addr & ~PUD_PAGE_MASK; 715 break; 716 case PG_LEVEL_2M: 717 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 718 offset = virt_addr & ~PMD_PAGE_MASK; 719 break; 720 default: 721 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 722 offset = virt_addr & ~PAGE_MASK; 723 } 724 725 return (phys_addr_t)(phys_addr | offset); 726 } 727 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 728 729 /* 730 * Set the new pmd in all the pgds we know about: 731 */ 732 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 733 { 734 /* change init_mm */ 735 set_pte_atomic(kpte, pte); 736 #ifdef CONFIG_X86_32 737 if (!SHARED_KERNEL_PMD) { 738 struct page *page; 739 740 list_for_each_entry(page, &pgd_list, lru) { 741 pgd_t *pgd; 742 p4d_t *p4d; 743 pud_t *pud; 744 pmd_t *pmd; 745 746 pgd = (pgd_t *)page_address(page) + pgd_index(address); 747 p4d = p4d_offset(pgd, address); 748 pud = pud_offset(p4d, address); 749 pmd = pmd_offset(pud, address); 750 set_pte_atomic((pte_t *)pmd, pte); 751 } 752 } 753 #endif 754 } 755 756 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 757 { 758 /* 759 * _PAGE_GLOBAL means "global page" for present PTEs. 760 * But, it is also used to indicate _PAGE_PROTNONE 761 * for non-present PTEs. 762 * 763 * This ensures that a _PAGE_GLOBAL PTE going from 764 * present to non-present is not confused as 765 * _PAGE_PROTNONE. 766 */ 767 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 768 pgprot_val(prot) &= ~_PAGE_GLOBAL; 769 770 return prot; 771 } 772 773 static int __should_split_large_page(pte_t *kpte, unsigned long address, 774 struct cpa_data *cpa) 775 { 776 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 777 pgprot_t old_prot, new_prot, req_prot, chk_prot; 778 pte_t new_pte, *tmp; 779 enum pg_level level; 780 781 /* 782 * Check for races, another CPU might have split this page 783 * up already: 784 */ 785 tmp = _lookup_address_cpa(cpa, address, &level); 786 if (tmp != kpte) 787 return 1; 788 789 switch (level) { 790 case PG_LEVEL_2M: 791 old_prot = pmd_pgprot(*(pmd_t *)kpte); 792 old_pfn = pmd_pfn(*(pmd_t *)kpte); 793 cpa_inc_2m_checked(); 794 break; 795 case PG_LEVEL_1G: 796 old_prot = pud_pgprot(*(pud_t *)kpte); 797 old_pfn = pud_pfn(*(pud_t *)kpte); 798 cpa_inc_1g_checked(); 799 break; 800 default: 801 return -EINVAL; 802 } 803 804 psize = page_level_size(level); 805 pmask = page_level_mask(level); 806 807 /* 808 * Calculate the number of pages, which fit into this large 809 * page starting at address: 810 */ 811 lpaddr = (address + psize) & pmask; 812 numpages = (lpaddr - address) >> PAGE_SHIFT; 813 if (numpages < cpa->numpages) 814 cpa->numpages = numpages; 815 816 /* 817 * We are safe now. Check whether the new pgprot is the same: 818 * Convert protection attributes to 4k-format, as cpa->mask* are set 819 * up accordingly. 820 */ 821 822 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 823 req_prot = pgprot_large_2_4k(old_prot); 824 825 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 826 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 827 828 /* 829 * req_prot is in format of 4k pages. It must be converted to large 830 * page format: the caching mode includes the PAT bit located at 831 * different bit positions in the two formats. 832 */ 833 req_prot = pgprot_4k_2_large(req_prot); 834 req_prot = pgprot_clear_protnone_bits(req_prot); 835 if (pgprot_val(req_prot) & _PAGE_PRESENT) 836 pgprot_val(req_prot) |= _PAGE_PSE; 837 838 /* 839 * old_pfn points to the large page base pfn. So we need to add the 840 * offset of the virtual address: 841 */ 842 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 843 cpa->pfn = pfn; 844 845 /* 846 * Calculate the large page base address and the number of 4K pages 847 * in the large page 848 */ 849 lpaddr = address & pmask; 850 numpages = psize >> PAGE_SHIFT; 851 852 /* 853 * Sanity check that the existing mapping is correct versus the static 854 * protections. static_protections() guards against !PRESENT, so no 855 * extra conditional required here. 856 */ 857 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 858 psize, CPA_CONFLICT); 859 860 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 861 /* 862 * Split the large page and tell the split code to 863 * enforce static protections. 864 */ 865 cpa->force_static_prot = 1; 866 return 1; 867 } 868 869 /* 870 * Optimization: If the requested pgprot is the same as the current 871 * pgprot, then the large page can be preserved and no updates are 872 * required independent of alignment and length of the requested 873 * range. The above already established that the current pgprot is 874 * correct, which in consequence makes the requested pgprot correct 875 * as well if it is the same. The static protection scan below will 876 * not come to a different conclusion. 