xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 
20 #include <asm/e820/api.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <linux/uaccess.h>
26 #include <asm/pgalloc.h>
27 #include <asm/proto.h>
28 #include <asm/memtype.h>
29 #include <asm/set_memory.h>
30 
31 #include "../mm_internal.h"
32 
33 /*
34  * The current flushing context - we pass it instead of 5 arguments:
35  */
36 struct cpa_data {
37 	unsigned long	*vaddr;
38 	pgd_t		*pgd;
39 	pgprot_t	mask_set;
40 	pgprot_t	mask_clr;
41 	unsigned long	numpages;
42 	unsigned long	curpage;
43 	unsigned long	pfn;
44 	unsigned int	flags;
45 	unsigned int	force_split		: 1,
46 			force_static_prot	: 1,
47 			force_flush_all		: 1;
48 	struct page	**pages;
49 };
50 
51 enum cpa_warn {
52 	CPA_CONFLICT,
53 	CPA_PROTECT,
54 	CPA_DETECT,
55 };
56 
57 static const int cpa_warn_level = CPA_PROTECT;
58 
59 /*
60  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
61  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
62  * entries change the page attribute in parallel to some other cpu
63  * splitting a large page entry along with changing the attribute.
64  */
65 static DEFINE_SPINLOCK(cpa_lock);
66 
67 #define CPA_FLUSHTLB 1
68 #define CPA_ARRAY 2
69 #define CPA_PAGES_ARRAY 4
70 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
71 
72 #ifdef CONFIG_PROC_FS
73 static unsigned long direct_pages_count[PG_LEVEL_NUM];
74 
75 void update_page_count(int level, unsigned long pages)
76 {
77 	/* Protect against CPA */
78 	spin_lock(&pgd_lock);
79 	direct_pages_count[level] += pages;
80 	spin_unlock(&pgd_lock);
81 }
82 
83 static void split_page_count(int level)
84 {
85 	if (direct_pages_count[level] == 0)
86 		return;
87 
88 	direct_pages_count[level]--;
89 	direct_pages_count[level - 1] += PTRS_PER_PTE;
90 }
91 
92 void arch_report_meminfo(struct seq_file *m)
93 {
94 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
95 			direct_pages_count[PG_LEVEL_4K] << 2);
96 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
97 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
98 			direct_pages_count[PG_LEVEL_2M] << 11);
99 #else
100 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
101 			direct_pages_count[PG_LEVEL_2M] << 12);
102 #endif
103 	if (direct_gbpages)
104 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
105 			direct_pages_count[PG_LEVEL_1G] << 20);
106 }
107 #else
108 static inline void split_page_count(int level) { }
109 #endif
110 
111 #ifdef CONFIG_X86_CPA_STATISTICS
112 
113 static unsigned long cpa_1g_checked;
114 static unsigned long cpa_1g_sameprot;
115 static unsigned long cpa_1g_preserved;
116 static unsigned long cpa_2m_checked;
117 static unsigned long cpa_2m_sameprot;
118 static unsigned long cpa_2m_preserved;
119 static unsigned long cpa_4k_install;
120 
121 static inline void cpa_inc_1g_checked(void)
122 {
123 	cpa_1g_checked++;
124 }
125 
126 static inline void cpa_inc_2m_checked(void)
127 {
128 	cpa_2m_checked++;
129 }
130 
131 static inline void cpa_inc_4k_install(void)
132 {
133 	cpa_4k_install++;
134 }
135 
136 static inline void cpa_inc_lp_sameprot(int level)
137 {
138 	if (level == PG_LEVEL_1G)
139 		cpa_1g_sameprot++;
140 	else
141 		cpa_2m_sameprot++;
142 }
143 
144 static inline void cpa_inc_lp_preserved(int level)
145 {
146 	if (level == PG_LEVEL_1G)
147 		cpa_1g_preserved++;
148 	else
149 		cpa_2m_preserved++;
150 }
151 
152 static int cpastats_show(struct seq_file *m, void *p)
153 {
154 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
155 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
156 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
157 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
158 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
159 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
160 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
161 	return 0;
162 }
163 
164 static int cpastats_open(struct inode *inode, struct file *file)
165 {
166 	return single_open(file, cpastats_show, NULL);
167 }
168 
169 static const struct file_operations cpastats_fops = {
170 	.open		= cpastats_open,
171 	.read		= seq_read,
172 	.llseek		= seq_lseek,
173 	.release	= single_release,
174 };
175 
176 static int __init cpa_stats_init(void)
177 {
178 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
179 			    &cpastats_fops);
180 	return 0;
181 }
182 late_initcall(cpa_stats_init);
183 #else
184 static inline void cpa_inc_1g_checked(void) { }
185 static inline void cpa_inc_2m_checked(void) { }
186 static inline void cpa_inc_4k_install(void) { }
187 static inline void cpa_inc_lp_sameprot(int level) { }
188 static inline void cpa_inc_lp_preserved(int level) { }
189 #endif
190 
191 
192 static inline int
193 within(unsigned long addr, unsigned long start, unsigned long end)
194 {
195 	return addr >= start && addr < end;
196 }
197 
198 static inline int
199 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
200 {
201 	return addr >= start && addr <= end;
202 }
203 
204 #ifdef CONFIG_X86_64
205 
206 static inline unsigned long highmap_start_pfn(void)
207 {
208 	return __pa_symbol(_text) >> PAGE_SHIFT;
209 }
210 
211 static inline unsigned long highmap_end_pfn(void)
212 {
213 	/* Do not reference physical address outside the kernel. */
214 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
215 }
216 
217 static bool __cpa_pfn_in_highmap(unsigned long pfn)
218 {
219 	/*
220 	 * Kernel text has an alias mapping at a high address, known
221 	 * here as "highmap".