877 */ 878 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 879 cpa_inc_lp_sameprot(level); 880 return 0; 881 } 882 883 /* 884 * If the requested range does not cover the full page, split it up 885 */ 886 if (address != lpaddr || cpa->numpages != numpages) 887 return 1; 888 889 /* 890 * Check whether the requested pgprot is conflicting with a static 891 * protection requirement in the large page. 892 */ 893 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 894 psize, CPA_DETECT); 895 896 /* 897 * If there is a conflict, split the large page. 898 * 899 * There used to be a 4k wise evaluation trying really hard to 900 * preserve the large pages, but experimentation has shown, that this 901 * does not help at all. There might be corner cases which would 902 * preserve one large page occasionally, but it's really not worth the 903 * extra code and cycles for the common case. 904 */ 905 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 906 return 1; 907 908 /* All checks passed. Update the large page mapping. */ 909 new_pte = pfn_pte(old_pfn, new_prot); 910 __set_pmd_pte(kpte, address, new_pte); 911 cpa->flags |= CPA_FLUSHTLB; 912 cpa_inc_lp_preserved(level); 913 return 0; 914 } 915 916 static int should_split_large_page(pte_t *kpte, unsigned long address, 917 struct cpa_data *cpa) 918 { 919 int do_split; 920 921 if (cpa->force_split) 922 return 1; 923 924 spin_lock(&pgd_lock); 925 do_split = __should_split_large_page(kpte, address, cpa); 926 spin_unlock(&pgd_lock); 927 928 return do_split; 929 } 930 931 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 932 pgprot_t ref_prot, unsigned long address, 933 unsigned long size) 934 { 935 unsigned int npg = PFN_DOWN(size); 936 pgprot_t prot; 937 938 /* 939 * If should_split_large_page() discovered an inconsistent mapping, 940 * remove the invalid protection in the split mapping. 941 */ 942 if (!cpa->force_static_prot) 943 goto set; 944 945 /* Hand in lpsize = 0 to enforce the protection mechanism */ 946 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 947 948 if (pgprot_val(prot) == pgprot_val(ref_prot)) 949 goto set; 950 951 /* 952 * If this is splitting a PMD, fix it up. PUD splits cannot be 953 * fixed trivially as that would require to rescan the newly 954 * installed PMD mappings after returning from split_large_page() 955 * so an eventual further split can allocate the necessary PTE 956 * pages. Warn for now and revisit it in case this actually 957 * happens. 958 */ 959 if (size == PAGE_SIZE) 960 ref_prot = prot; 961 else 962 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 963 set: 964 set_pte(pte, pfn_pte(pfn, ref_prot)); 965 } 966 967 static int 968 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 969 struct page *base) 970 { 971 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 972 pte_t *pbase = (pte_t *)page_address(base); 973 unsigned int i, level; 974 pgprot_t ref_prot; 975 pte_t *tmp; 976 977 spin_lock(&pgd_lock); 978 /* 979 * Check for races, another CPU might have split this page 980 * up for us already: 981 */ 982 tmp = _lookup_address_cpa(cpa, address, &level); 983 if (tmp != kpte) { 984 spin_unlock(&pgd_lock); 985 return 1; 986 } 987 988 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 989 990 switch (level) { 991 case PG_LEVEL_2M: 992 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 993 /* 994 * Clear PSE (aka _PAGE_PAT) and move 995 * PAT bit to correct position. 996 */ 997 ref_prot = pgprot_large_2_4k(ref_prot); 998 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 999 lpaddr = address & PMD_MASK; 1000 lpinc = PAGE_SIZE; 1001 break; 1002 1003 case PG_LEVEL_1G: 1004 ref_prot = pud_pgprot(*(pud_t *)kpte); 1005 ref_pfn = pud_pfn(*(pud_t *)kpte); 1006 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; 1007 lpaddr = address & PUD_MASK; 1008 lpinc = PMD_SIZE; 1009 /* 1010 * Clear the PSE flags if the PRESENT flag is not set 1011 * otherwise pmd_present/pmd_huge will return true 1012 * even on a non present pmd. 1013 */ 1014 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1015 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1016 break; 1017 1018 default: 1019 spin_unlock(&pgd_lock); 1020 return 1; 1021 } 1022 1023 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1024 1025 /* 1026 * Get the target pfn from the original entry: 1027 */ 1028 pfn = ref_pfn; 1029 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1030 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1031 1032 if (virt_addr_valid(address)) { 1033 unsigned long pfn = PFN_DOWN(__pa(address)); 1034 1035 if (pfn_range_is_mapped(pfn, pfn + 1)) 1036 split_page_count(level); 1037 } 1038 1039 /* 1040 * Install the new, split up pagetable. 1041 * 1042 * We use the standard kernel pagetable protections for the new 1043 * pagetable protections, the actual ptes set above control the 1044 * primary protection behavior: 1045 */ 1046 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1047 1048 /* 1049 * Do a global flush tlb after splitting the large page 1050 * and before we do the actual change page attribute in the PTE. 1051 * 1052 * Without this, we violate the TLB application note, that says: 1053 * "The TLBs may contain both ordinary and large-page 1054 * translations for a 4-KByte range of linear addresses. This 1055 * may occur if software modifies the paging structures so that 1056 * the page size used for the address range changes. If the two 1057 * translations differ with respect to page frame or attributes 1058 * (e.g., permissions), processor behavior is undefined and may 1059 * be implementation-specific." 1060 * 1061 * We do this global tlb flush inside the cpa_lock, so that we 1062 * don't allow any other cpu, with stale tlb entries change the 1063 * page attribute in parallel, that also falls into the 1064 * just split large page entry. 1065 */ 1066 flush_tlb_all(); 1067 spin_unlock(&pgd_lock); 1068 1069 return 0; 1070 } 1071 1072 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1073 unsigned long address) 1074 { 1075 struct page *base; 1076 1077 if (!debug_pagealloc_enabled()) 1078 spin_unlock(&cpa_lock); 1079 base = alloc_pages(GFP_KERNEL, 0); 1080 if (!debug_pagealloc_enabled()) 1081 spin_lock(&cpa_lock); 1082 if (!base) 1083 return -ENOMEM; 1084 1085 if (__split_large_page(cpa, kpte, address, base)) 1086 __free_page(base); 1087 1088 return 0; 1089 } 1090 1091 static bool try_to_free_pte_page(pte_t *pte) 1092 { 1093 int i; 1094 1095 for (i = 0; i < PTRS_PER_PTE; i++) 1096 if (!pte_none(pte[i])) 1097 return false; 1098 1099 free_page((unsigned long)pte); 1100 return true; 1101 } 1102 1103 static bool try_to_free_pmd_page(pmd_t *pmd) 1104 { 1105 int i; 1106 1107 for (i = 0; i < PTRS_PER_PMD; i++) 1108 if (!pmd_none(pmd[i])) 1109 return false; 1110 1111 free_page((unsigned long)pmd); 1112 return true; 1113 } 1114 1115 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1116 { 1117 pte_t *pte = pte_offset_kernel(pmd, start); 1118 1119 while (start < end) { 1120 set_pte(pte, __pte(0)); 1121 1122 start += PAGE_SIZE; 1123 pte++; 1124 } 1125 1126 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1127 pmd_clear(pmd); 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1134 unsigned long start, unsigned long end) 1135 { 1136 if (unmap_pte_range(pmd, start, end)) 1137 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1138 pud_clear(pud); 1139 } 1140 1141 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1142 { 1143 pmd_t *pmd = pmd_offset(pud, start); 1144 1145 /* 1146 * Not on a 2MB page boundary? 1147 */ 1148 if (start & (PMD_SIZE - 1)) { 1149 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1150 unsigned long pre_end = min_t(unsigned long, end, next_page); 1151 1152 __unmap_pmd_range(pud, pmd, start, pre_end); 1153 1154 start = pre_end; 1155 pmd++; 1156 } 1157 1158 /* 1159 * Try to unmap in 2M chunks. 1160 */ 1161 while (end - start >= PMD_SIZE) { 1162 if (pmd_large(*pmd)) 1163 pmd_clear(pmd); 1164 else 1165 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1166 1167 start += PMD_SIZE; 1168 pmd++; 1169 } 1170 1171 /* 1172 * 4K leftovers? 1173 */ 1174 if (start < end) 1175 return __unmap_pmd_range(pud, pmd, start, end); 1176 1177 /* 1178 * Try again to free the PMD page if haven't succeeded above. 1179 */ 1180 if (!pud_none(*pud)) 1181 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1182 pud_clear(pud); 1183 } 1184 1185 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1186 { 1187 pud_t *pud = pud_offset(p4d, start); 1188 1189 /* 1190 * Not on a GB page boundary? 1191 */ 1192 if (start & (PUD_SIZE - 1)) { 1193 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1194 unsigned long pre_end = min_t(unsigned long, end, next_page); 1195 1196 unmap_pmd_range(pud, start, pre_end); 1197 1198 start = pre_end; 1199 pud++; 1200 } 1201 1202 /* 1203 * Try to unmap in 1G chunks? 1204 */ 1205 while (end - start >= PUD_SIZE) { 1206 1207 if (pud_large(*pud)) 1208 pud_clear(pud); 1209 else 1210 unmap_pmd_range(pud, start, start + PUD_SIZE); 1211 1212 start += PUD_SIZE; 1213 pud++; 1214 } 1215 1216 /* 1217 * 2M leftovers? 1218 */ 1219 if (start < end) 1220 unmap_pmd_range(pud, start, end); 1221 1222 /* 1223 * No need to try to free the PUD page because we'll free it in 1224 * populate_pgd's error path 1225 */ 1226 } 1227 1228 static int alloc_pte_page(pmd_t *pmd) 1229 { 1230 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1231 if (!pte) 1232 return -1; 1233 1234 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1235 return 0; 1236 } 1237 1238 static int alloc_pmd_page(pud_t *pud) 1239 { 1240 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1241 if (!pmd) 1242 return -1; 1243 1244 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1245 return 0; 1246 } 1247 1248 static void populate_pte(struct cpa_data *cpa, 1249 unsigned long start, unsigned long end, 1250 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1251 { 1252 pte_t *pte; 1253 1254 pte = pte_offset_kernel(pmd, start); 1255 1256 pgprot = pgprot_clear_protnone_bits(pgprot); 1257 1258 while (num_pages-- && start < end) { 1259 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1260 1261 start += PAGE_SIZE; 1262 cpa->pfn++; 1263 pte++; 1264 } 1265 } 1266 1267 static long populate_pmd(struct cpa_data *cpa, 1268 unsigned long start, unsigned long end, 1269 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1270 { 1271 long cur_pages = 0; 1272 pmd_t *pmd; 1273 pgprot_t pmd_pgprot; 1274 1275 /* 1276 * Not on a 2M boundary? 1277 */ 1278 if (start & (PMD_SIZE - 1)) { 1279 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1280 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1281 1282 pre_end = min_t(unsigned long, pre_end, next_page); 1283 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1284 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1285 1286 /* 1287 * Need a PTE page? 1288 */ 1289 pmd = pmd_offset(pud, start); 1290 if (pmd_none(*pmd)) 1291 if (alloc_pte_page(pmd)) 1292 return -1; 1293 1294 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1295 1296 start = pre_end; 1297 } 1298 1299 /* 1300 * We mapped them all? 1301 */ 1302 if (num_pages == cur_pages) 1303 return cur_pages; 1304 1305 pmd_pgprot = pgprot_4k_2_large(pgprot); 1306 1307 while (end - start >= PMD_SIZE) { 1308 1309 /* 1310 * We cannot use a 1G page so allocate a PMD page if needed. 1311 */ 1312 if (pud_none(*pud)) 1313 if (alloc_pmd_page(pud)) 1314 return -1; 1315 1316 pmd = pmd_offset(pud, start); 1317 1318 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1319 canon_pgprot(pmd_pgprot)))); 1320 1321 start += PMD_SIZE; 1322 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1323 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1324 } 1325 1326 /* 1327 * Map trailing 4K pages. 