222 	 */
223 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
224 }
225 
226 #else
227 
228 static bool __cpa_pfn_in_highmap(unsigned long pfn)
229 {
230 	/* There is no highmap on 32-bit */
231 	return false;
232 }
233 
234 #endif
235 
236 /*
237  * See set_mce_nospec().
238  *
239  * Machine check recovery code needs to change cache mode of poisoned pages to
240  * UC to avoid speculative access logging another error. But passing the
241  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
242  * speculative access. So we cheat and flip the top bit of the address. This
243  * works fine for the code that updates the page tables. But at the end of the
244  * process we need to flush the TLB and cache and the non-canonical address
245  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
246  *
247  * But in the common case we already have a canonical address. This code
248  * will fix the top bit if needed and is a no-op otherwise.
249  */
250 static inline unsigned long fix_addr(unsigned long addr)
251 {
252 #ifdef CONFIG_X86_64
253 	return (long)(addr << 1) >> 1;
254 #else
255 	return addr;
256 #endif
257 }
258 
259 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
260 {
261 	if (cpa->flags & CPA_PAGES_ARRAY) {
262 		struct page *page = cpa->pages[idx];
263 
264 		if (unlikely(PageHighMem(page)))
265 			return 0;
266 
267 		return (unsigned long)page_address(page);
268 	}
269 
270 	if (cpa->flags & CPA_ARRAY)
271 		return cpa->vaddr[idx];
272 
273 	return *cpa->vaddr + idx * PAGE_SIZE;
274 }
275 
276 /*
277  * Flushing functions
278  */
279 
280 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
281 {
282 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
283 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
284 	void *vend = vaddr + size;
285 
286 	if (p >= vend)
287 		return;
288 
289 	for (; p < vend; p += clflush_size)
290 		clflushopt(p);
291 }
292 
293 /**
294  * clflush_cache_range - flush a cache range with clflush
295  * @vaddr:	virtual start address
296  * @size:	number of bytes to flush
297  *
298  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
299  * SFENCE to avoid ordering issues.
300  */
301 void clflush_cache_range(void *vaddr, unsigned int size)
302 {
303 	mb();
304 	clflush_cache_range_opt(vaddr, size);
305 	mb();
306 }
307 EXPORT_SYMBOL_GPL(clflush_cache_range);
308 
309 #ifdef CONFIG_ARCH_HAS_PMEM_API
310 void arch_invalidate_pmem(void *addr, size_t size)
311 {
312 	clflush_cache_range(addr, size);
313 }
314 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
315 #endif
316 
317 static void __cpa_flush_all(void *arg)
318 {
319 	unsigned long cache = (unsigned long)arg;
320 
321 	/*
322 	 * Flush all to work around Errata in early athlons regarding
323 	 * large page flushing.
324 	 */
325 	__flush_tlb_all();
326 
327 	if (cache && boot_cpu_data.x86 >= 4)
328 		wbinvd();
329 }
330 
331 static void cpa_flush_all(unsigned long cache)
332 {
333 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
334 
335 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
336 }
337 
338 static void __cpa_flush_tlb(void *data)
339 {
340 	struct cpa_data *cpa = data;
341 	unsigned int i;
342 
343 	for (i = 0; i < cpa->numpages; i++)
344 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
345 }
346 
347 static void cpa_flush(struct cpa_data *data, int cache)
348 {
349 	struct cpa_data *cpa = data;
350 	unsigned int i;
351 
352 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
353 
354 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
355 		cpa_flush_all(cache);
356 		return;
357 	}
358 
359 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
360 		flush_tlb_all();
361 	else
362 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
363 
364 	if (!cache)
365 		return;
366 
367 	mb();
368 	for (i = 0; i < cpa->numpages; i++) {
369 		unsigned long addr = __cpa_addr(cpa, i);
370 		unsigned int level;
371 
372 		pte_t *pte = lookup_address(addr, &level);
373 
374 		/*
375 		 * Only flush present addresses:
376 		 */
377 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
378 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
379 	}
380 	mb();
381 }
382 
383 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
384 		     unsigned long r2_start, unsigned long r2_end)
385 {
386 	return (r1_start <= r2_end && r1_end >= r2_start) ||
387 		(r2_start <= r1_end && r2_end >= r1_start);
388 }
389 
390 #ifdef CONFIG_PCI_BIOS
391 /*
392  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
393  * based config access (CONFIG_PCI_GOBIOS) support.
394  */
395 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
396 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
397 
398 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
399 {
400 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
401 		return _PAGE_NX;
402 	return 0;
403 }
404 #else
405 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
406 {
407 	return 0;
408 }
409 #endif
410 
411 /*
412  * The .rodata section needs to be read-only. Using the pfn catches all
413  * aliases.  This also includes __ro_after_init, so do not enforce until
414  * kernel_set_to_readonly is true.
415  */
416 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
417 {
418 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
419 
420 	/*
421 	 * Note: __end_rodata is at page aligned and not inclusive, so
422 	 * subtract 1 to get the last enforced PFN in the rodata area.
423 	 */
424 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
425 
426 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
427 		return _PAGE_RW;
428 	return 0;
429 }
430 
431 /*
432  * Protect kernel text against becoming non executable by forbidding
433  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
434  * out of which the kernel actually executes.  Do not protect the low
435  * mapping.
436  *
437  * This does not cover __inittext since that is gone after boot.
438  */
439 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
440 {
441 	unsigned long t_end = (unsigned long)_etext - 1;
442 	unsigned long t_start = (unsigned long)_text;
443 
444 	if (overlaps(start, end, t_start, t_end))
445 		return _PAGE_NX;
446 	return 0;
447 }
448 
449 #if defined(CONFIG_X86_64)
450 /*
451  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
452  * kernel text mappings for the large page aligned text, rodata sections
453  * will be always read-only. For the kernel identity mappings covering the
454  * holes caused by this alignment can be anything that user asks.