1328 */ 1329 if (start < end) { 1330 pmd = pmd_offset(pud, start); 1331 if (pmd_none(*pmd)) 1332 if (alloc_pte_page(pmd)) 1333 return -1; 1334 1335 populate_pte(cpa, start, end, num_pages - cur_pages, 1336 pmd, pgprot); 1337 } 1338 return num_pages; 1339 } 1340 1341 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1342 pgprot_t pgprot) 1343 { 1344 pud_t *pud; 1345 unsigned long end; 1346 long cur_pages = 0; 1347 pgprot_t pud_pgprot; 1348 1349 end = start + (cpa->numpages << PAGE_SHIFT); 1350 1351 /* 1352 * Not on a Gb page boundary? => map everything up to it with 1353 * smaller pages. 1354 */ 1355 if (start & (PUD_SIZE - 1)) { 1356 unsigned long pre_end; 1357 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1358 1359 pre_end = min_t(unsigned long, end, next_page); 1360 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1361 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1362 1363 pud = pud_offset(p4d, start); 1364 1365 /* 1366 * Need a PMD page? 1367 */ 1368 if (pud_none(*pud)) 1369 if (alloc_pmd_page(pud)) 1370 return -1; 1371 1372 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1373 pud, pgprot); 1374 if (cur_pages < 0) 1375 return cur_pages; 1376 1377 start = pre_end; 1378 } 1379 1380 /* We mapped them all? */ 1381 if (cpa->numpages == cur_pages) 1382 return cur_pages; 1383 1384 pud = pud_offset(p4d, start); 1385 pud_pgprot = pgprot_4k_2_large(pgprot); 1386 1387 /* 1388 * Map everything starting from the Gb boundary, possibly with 1G pages 1389 */ 1390 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1391 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1392 canon_pgprot(pud_pgprot)))); 1393 1394 start += PUD_SIZE; 1395 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1396 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1397 pud++; 1398 } 1399 1400 /* Map trailing leftover */ 1401 if (start < end) { 1402 long tmp; 1403 1404 pud = pud_offset(p4d, start); 1405 if (pud_none(*pud)) 1406 if (alloc_pmd_page(pud)) 1407 return -1; 1408 1409 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1410 pud, pgprot); 1411 if (tmp < 0) 1412 return cur_pages; 1413 1414 cur_pages += tmp; 1415 } 1416 return cur_pages; 1417 } 1418 1419 /* 1420 * Restrictions for kernel page table do not necessarily apply when mapping in 1421 * an alternate PGD. 1422 */ 1423 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1424 { 1425 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1426 pud_t *pud = NULL; /* shut up gcc */ 1427 p4d_t *p4d; 1428 pgd_t *pgd_entry; 1429 long ret; 1430 1431 pgd_entry = cpa->pgd + pgd_index(addr); 1432 1433 if (pgd_none(*pgd_entry)) { 1434 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1435 if (!p4d) 1436 return -1; 1437 1438 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1439 } 1440 1441 /* 1442 * Allocate a PUD page and hand it down for mapping. 1443 */ 1444 p4d = p4d_offset(pgd_entry, addr); 1445 if (p4d_none(*p4d)) { 1446 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1447 if (!pud) 1448 return -1; 1449 1450 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1451 } 1452 1453 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1454 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1455 1456 ret = populate_pud(cpa, addr, p4d, pgprot); 1457 if (ret < 0) { 1458 /* 1459 * Leave the PUD page in place in case some other CPU or thread 1460 * already found it, but remove any useless entries we just 1461 * added to it. 1462 */ 1463 unmap_pud_range(p4d, addr, 1464 addr + (cpa->numpages << PAGE_SHIFT)); 1465 return ret; 1466 } 1467 1468 cpa->numpages = ret; 1469 return 0; 1470 } 1471 1472 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1473 int primary) 1474 { 1475 if (cpa->pgd) { 1476 /* 1477 * Right now, we only execute this code path when mapping 1478 * the EFI virtual memory map regions, no other users 1479 * provide a ->pgd value. This may change in the future. 1480 */ 1481 return populate_pgd(cpa, vaddr); 1482 } 1483 1484 /* 1485 * Ignore all non primary paths. 1486 */ 1487 if (!primary) { 1488 cpa->numpages = 1; 1489 return 0; 1490 } 1491 1492 /* 1493 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1494 * to have holes. 1495 * Also set numpages to '1' indicating that we processed cpa req for 1496 * one virtual address page and its pfn. TBD: numpages can be set based 1497 * on the initial value and the level returned by lookup_address(). 1498 */ 1499 if (within(vaddr, PAGE_OFFSET, 1500 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1501 cpa->numpages = 1; 1502 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1503 return 0; 1504 1505 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1506 /* Faults in the highmap are OK, so do not warn: */ 1507 return -EFAULT; 1508 } else { 1509 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1510 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1511 *cpa->vaddr); 1512 1513 return -EFAULT; 1514 } 1515 } 1516 1517 static int __change_page_attr(struct cpa_data *cpa, int primary) 1518 { 1519 unsigned long address; 1520 int do_split, err; 1521 unsigned int level; 1522 pte_t *kpte, old_pte; 1523 1524 address = __cpa_addr(cpa, cpa->curpage); 1525 repeat: 1526 kpte = _lookup_address_cpa(cpa, address, &level); 1527 if (!kpte) 1528 return __cpa_process_fault(cpa, address, primary); 1529 1530 old_pte = *kpte; 1531 if (pte_none(old_pte)) 1532 return __cpa_process_fault(cpa, address, primary); 1533 1534 if (level == PG_LEVEL_4K) { 1535 pte_t new_pte; 1536 pgprot_t new_prot = pte_pgprot(old_pte); 1537 unsigned long pfn = pte_pfn(old_pte); 1538 1539 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1540 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1541 1542 cpa_inc_4k_install(); 1543 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1544 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1545 CPA_PROTECT); 1546 1547 new_prot = pgprot_clear_protnone_bits(new_prot); 1548 1549 /* 1550 * We need to keep the pfn from the existing PTE, 1551 * after all we're only going to change it's attributes 1552 * not the memory it points to 1553 */ 1554 new_pte = pfn_pte(pfn, new_prot); 1555 cpa->pfn = pfn; 1556 /* 1557 * Do we really change anything ? 1558 */ 1559 if (pte_val(old_pte) != pte_val(new_pte)) { 1560 set_pte_atomic(kpte, new_pte); 1561 cpa->flags |= CPA_FLUSHTLB; 1562 } 1563 cpa->numpages = 1; 1564 return 0; 1565 } 1566 1567 /* 1568 * Check, whether we can keep the large page intact 1569 * and just change the pte: 1570 */ 1571 do_split = should_split_large_page(kpte, address, cpa); 1572 /* 1573 * When the range fits into the existing large page, 1574 * return. cp->numpages and cpa->tlbflush have been updated in 1575 * try_large_page: 1576 */ 1577 if (do_split <= 0) 1578 return do_split; 1579 1580 /* 1581 * We have to split the large page: 1582 */ 1583 err = split_large_page(cpa, kpte, address); 1584 if (!err) 1585 goto repeat; 1586 1587 return err; 1588 } 1589 1590 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); 1591 1592 static int cpa_process_alias(struct cpa_data *cpa) 1593 { 1594 struct cpa_data alias_cpa; 1595 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1596 unsigned long vaddr; 1597 int ret; 1598 1599 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1600 return 0; 1601 1602 /* 1603 * No need to redo, when the primary call touched the direct 1604 * mapping already: 1605 */ 1606 vaddr = __cpa_addr(cpa, cpa->curpage); 1607 if (!(within(vaddr, PAGE_OFFSET, 1608 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1609 1610 alias_cpa = *cpa; 1611 alias_cpa.vaddr = &laddr; 1612 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1613 alias_cpa.curpage = 0; 1614 1615 cpa->force_flush_all = 1; 1616 1617 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1618 if (ret) 1619 return ret; 1620 } 1621 1622 #ifdef CONFIG_X86_64 1623 /* 1624 * If the primary call didn't touch the high mapping already 1625 * and the physical address is inside the kernel map, we need 1626 * to touch the high mapped kernel as well: 1627 */ 1628 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1629 __cpa_pfn_in_highmap(cpa->pfn)) { 1630 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1631 __START_KERNEL_map - phys_base; 1632 alias_cpa = *cpa; 1633 alias_cpa.vaddr = &temp_cpa_vaddr; 1634 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1635 alias_cpa.curpage = 0; 1636 1637 cpa->force_flush_all = 1; 1638 /* 1639 * The high mapping range is imprecise, so ignore the 1640 * return value. 1641 */ 1642 __change_page_attr_set_clr(&alias_cpa, 0); 1643 } 1644 #endif 1645 1646 return 0; 1647 } 1648 1649 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) 1650 { 1651 unsigned long numpages = cpa->numpages; 1652 unsigned long rempages = numpages; 1653 int ret = 0; 1654 1655 while (rempages) { 1656 /* 1657 * Store the remaining nr of pages for the large page 1658 * preservation check. 1659 */ 1660 cpa->numpages = rempages; 1661 /* for array changes, we can't use large page */ 1662 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1663 cpa->numpages = 1; 1664 1665 if (!debug_pagealloc_enabled()) 1666 spin_lock(&cpa_lock); 1667 ret = __change_page_attr(cpa, checkalias); 1668 if (!debug_pagealloc_enabled()) 1669 spin_unlock(&cpa_lock); 1670 if (ret) 1671 goto out; 1672 1673 if (checkalias) { 1674 ret = cpa_process_alias(cpa); 1675 if (ret) 1676 goto out; 1677 } 1678 1679 /* 1680 * Adjust the number of pages with the result of the 1681 * CPA operation. Either a large page has been 1682 * preserved or a single page update happened. 1683 */ 1684 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1685 rempages -= cpa->numpages; 1686 cpa->curpage += cpa->numpages; 1687 } 1688 1689 out: 1690 /* Restore the original numpages */ 1691 cpa->numpages = numpages; 1692 return ret; 1693 } 1694 1695 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1696 pgprot_t mask_set, pgprot_t mask_clr, 1697 int force_split, int in_flag, 1698 struct page **pages) 1699 { 1700 struct cpa_data cpa; 1701 int ret, cache, checkalias; 1702 1703 memset(&cpa, 0, sizeof(cpa)); 1704 1705 /* 1706 * Check, if we are requested to set a not supported 1707 * feature. Clearing non-supported features is OK. 1708 */ 1709 mask_set = canon_pgprot(mask_set); 1710 1711 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1712 return 0; 1713 1714 /* Ensure we are PAGE_SIZE aligned */ 1715 if (in_flag & CPA_ARRAY) { 1716 int i; 1717 for (i = 0; i < numpages; i++) { 1718 if (addr[i] & ~PAGE_MASK) { 1719 addr[i] &= PAGE_MASK; 1720 WARN_ON_ONCE(1); 1721 } 1722 } 1723 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1724 /* 1725 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1726 * No need to check in that case 1727 */ 1728 if (*addr & ~PAGE_MASK) { 1729 *addr &= PAGE_MASK; 1730 /* 1731 * People should not be passing in unaligned addresses: 1732 */ 1733 WARN_ON_ONCE(1); 1734 } 1735 } 1736 1737 /* Must avoid aliasing mappings in the highmem code */ 1738 kmap_flush_unused(); 1739 1740 vm_unmap_aliases(); 1741 1742 cpa.vaddr = addr; 1743 cpa.pages = pages; 1744 cpa.numpages = numpages; 1745 cpa.mask_set = mask_set; 1746 cpa.mask_clr = mask_clr; 1747 cpa.flags = 0; 1748 cpa.curpage = 0; 1749 cpa.force_split = force_split; 1750 1751 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1752 cpa.flags |= in_flag; 1753 1754 /* No alias checking for _NX bit modifications */ 1755 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; 1756 /* Has caller explicitly disabled alias checking? */ 1757 if (in_flag & CPA_NO_CHECK_ALIAS) 1758 checkalias = 0; 1759 1760 ret = __change_page_attr_set_clr(&cpa, checkalias); 1761 1762 /* 1763 * Check whether we really changed something: 1764 */ 1765 if (!