455  *
456  * This will preserve the large page mappings for kernel text/data at no
457  * extra cost.
458  */
459 static pgprotval_t protect_kernel_text_ro(unsigned long start,
460 					  unsigned long end)
461 {
462 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
463 	unsigned long t_start = (unsigned long)_text;
464 	unsigned int level;
465 
466 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
467 		return 0;
468 	/*
469 	 * Don't enforce the !RW mapping for the kernel text mapping, if
470 	 * the current mapping is already using small page mapping.  No
471 	 * need to work hard to preserve large page mappings in this case.
472 	 *
473 	 * This also fixes the Linux Xen paravirt guest boot failure caused
474 	 * by unexpected read-only mappings for kernel identity
475 	 * mappings. In this paravirt guest case, the kernel text mapping
476 	 * and the kernel identity mapping share the same page-table pages,
477 	 * so the protections for kernel text and identity mappings have to
478 	 * be the same.
479 	 */
480 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
481 		return _PAGE_RW;
482 	return 0;
483 }
484 #else
485 static pgprotval_t protect_kernel_text_ro(unsigned long start,
486 					  unsigned long end)
487 {
488 	return 0;
489 }
490 #endif
491 
492 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
493 {
494 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
495 }
496 
497 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
498 				  unsigned long start, unsigned long end,
499 				  unsigned long pfn, const char *txt)
500 {
501 	static const char *lvltxt[] = {
502 		[CPA_CONFLICT]	= "conflict",
503 		[CPA_PROTECT]	= "protect",
504 		[CPA_DETECT]	= "detect",
505 	};
506 
507 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
508 		return;
509 
510 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
511 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
512 		(unsigned long long)val);
513 }
514 
515 /*
516  * Certain areas of memory on x86 require very specific protection flags,
517  * for example the BIOS area or kernel text. Callers don't always get this
518  * right (again, ioremap() on BIOS memory is not uncommon) so this function
519  * checks and fixes these known static required protection bits.
520  */
521 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
522 					  unsigned long pfn, unsigned long npg,
523 					  unsigned long lpsize, int warnlvl)
524 {
525 	pgprotval_t forbidden, res;
526 	unsigned long end;
527 
528 	/*
529 	 * There is no point in checking RW/NX conflicts when the requested
530 	 * mapping is setting the page !PRESENT.
531 	 */
532 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
533 		return prot;
534 
535 	/* Operate on the virtual address */
536 	end = start + npg * PAGE_SIZE - 1;
537 
538 	res = protect_kernel_text(start, end);
539 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
540 	forbidden = res;
541 
542 	/*
543 	 * Special case to preserve a large page. If the change spawns the
544 	 * full large page mapping then there is no point to split it
545 	 * up. Happens with ftrace and is going to be removed once ftrace
546 	 * switched to text_poke().
547 	 */
548 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
549 		res = protect_kernel_text_ro(start, end);
550 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
551 		forbidden |= res;
552 	}
553 
554 	/* Check the PFN directly */
555 	res = protect_pci_bios(pfn, pfn + npg - 1);
556 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
557 	forbidden |= res;
558 
559 	res = protect_rodata(pfn, pfn + npg - 1);
560 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
561 	forbidden |= res;
562 
563 	return __pgprot(pgprot_val(prot) & ~forbidden);
564 }
565 
566 /*
567  * Lookup the page table entry for a virtual address in a specific pgd.
568  * Return a pointer to the entry and the level of the mapping.
569  */
570 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
571 			     unsigned int *level)
572 {
573 	p4d_t *p4d;
574 	pud_t *pud;
575 	pmd_t *pmd;
576 
577 	*level = PG_LEVEL_NONE;
578 
579 	if (pgd_none(*pgd))
580 		return NULL;
581 
582 	p4d = p4d_offset(pgd, address);
583 	if (p4d_none(*p4d))
584 		return NULL;
585 
586 	*level = PG_LEVEL_512G;
587 	if (p4d_large(*p4d) || !p4d_present(*p4d))
588 		return (pte_t *)p4d;
589 
590 	pud = pud_offset(p4d, address);
591 	if (pud_none(*pud))
592 		return NULL;
593 
594 	*level = PG_LEVEL_1G;
595 	if (pud_large(*pud) || !pud_present(*pud))
596 		return (pte_t *)pud;
597 
598 	pmd = pmd_offset(pud, address);
599 	if (pmd_none(*pmd))
600 		return NULL;
601 
602 	*level = PG_LEVEL_2M;
603 	if (pmd_large(*pmd) || !pmd_present(*pmd))
604 		return (pte_t *)pmd;
605 
606 	*level = PG_LEVEL_4K;
607 
608 	return pte_offset_kernel(pmd, address);
609 }
610 
611 /*
612  * Lookup the page table entry for a virtual address. Return a pointer
613  * to the entry and the level of the mapping.
614  *
615  * Note: We return pud and pmd either when the entry is marked large
616  * or when the present bit is not set. Otherwise we would return a
617  * pointer to a nonexisting mapping.
618  */
619 pte_t *lookup_address(unsigned long address, unsigned int *level)
620 {
621 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
622 }
623 EXPORT_SYMBOL_GPL(lookup_address);
624 
625 /*
626  * Lookup the page table entry for a virtual address in a given mm. Return a
627  * pointer to the entry and the level of the mapping.
628  */
629 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
630 			    unsigned int *level)
631 {
632 	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
633 }
634 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
635 
636 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
637 				  unsigned int *level)
638 {
639 	if (cpa->pgd)
640 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
641 					       address, level);
642 
643 	return lookup_address(address, level);
644 }
645 
646 /*
647  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
648  * or NULL if not present.
649  */
650 pmd_t *lookup_pmd_address(unsigned long address)
651 {
652 	pgd_t *pgd;
653 	p4d_t *p4d;
654 	pud_t *pud;
655 
656 	pgd = pgd_offset_k(address);
657 	if (pgd_none(*pgd))
658 		return NULL;
659 
660 	p4d = p4d_offset(pgd, address);
661 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
662 		return NULL;
663 
664 	pud = pud_offset(p4d, address);
665 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
666 		return NULL;
667 
668 	return pmd_offset(pud, address);
669 }
670 
671 /*
672  * This is necessary because __pa() does not work on some
673  * kinds of memory, like vmalloc() or the alloc_remap()
674  * areas on 32-bit NUMA systems.  The percpu areas can
675  * end up in this kind of memory, for instance.
676  *
677  * This could be optimized, but it is only intended to be
678  * used at inititalization time, and keeping it
679  * unoptimized should increase the testing coverage for
680  * the more obscure platforms.
681  */
682 phys_addr_t slow_virt_to_phys(void *__virt_addr)
683 {
684 	unsigned long virt_addr = (unsigned long)__virt_addr;
685 	phys_addr_t phys_addr;
686 	unsigned long offset;
687 	enum pg_level level;
688 	pte_t *pte;
689 
690 	pte = lookup_address(virt_addr, &level);
691 	BUG_ON(!pte);
692 
693 	/*
694 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
695 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
696 	 * make 32-PAE kernel work correctly.
697 	 */
698 	switch (level) {
699 	case PG_LEVEL_1G:
700 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
701 		offset = virt_addr & ~PUD_PAGE_MASK;
702 		break;
703 	case PG_LEVEL_2M:
704 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
705 		offset = virt_addr & ~PMD_PAGE_MASK;
706 		break;
707 	default:
708 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
709 		offset = virt_addr & ~PAGE_MASK;
710 	}
711 
712 	return (phys_addr_t)(phys_addr | offset);
713 }
714 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
715 
716 /*
717  * Set the new pmd in all the pgds we know about:
718  */
719 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
720 {
721 	/* change init_mm */
722 	set_pte_atomic(kpte, pte);
723 #ifdef CONFIG_X86_32
724 	if (!SHARED_KERNEL_PMD) {
725 		struct page *page;
726 
727 		list_for_each_entry(page, &pgd_list, lru) {
728 			pgd_t *pgd;
729 			p4d_t *p4d;
730 			pud_t *pud;
731 			pmd_t *pmd;
732 
733 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
734 			p4d = p4d_offset(pgd, address);
735 			pud = pud_offset(p4d, address);
736 			pmd = pmd_offset(pud, address);
737 			set_pte_atomic((pte_t *)pmd, pte);
738 		}
739 	}
740 #endif
741 }
742 
743 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
744 {
745 	/*
746 	 * _PAGE_GLOBAL means "global page" for present PTEs.
747 	 * But, it is also used to indicate _PAGE_PROTNONE
748 	 * for non-present PTEs.
749 	 *
750 	 * This ensures that a _PAGE_GLOBAL PTE going from
751 	 * present to non-present is not confused as
752 	 * _PAGE_PROTNONE.
753 	 */
754 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
755 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
756 
757 	return prot;
758 }
759 
760 static int __should_split_large_page(pte_t *kpte, unsigned long address,
761 				     struct cpa_data *cpa)
762 {
763 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
764 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
765 	pte_t new_pte, *tmp;
766 	enum pg_level level;
767 
768 	/*
769 	 * Check for races, another CPU might have split this page
770 	 * up already:
771 	 */
772 	tmp = _lookup_address_cpa(cpa, address, &level);
773 	if (tmp != kpte)
774 		return 1;
775 
776 	switch (level) {
777 	case PG_LEVEL_2M:
778 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
779 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
780 		cpa_inc_2m_checked();
781 		break;
782 	case PG_LEVEL_1G:
783 		old_prot = pud_pgprot(*(pud_t *)kpte);
784 		old_pfn = pud_pfn(*(pud_t *)kpte);
785 		cpa_inc_1g_checked();
786 		break;
787 	default:
788 		return -EINVAL;
789 	}
790 
791 	psize = page_level_size(level);
792 	pmask = page_level_mask(level);
793 
794 	/*
795 	 * Calculate the number of pages, which fit into this large
796 	 * page starting at address:
797 	 */
798 	lpaddr = (address + psize) & pmask;
799 	numpages = (lpaddr - address) >> PAGE_SHIFT;
800 	if (numpages < cpa->numpages)
801 		cpa->numpages = numpages;
802 
803 	/*
804 	 * We are safe now. Check whether the new pgprot is the same:
805 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
806 	 * up accordingly.
807 	 */
808 
809 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
810 	req_prot = pgprot_large_2_4k(old_prot);
811 
812 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
813 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
814 
815 	/*
816 	 * req_prot is in format of 4k pages. It must be converted to large
817 	 * page format: the caching mode includes the PAT bit located at
818 	 * different bit positions in the two formats.
819 	 */
820 	req_prot = pgprot_4k_2_large(req_prot);
821 	req_prot = pgprot_clear_protnone_bits(req_prot);
822 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
823 		pgprot_val(req_prot) |= _PAGE_PSE;
824 
825 	/*
826 	 * old_pfn points to the large page base pfn. So we need to add the
827 	 * offset of the virtual address:
828 	 */
829 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
830 	cpa->pfn = pfn;
831 
832 	/*
833 	 * Calculate the large page base address and the number of 4K pages
834 	 * in the large page
835 	 */
836 	lpaddr = address & pmask;
837 	numpages = psize >> PAGE_SHIFT;
838 
839 	/*
840 	 * Sanity check that the existing mapping is correct versus the static
841 	 * protections. static_protections() guards against !PRESENT, so no
842 	 * extra conditional required here.