(cpa.flags & CPA_FLUSHTLB)) 1766 goto out; 1767 1768 /* 1769 * No need to flush, when we did not set any of the caching 1770 * attributes: 1771 */ 1772 cache = !!pgprot2cachemode(mask_set); 1773 1774 /* 1775 * On error; flush everything to be sure. 1776 */ 1777 if (ret) { 1778 cpa_flush_all(cache); 1779 goto out; 1780 } 1781 1782 cpa_flush(&cpa, cache); 1783 out: 1784 return ret; 1785 } 1786 1787 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1788 pgprot_t mask, int array) 1789 { 1790 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1791 (array ? CPA_ARRAY : 0), NULL); 1792 } 1793 1794 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1795 pgprot_t mask, int array) 1796 { 1797 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1798 (array ? CPA_ARRAY : 0), NULL); 1799 } 1800 1801 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1802 pgprot_t mask) 1803 { 1804 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1805 CPA_PAGES_ARRAY, pages); 1806 } 1807 1808 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1809 pgprot_t mask) 1810 { 1811 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1812 CPA_PAGES_ARRAY, pages); 1813 } 1814 1815 /* 1816 * _set_memory_prot is an internal helper for callers that have been passed 1817 * a pgprot_t value from upper layers and a reservation has already been taken. 1818 * If you want to set the pgprot to a specific page protocol, use the 1819 * set_memory_xx() functions. 1820 */ 1821 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1822 { 1823 return change_page_attr_set_clr(&addr, numpages, prot, 1824 __pgprot(~pgprot_val(prot)), 0, 0, 1825 NULL); 1826 } 1827 1828 int _set_memory_uc(unsigned long addr, int numpages) 1829 { 1830 /* 1831 * for now UC MINUS. see comments in ioremap() 1832 * If you really need strong UC use ioremap_uc(), but note 1833 * that you cannot override IO areas with set_memory_*() as 1834 * these helpers cannot work with IO memory. 1835 */ 1836 return change_page_attr_set(&addr, numpages, 1837 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1838 0); 1839 } 1840 1841 int set_memory_uc(unsigned long addr, int numpages) 1842 { 1843 int ret; 1844 1845 /* 1846 * for now UC MINUS. see comments in ioremap() 1847 */ 1848 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1849 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1850 if (ret) 1851 goto out_err; 1852 1853 ret = _set_memory_uc(addr, numpages); 1854 if (ret) 1855 goto out_free; 1856 1857 return 0; 1858 1859 out_free: 1860 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1861 out_err: 1862 return ret; 1863 } 1864 EXPORT_SYMBOL(set_memory_uc); 1865 1866 int _set_memory_wc(unsigned long addr, int numpages) 1867 { 1868 int ret; 1869 1870 ret = change_page_attr_set(&addr, numpages, 1871 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1872 0); 1873 if (!ret) { 1874 ret = change_page_attr_set_clr(&addr, numpages, 1875 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1876 __pgprot(_PAGE_CACHE_MASK), 1877 0, 0, NULL); 1878 } 1879 return ret; 1880 } 1881 1882 int set_memory_wc(unsigned long addr, int numpages) 1883 { 1884 int ret; 1885 1886 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1887 _PAGE_CACHE_MODE_WC, NULL); 1888 if (ret) 1889 return ret; 1890 1891 ret = _set_memory_wc(addr, numpages); 1892 if (ret) 1893 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1894 1895 return ret; 1896 } 1897 EXPORT_SYMBOL(set_memory_wc); 1898 1899 int _set_memory_wt(unsigned long addr, int numpages) 1900 { 1901 return change_page_attr_set(&addr, numpages, 1902 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1903 } 1904 1905 int _set_memory_wb(unsigned long addr, int numpages) 1906 { 1907 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1908 return change_page_attr_clear(&addr, numpages, 1909 __pgprot(_PAGE_CACHE_MASK), 0); 1910 } 1911 1912 int set_memory_wb(unsigned long addr, int numpages) 1913 { 1914 int ret; 1915 1916 ret = _set_memory_wb(addr, numpages); 1917 if (ret) 1918 return ret; 1919 1920 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1921 return 0; 1922 } 1923 EXPORT_SYMBOL(set_memory_wb); 1924 1925 int set_memory_x(unsigned long addr, int numpages) 1926 { 1927 if (!(__supported_pte_mask & _PAGE_NX)) 1928 return 0; 1929 1930 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 1931 } 1932 1933 int set_memory_nx(unsigned long addr, int numpages) 1934 { 1935 if (!