843 	 */
844 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
845 				      psize, CPA_CONFLICT);
846 
847 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
848 		/*
849 		 * Split the large page and tell the split code to
850 		 * enforce static protections.
851 		 */
852 		cpa->force_static_prot = 1;
853 		return 1;
854 	}
855 
856 	/*
857 	 * Optimization: If the requested pgprot is the same as the current
858 	 * pgprot, then the large page can be preserved and no updates are
859 	 * required independent of alignment and length of the requested
860 	 * range. The above already established that the current pgprot is
861 	 * correct, which in consequence makes the requested pgprot correct
862 	 * as well if it is the same. The static protection scan below will
863 	 * not come to a different conclusion.
864 	 */
865 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
866 		cpa_inc_lp_sameprot(level);
867 		return 0;
868 	}
869 
870 	/*
871 	 * If the requested range does not cover the full page, split it up
872 	 */
873 	if (address != lpaddr || cpa->numpages != numpages)
874 		return 1;
875 
876 	/*
877 	 * Check whether the requested pgprot is conflicting with a static
878 	 * protection requirement in the large page.
879 	 */
880 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
881 				      psize, CPA_DETECT);
882 
883 	/*
884 	 * If there is a conflict, split the large page.
885 	 *
886 	 * There used to be a 4k wise evaluation trying really hard to
887 	 * preserve the large pages, but experimentation has shown, that this
888 	 * does not help at all. There might be corner cases which would
889 	 * preserve one large page occasionally, but it's really not worth the
890 	 * extra code and cycles for the common case.
891 	 */
892 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
893 		return 1;
894 
895 	/* All checks passed. Update the large page mapping. */
896 	new_pte = pfn_pte(old_pfn, new_prot);
897 	__set_pmd_pte(kpte, address, new_pte);
898 	cpa->flags |= CPA_FLUSHTLB;
899 	cpa_inc_lp_preserved(level);
900 	return 0;
901 }
902 
903 static int should_split_large_page(pte_t *kpte, unsigned long address,
904 				   struct cpa_data *cpa)
905 {
906 	int do_split;
907 
908 	if (cpa->force_split)
909 		return 1;
910 
911 	spin_lock(&pgd_lock);
912 	do_split = __should_split_large_page(kpte, address, cpa);
913 	spin_unlock(&pgd_lock);
914 
915 	return do_split;
916 }
917 
918 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
919 			  pgprot_t ref_prot, unsigned long address,
920 			  unsigned long size)
921 {
922 	unsigned int npg = PFN_DOWN(size);
923 	pgprot_t prot;
924 
925 	/*
926 	 * If should_split_large_page() discovered an inconsistent mapping,
927 	 * remove the invalid protection in the split mapping.
928 	 */
929 	if (!cpa->force_static_prot)
930 		goto set;
931 
932 	/* Hand in lpsize = 0 to enforce the protection mechanism */
933 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
934 
935 	if (pgprot_val(prot) == pgprot_val(ref_prot))
936 		goto set;
937 
938 	/*
939 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
940 	 * fixed trivially as that would require to rescan the newly
941 	 * installed PMD mappings after returning from split_large_page()
942 	 * so an eventual further split can allocate the necessary PTE
943 	 * pages. Warn for now and revisit it in case this actually
944 	 * happens.
945 	 */
946 	if (size == PAGE_SIZE)
947 		ref_prot = prot;
948 	else
949 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
950 set:
951 	set_pte(pte, pfn_pte(pfn, ref_prot));
952 }
953 
954 static int
955 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
956 		   struct page *base)
957 {
958 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
959 	pte_t *pbase = (pte_t *)page_address(base);
960 	unsigned int i, level;
961 	pgprot_t ref_prot;
962 	pte_t *tmp;
963 
964 	spin_lock(&pgd_lock);
965 	/*
966 	 * Check for races, another CPU might have split this page
967 	 * up for us already:
968 	 */
969 	tmp = _lookup_address_cpa(cpa, address, &level);
970 	if (tmp != kpte) {
971 		spin_unlock(&pgd_lock);
972 		return 1;
973 	}
974 
975 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
976 
977 	switch (level) {
978 	case PG_LEVEL_2M:
979 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
980 		/*
981 		 * Clear PSE (aka _PAGE_PAT) and move
982 		 * PAT bit to correct position.
983 		 */
984 		ref_prot = pgprot_large_2_4k(ref_prot);
985 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
986 		lpaddr = address & PMD_MASK;
987 		lpinc = PAGE_SIZE;
988 		break;
989 
990 	case PG_LEVEL_1G:
991 		ref_prot = pud_pgprot(*(pud_t *)kpte);
992 		ref_pfn = pud_pfn(*(pud_t *)kpte);
993 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
994 		lpaddr = address & PUD_MASK;
995 		lpinc = PMD_SIZE;
996 		/*
997 		 * Clear the PSE flags if the PRESENT flag is not set
998 		 * otherwise pmd_present/pmd_huge will return true
999 		 * even on a non present pmd.
1000 		 */
1001 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1002 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1003 		break;
1004 
1005 	default:
1006 		spin_unlock(&pgd_lock);
1007 		return 1;
1008 	}
1009 
1010 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1011 
1012 	/*
1013 	 * Get the target pfn from the original entry:
1014 	 */
1015 	pfn = ref_pfn;
1016 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1017 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1018 
1019 	if (virt_addr_valid(address)) {
1020 		unsigned long pfn = PFN_DOWN(__pa(address));
1021 
1022 		if (pfn_range_is_mapped(pfn, pfn + 1))
1023 			split_page_count(level);
1024 	}
1025 
1026 	/*
1027 	 * Install the new, split up pagetable.
1028 	 *
1029 	 * We use the standard kernel pagetable protections for the new
1030 	 * pagetable protections, the actual ptes set above control the
1031 	 * primary protection behavior:
1032 	 */
1033 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1034 
1035 	/*
1036 	 * Do a global flush tlb after splitting the large page
1037 	 * and before we do the actual change page attribute in the PTE.
1038 	 *
1039 	 * Without this, we violate the TLB application note, that says:
1040 	 * "The TLBs may contain both ordinary and large-page
1041 	 *  translations for a 4-KByte range of linear addresses. This
1042 	 *  may occur if software modifies the paging structures so that
1043 	 *  the page size used for the address range changes. If the two
1044 	 *  translations differ with respect to page frame or attributes
1045 	 *  (e.g., permissions), processor behavior is undefined and may
1046 	 *  be implementation-specific."
1047 	 *
1048 	 * We do this global tlb flush inside the cpa_lock, so that we
1049 	 * don't allow any other cpu, with stale tlb entries change the
1050 	 * page attribute in parallel, that also falls into the
1051 	 * just split large page entry.
1052 	 */
1053 	flush_tlb_all();
1054 	spin_unlock(&pgd_lock);
1055 
1056 	return 0;
1057 }
1058 
1059 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1060 			    unsigned long address)
1061 {
1062 	struct page *base;
1063 
1064 	if (!debug_pagealloc_enabled())
1065 		spin_unlock(&cpa_lock);
1066 	base = alloc_pages(GFP_KERNEL, 0);
1067 	if (!debug_pagealloc_enabled())
1068 		spin_lock(&cpa_lock);
1069 	if (!base)
1070 		return -ENOMEM;
1071 
1072 	if (__split_large_page(cpa, kpte, address, base))
1073 		__free_page(base);
1074 
1075 	return 0;
1076 }
1077 
1078 static bool try_to_free_pte_page(pte_t *pte)
1079 {
1080 	int i;
1081 
1082 	for (i = 0; i < PTRS_PER_PTE; i++)
1083 		if (!pte_none(pte[i]))
1084 			return false;
1085 
1086 	free_page((unsigned long)pte);
1087 	return true;
1088 }
1089 
1090 static bool try_to_free_pmd_page(pmd_t *pmd)
1091 {
1092 	int i;
1093 
1094 	for (i = 0; i < PTRS_PER_PMD; i++)
1095 		if (!pmd_none(pmd[i]))
1096 			return false;
1097 
1098 	free_page((unsigned long)pmd);
1099 	return true;
1100 }
1101 
1102 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1103 {
1104 	pte_t *pte = pte_offset_kernel(pmd, start);
1105 
1106 	while (start < end) {
1107 		set_pte(pte, __pte(0));
1108 
1109 		start += PAGE_SIZE;
1110 		pte++;
1111 	}
1112 
1113 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1114 		pmd_clear(pmd);
1115 		return true;
1116 	}
1117 	return false;
1118 }
1119 
1120 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1121 			      unsigned long start, unsigned long end)
1122 {
1123 	if (unmap_pte_range(pmd, start, end))
1124 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1125 			pud_clear(pud);
1126 }
1127 
1128 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1129 {
1130 	pmd_t *pmd = pmd_offset(pud, start);
1131 
1132 	/*
1133 	 * Not on a 2MB page boundary?
1134 	 */
1135 	if (start & (PMD_SIZE - 1)) {
1136 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1137 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1138 
1139 		__unmap_pmd_range(pud, pmd, start, pre_end);
1140 
1141 		start = pre_end;
1142 		pmd++;
1143 	}
1144 
1145 	/*
1146 	 * Try to unmap in 2M chunks.
1147 	 */
1148 	while (end - start >= PMD_SIZE) {
1149 		if (pmd_large(*pmd))
1150 			pmd_clear(pmd);
1151 		else
1152 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1153 
1154 		start += PMD_SIZE;
1155 		pmd++;
1156 	}
1157 
1158 	/*
1159 	 * 4K leftovers?
1160 	 */
1161 	if (start < end)
1162 		return __unmap_pmd_range(pud, pmd, start, end);
1163 
1164 	/*
1165 	 * Try again to free the PMD page if haven't succeeded above.
1166 	 */
1167 	if (!pud_none(*pud))
1168 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1169 			pud_clear(pud);
1170 }
1171 
1172 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1173 {
1174 	pud_t *pud = pud_offset(p4d, start);
1175 
1176 	/*
1177 	 * Not on a GB page boundary?
1178 	 */
1179 	if (start & (PUD_SIZE - 1)) {
1180 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1181 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1182 
1183 		unmap_pmd_range(pud, start, pre_end);
1184 
1185 		start = pre_end;
1186 		pud++;
1187 	}
1188 
1189 	/*
1190 	 * Try to unmap in 1G chunks?
1191 	 */
1192 	while (end - start >= PUD_SIZE) {
1193 
1194 		if (pud_large(*pud))
1195 			pud_clear(pud);
1196 		else
1197 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1198 
1199 		start += PUD_SIZE;
1200 		pud++;
1201 	}
1202 
1203 	/*
1204 	 * 2M leftovers?