(__supported_pte_mask & _PAGE_NX)) 1936 return 0; 1937 1938 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 1939 } 1940 1941 int set_memory_ro(unsigned long addr, int numpages) 1942 { 1943 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 1944 } 1945 1946 int set_memory_rw(unsigned long addr, int numpages) 1947 { 1948 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 1949 } 1950 1951 int set_memory_np(unsigned long addr, int numpages) 1952 { 1953 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 1954 } 1955 1956 int set_memory_np_noalias(unsigned long addr, int numpages) 1957 { 1958 int cpa_flags = CPA_NO_CHECK_ALIAS; 1959 1960 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1961 __pgprot(_PAGE_PRESENT), 0, 1962 cpa_flags, NULL); 1963 } 1964 1965 int set_memory_4k(unsigned long addr, int numpages) 1966 { 1967 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1968 __pgprot(0), 1, 0, NULL); 1969 } 1970 1971 int set_memory_nonglobal(unsigned long addr, int numpages) 1972 { 1973 return change_page_attr_clear(&addr, numpages, 1974 __pgprot(_PAGE_GLOBAL), 0); 1975 } 1976 1977 int set_memory_global(unsigned long addr, int numpages) 1978 { 1979 return change_page_attr_set(&addr, numpages, 1980 __pgprot(_PAGE_GLOBAL), 0); 1981 } 1982 1983 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 1984 { 1985 struct cpa_data cpa; 1986 int ret; 1987 1988 /* Nothing to do if memory encryption is not active */ 1989 if (!mem_encrypt_active()) 1990 return 0; 1991 1992 /* Should not be working on unaligned addresses */ 1993 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 1994 addr &= PAGE_MASK; 1995 1996 memset(&cpa, 0, sizeof(cpa)); 1997 cpa.vaddr = &addr; 1998 cpa.numpages = numpages; 1999 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0); 2000 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC); 2001 cpa.pgd = init_mm.pgd; 2002 2003 /* Must avoid aliasing mappings in the highmem code */ 2004 kmap_flush_unused(); 2005 vm_unmap_aliases(); 2006 2007 /* 2008 * Before changing the encryption attribute, we need to flush caches. 2009 */ 2010 cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT)); 2011 2012 ret = __change_page_attr_set_clr(&cpa, 1); 2013 2014 /* 2015 * After changing the encryption attribute, we need to flush TLBs again 2016 * in case any speculative TLB caching occurred (but no need to flush 2017 * caches again). We could just use cpa_flush_all(), but in case TLB 2018 * flushing gets optimized in the cpa_flush() path use the same logic 2019 * as above. 2020 */ 2021 cpa_flush(&cpa, 0); 2022 2023 return ret; 2024 } 2025 2026 int set_memory_encrypted(unsigned long addr, int numpages) 2027 { 2028 return __set_memory_enc_dec(addr, numpages, true); 2029 } 2030 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2031 2032 int set_memory_decrypted(unsigned long addr, int numpages) 2033 { 2034 return __set_memory_enc_dec(addr, numpages, false); 2035 } 2036 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2037 2038 int set_pages_uc(struct page *page, int numpages) 2039 { 2040 unsigned long addr = (unsigned long)page_address(page); 2041 2042 return set_memory_uc(addr, numpages); 2043 } 2044 EXPORT_SYMBOL(set_pages_uc); 2045 2046 static int _set_pages_array(struct page **pages, int numpages, 2047 enum page_cache_mode new_type) 2048 { 2049 unsigned long start; 2050 unsigned long end; 2051 enum page_cache_mode set_type; 2052 int i; 2053 int free_idx; 2054 int ret; 2055 2056 for (i = 0; i < numpages; i++) { 2057 if (PageHighMem(pages[i])) 2058 continue; 2059 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2060 end = start + PAGE_SIZE; 2061 if (memtype_reserve(start, end, new_type, NULL)) 2062 goto err_out; 2063 } 2064 2065 /* If WC, set to UC- first and then WC */ 2066 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2067 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2068 2069 ret = cpa_set_pages_array(pages, numpages, 2070 cachemode2pgprot(set_type)); 2071 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2072 ret = change_page_attr_set_clr(NULL, numpages, 2073 cachemode2pgprot( 2074 _PAGE_CACHE_MODE_WC), 2075 __pgprot(_PAGE_CACHE_MASK), 2076 0, CPA_PAGES_ARRAY, pages); 2077 if (ret) 2078 goto err_out; 2079 return 0; /* Success */ 2080 err_out: 2081 free_idx = i; 2082 for (i = 0; i < free_idx; i++) { 2083 if (PageHighMem(pages[i])) 2084 continue; 2085 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2086 end = start + PAGE_SIZE; 2087 memtype_free(start, end); 2088 } 2089 return -EINVAL; 2090 } 2091 2092 int set_pages_array_uc(struct page **pages, int numpages) 2093 { 2094 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2095 } 2096 EXPORT_SYMBOL(set_pages_array_uc); 2097 2098 int set_pages_array_wc(struct page **pages, int numpages) 2099 { 2100 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2101 } 2102 EXPORT_SYMBOL(set_pages_array_wc); 2103 2104 int set_pages_array_wt(struct page **pages, int numpages) 2105 { 2106 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT); 2107 } 2108 EXPORT_SYMBOL_GPL(set_pages_array_wt); 2109 2110 int set_pages_wb(struct page *page, int numpages) 2111 { 2112 unsigned long addr = (unsigned long)page_address(page); 2113 2114 return set_memory_wb(addr, numpages); 2115 } 2116 EXPORT_SYMBOL(set_pages_wb); 2117 2118 int set_pages_array_wb(struct page **pages, int numpages) 2119 { 2120 int retval; 2121 unsigned long start; 2122 unsigned long end; 2123 int i; 2124 2125 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2126 retval = cpa_clear_pages_array(pages, numpages, 2127 __pgprot(_PAGE_CACHE_MASK)); 2128 if (retval) 2129 return retval; 2130 2131 for (i = 0; i < numpages; i++) { 2132 if (PageHighMem(pages[i])) 2133 continue; 2134 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2135 end = start + PAGE_SIZE; 2136 memtype_free(start, end); 2137 } 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(set_pages_array_wb); 2142 2143 int set_pages_ro(struct page *page, int numpages) 2144 { 2145 unsigned long addr = (unsigned long)page_address(page); 2146 2147 return set_memory_ro(addr, numpages); 2148 } 2149 2150 int set_pages_rw(struct page *page, int numpages) 2151 { 2152 unsigned long addr = (unsigned long)page_address(page); 2153 2154 return set_memory_rw(addr, numpages); 2155 } 2156 2157 static int __set_pages_p(struct page *page, int numpages) 2158 { 2159 unsigned long tempaddr = (unsigned long) page_address(page); 2160 struct cpa_data cpa = { .vaddr = &tempaddr, 2161 .pgd = NULL, 2162 .numpages = numpages, 2163 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2164 .mask_clr = __pgprot(0), 2165 .flags = 0}; 2166 2167 /* 2168 * No alias checking needed for setting present flag. otherwise, 2169 * we may need to break large pages for 64-bit kernel text 2170 * mappings (this adds to complexity if we want to do this from 2171 * atomic context especially). Let's keep it simple! 2172 */ 2173 return __change_page_attr_set_clr(&cpa, 0); 2174 } 2175 2176 static int __set_pages_np(struct page *page, int numpages) 2177 { 2178 unsigned long tempaddr = (unsigned long) page_address(page); 2179 struct cpa_data cpa = { .vaddr = &tempaddr, 2180 .pgd = NULL, 2181 .numpages = numpages, 2182 .mask_set = __pgprot(0), 2183 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2184 .flags = 0}; 2185 2186 /* 2187 * No alias checking needed for setting not present flag. otherwise, 2188 * we may need to break large pages for 64-bit kernel text 2189 * mappings (this adds to complexity if we want to do this from 2190 * atomic context especially). Let's keep it simple! 2191 */ 2192 return __change_page_attr_set_clr(&cpa, 0); 2193 } 2194 2195 int set_direct_map_invalid_noflush(struct page *page) 2196 { 2197 return __set_pages_np(page, 1); 2198 } 2199 2200 int set_direct_map_default_noflush(struct page *page) 2201 { 2202 return __set_pages_p(page, 1); 2203 } 2204 2205 #ifdef CONFIG_DEBUG_PAGEALLOC 2206 void __kernel_map_pages(struct page *page, int numpages, int enable) 2207 { 2208 if (PageHighMem(page)) 2209 return; 2210 if (!enable) { 2211 debug_check_no_locks_freed(page_address(page), 2212 numpages * PAGE_SIZE); 2213 } 2214 2215 /* 2216 * The return value is ignored as the calls cannot fail. 2217 * Large pages for identity mappings are not used at boot time 2218 * and hence no memory allocations during large page split. 2219 */ 2220 if (enable) 2221 __set_pages_p(page, numpages); 2222 else 2223 __set_pages_np(page, numpages); 2224 2225 /* 2226 * We should perform an IPI and flush all tlbs, 2227 * but that can deadlock->flush only current cpu. 2228 * Preemption needs to be disabled around __flush_tlb_all() due to 2229 * CR3 reload in __native_flush_tlb(). 2230 */ 2231 preempt_disable(); 2232 __flush_tlb_all(); 2233 preempt_enable(); 2234 2235 arch_flush_lazy_mmu_mode(); 2236 } 2237 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2238 2239 bool kernel_page_present(struct page *page) 2240 { 2241 unsigned int level; 2242 pte_t *pte; 2243 2244 if (PageHighMem(page)) 2245 return false; 2246 2247 pte = lookup_address((unsigned long)page_address(page), &level); 2248 return (pte_val(*pte) & _PAGE_PRESENT); 2249 } 2250 2251 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2252 unsigned numpages, unsigned long page_flags) 2253 { 2254 int retval = -EINVAL; 2255 2256 struct cpa_data cpa = { 2257 .vaddr = &address, 2258 .pfn = pfn, 2259 .pgd = pgd, 2260 .numpages = numpages, 2261 .mask_set = __pgprot(0), 2262 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2263 .flags = 0, 2264 }; 2265 2266 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2267 2268 if (!(__supported_pte_mask & _PAGE_NX)) 2269 goto out; 2270 2271 if (!(page_flags & _PAGE_ENC)) 2272 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2273 2274 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2275 2276 retval = __change_page_attr_set_clr(&cpa, 0); 2277 __flush_tlb_all(); 2278 2279 out: 2280 return retval; 2281 } 2282 2283 /* 2284 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2285 * function shouldn't be used in an SMP environment. Presently, it's used only 2286 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2287 */ 2288 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2289 unsigned long numpages) 2290 { 2291 int retval; 2292 2293 /* 2294 * The typical sequence for unmapping is to find a pte through 2295 * lookup_address_in_pgd() (ideally, it should never return NULL because 2296 * the address is already mapped) and change it's protections. As pfn is 2297 * the *target* of a mapping, it's not useful while unmapping. 2298 */ 2299 struct cpa_data cpa = { 2300 .vaddr = &address, 2301 .pfn = 0, 2302 .pgd = pgd, 2303 .numpages = numpages, 2304 .mask_set = __pgprot(0), 2305 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2306 .flags = 0, 2307 }; 2308 2309 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2310 2311 retval = __change_page_attr_set_clr(&cpa, 0); 2312 __flush_tlb_all(); 2313 2314 return retval; 2315 } 2316 2317 /* 2318 * The testcases use internal knowledge of the implementation that shouldn't 2319 * be exposed to the rest of the kernel. Include these directly here. 2320 */ 2321 #ifdef CONFIG_CPA_DEBUG 2322 #include "cpa-test.c" 2323 #endif 2324