1205 	 */
1206 	if (start < end)
1207 		unmap_pmd_range(pud, start, end);
1208 
1209 	/*
1210 	 * No need to try to free the PUD page because we'll free it in
1211 	 * populate_pgd's error path
1212 	 */
1213 }
1214 
1215 static int alloc_pte_page(pmd_t *pmd)
1216 {
1217 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1218 	if (!pte)
1219 		return -1;
1220 
1221 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1222 	return 0;
1223 }
1224 
1225 static int alloc_pmd_page(pud_t *pud)
1226 {
1227 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1228 	if (!pmd)
1229 		return -1;
1230 
1231 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1232 	return 0;
1233 }
1234 
1235 static void populate_pte(struct cpa_data *cpa,
1236 			 unsigned long start, unsigned long end,
1237 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1238 {
1239 	pte_t *pte;
1240 
1241 	pte = pte_offset_kernel(pmd, start);
1242 
1243 	pgprot = pgprot_clear_protnone_bits(pgprot);
1244 
1245 	while (num_pages-- && start < end) {
1246 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1247 
1248 		start	 += PAGE_SIZE;
1249 		cpa->pfn++;
1250 		pte++;
1251 	}
1252 }
1253 
1254 static long populate_pmd(struct cpa_data *cpa,
1255 			 unsigned long start, unsigned long end,
1256 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1257 {
1258 	long cur_pages = 0;
1259 	pmd_t *pmd;
1260 	pgprot_t pmd_pgprot;
1261 
1262 	/*
1263 	 * Not on a 2M boundary?
1264 	 */
1265 	if (start & (PMD_SIZE - 1)) {
1266 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1267 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1268 
1269 		pre_end   = min_t(unsigned long, pre_end, next_page);
1270 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1271 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1272 
1273 		/*
1274 		 * Need a PTE page?
1275 		 */
1276 		pmd = pmd_offset(pud, start);
1277 		if (pmd_none(*pmd))
1278 			if (alloc_pte_page(pmd))
1279 				return -1;
1280 
1281 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1282 
1283 		start = pre_end;
1284 	}
1285 
1286 	/*
1287 	 * We mapped them all?
1288 	 */
1289 	if (num_pages == cur_pages)
1290 		return cur_pages;
1291 
1292 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1293 
1294 	while (end - start >= PMD_SIZE) {
1295 
1296 		/*
1297 		 * We cannot use a 1G page so allocate a PMD page if needed.
1298 		 */
1299 		if (pud_none(*pud))
1300 			if (alloc_pmd_page(pud))
1301 				return -1;
1302 
1303 		pmd = pmd_offset(pud, start);
1304 
1305 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1306 					canon_pgprot(pmd_pgprot))));
1307 
1308 		start	  += PMD_SIZE;
1309 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1310 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1311 	}
1312 
1313 	/*
1314 	 * Map trailing 4K pages.
1315 	 */
1316 	if (start < end) {
1317 		pmd = pmd_offset(pud, start);
1318 		if (pmd_none(*pmd))
1319 			if (alloc_pte_page(pmd))
1320 				return -1;
1321 
1322 		populate_pte(cpa, start, end, num_pages - cur_pages,
1323 			     pmd, pgprot);
1324 	}
1325 	return num_pages;
1326 }
1327 
1328 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1329 			pgprot_t pgprot)
1330 {
1331 	pud_t *pud;
1332 	unsigned long end;
1333 	long cur_pages = 0;
1334 	pgprot_t pud_pgprot;
1335 
1336 	end = start + (cpa->numpages << PAGE_SHIFT);
1337 
1338 	/*
1339 	 * Not on a Gb page boundary? => map everything up to it with
1340 	 * smaller pages.
1341 	 */
1342 	if (start & (PUD_SIZE - 1)) {
1343 		unsigned long pre_end;
1344 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1345 
1346 		pre_end   = min_t(unsigned long, end, next_page);
1347 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1348 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1349 
1350 		pud = pud_offset(p4d, start);
1351 
1352 		/*
1353 		 * Need a PMD page?
1354 		 */
1355 		if (pud_none(*pud))
1356 			if (alloc_pmd_page(pud))
1357 				return -1;
1358 
1359 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1360 					 pud, pgprot);
1361 		if (cur_pages < 0)
1362 			return cur_pages;
1363 
1364 		start = pre_end;
1365 	}
1366 
1367 	/* We mapped them all? */
1368 	if (cpa->numpages == cur_pages)
1369 		return cur_pages;
1370 
1371 	pud = pud_offset(p4d, start);
1372 	pud_pgprot = pgprot_4k_2_large(pgprot);
1373 
1374 	/*
1375 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1376 	 */
1377 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1378 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1379 				   canon_pgprot(pud_pgprot))));
1380 
1381 		start	  += PUD_SIZE;
1382 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1383 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1384 		pud++;
1385 	}
1386 
1387 	/* Map trailing leftover */
1388 	if (start < end) {
1389 		long tmp;
1390 
1391 		pud = pud_offset(p4d, start);
1392 		if (pud_none(*pud))
1393 			if (alloc_pmd_page(pud))
1394 				return -1;
1395 
1396 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1397 				   pud, pgprot);
1398 		if (tmp < 0)
1399 			return cur_pages;
1400 
1401 		cur_pages += tmp;
1402 	}
1403 	return cur_pages;
1404 }
1405 
1406 /*
1407  * Restrictions for kernel page table do not necessarily apply when mapping in
1408  * an alternate PGD.
1409  */
1410 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1411 {
1412 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1413 	pud_t *pud = NULL;	/* shut up gcc */
1414 	p4d_t *p4d;
1415 	pgd_t *pgd_entry;
1416 	long ret;
1417 
1418 	pgd_entry = cpa->pgd + pgd_index(addr);
1419 
1420 	if (pgd_none(*pgd_entry)) {
1421 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1422 		if (!p4d)
1423 			return -1;
1424 
1425 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1426 	}
1427 
1428 	/*
1429 	 * Allocate a PUD page and hand it down for mapping.
1430 	 */
1431 	p4d = p4d_offset(pgd_entry, addr);
1432 	if (p4d_none(*p4d)) {
1433 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1434 		if (!pud)
1435 			return -1;
1436 
1437 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1438 	}
1439 
1440 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1441 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1442 
1443 	ret = populate_pud(cpa, addr, p4d, pgprot);
1444 	if (ret < 0) {
1445 		/*
1446 		 * Leave the PUD page in place in case some other CPU or thread
1447 		 * already found it, but remove any useless entries we just
1448 		 * added to it.
1449 		 */
1450 		unmap_pud_range(p4d, addr,
1451 				addr + (cpa->numpages << PAGE_SHIFT));
1452 		return ret;
1453 	}
1454 
1455 	cpa->numpages = ret;
1456 	return 0;
1457 }
1458 
1459 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1460 			       int primary)
1461 {
1462 	if (cpa->pgd) {
1463 		/*
1464 		 * Right now, we only execute this code path when mapping
1465 		 * the EFI virtual memory map regions, no other users
1466 		 * provide a ->pgd value. This may change in the future.
1467 		 */
1468 		return populate_pgd(cpa, vaddr);
1469 	}
1470 
1471 	/*
1472 	 * Ignore all non primary paths.
1473 	 */
1474 	if (!primary) {
1475 		cpa->numpages = 1;
1476 		return 0;
1477 	}
1478 
1479 	/*
1480 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1481 	 * to have holes.
1482 	 * Also set numpages to '1' indicating that we processed cpa req for
1483 	 * one virtual address page and its pfn. TBD: numpages can be set based
1484 	 * on the initial value and the level returned by lookup_address().
1485 	 */
1486 	if (within(vaddr, PAGE_OFFSET,
1487 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1488 		cpa->numpages = 1;
1489 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1490 		return 0;
1491 
1492 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1493 		/* Faults in the highmap are OK, so do not warn: */
1494 		return -EFAULT;
1495 	} else {
1496 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1497 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1498 			*cpa->vaddr);
1499 
1500 		return -EFAULT;
1501 	}
1502 }
1503 
1504 static int __change_page_attr(struct cpa_data *cpa, int primary)
1505 {
1506 	unsigned long address;
1507 	int do_split, err;
1508 	unsigned int level;
1509 	pte_t *kpte, old_pte;
1510 
1511 	address = __cpa_addr(cpa, cpa->curpage);
1512 repeat:
1513 	kpte = _lookup_address_cpa(cpa, address, &level);
1514 	if (!kpte)
1515 		return __cpa_process_fault(cpa, address, primary);
1516 
1517 	old_pte = *kpte;
1518 	if (pte_none(old_pte))
1519 		return __cpa_process_fault(cpa, address, primary);
1520 
1521 	if (level == PG_LEVEL_4K) {
1522 		pte_t new_pte;
1523 		pgprot_t new_prot = pte_pgprot(old_pte);
1524 		unsigned long pfn = pte_pfn(old_pte);
1525 
1526 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1527 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1528 
1529 		cpa_inc_4k_install();
1530 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1531 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1532 					      CPA_PROTECT);
1533 
1534 		new_prot = pgprot_clear_protnone_bits(new_prot);
1535 
1536 		/*
1537 		 * We need to keep the pfn from the existing PTE,
1538 		 * after all we're only going to change it's attributes
1539 		 * not the memory it points to
1540 		 */
1541 		new_pte = pfn_pte(pfn, new_prot);
1542 		cpa->pfn = pfn;
1543 		/*
1544 		 * Do we really change anything ?
1545 		 */
1546 		if (pte_val(old_pte) != pte_val(new_pte)) {
1547 			set_pte_atomic(kpte, new_pte);
1548 			cpa->flags |= CPA_FLUSHTLB;
1549 		}
1550 		cpa->numpages = 1;
1551 		return 0;
1552 	}
1553 
1554 	/*
1555 	 * Check, whether we can keep the large page intact
1556 	 * and just change the pte:
1557 	 */
1558 	do_split = should_split_large_page(kpte, address, cpa);
1559 	/*
1560 	 * When the range fits into the existing large page,
1561 	 * return. cp->numpages and cpa->tlbflush have been updated in
1562 	 * try_large_page:
1563 	 */
1564 	if (do_split <= 0)
1565 		return do_split;
1566 
1567 	/*
1568 	 * We have to split the large page:
1569 	 */
1570 	err = split_large_page(cpa, kpte, address);
1571 	if (!err)
1572 		goto repeat;
1573 
1574 	return err;
1575 }
1576 
1577 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1578 
1579 static int cpa_process_alias(struct cpa_data *cpa)
1580 {
1581 	struct cpa_data alias_cpa;
1582 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1583 	unsigned long vaddr;
1584 	int ret;
1585 
1586 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1587 		return 0;
1588 
1589 	/*
1590 	 * No need to redo, when the primary call touched the direct
1591 	 * mapping already:
1592 	 */
1593 	vaddr = __cpa_addr(cpa, cpa->curpage);
1594 	if (!(within(vaddr, PAGE_OFFSET,
1595 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1596 
1597 		alias_cpa = *cpa;
1598 		alias_cpa.vaddr = &laddr;
1599 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1600 		alias_cpa.curpage = 0;
1601 
1602 		cpa->force_flush_all = 1;
1603 
1604 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1605 		if (ret)
1606 			return ret;
1607 	}
1608 
1609 #ifdef CONFIG_X86_64
1610 	/*
1611 	 * If the primary call didn't touch the high mapping already
1612 	 * and the physical address is inside the kernel map, we need
1613 	 * to touch the high mapped kernel as well:
1614 	 */
1615 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1616 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1617 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1618 					       __START_KERNEL_map - phys_base;
1619 		alias_cpa = *cpa;
1620 		alias_cpa.vaddr = &temp_cpa_vaddr;
1621 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1622 		alias_cpa.curpage = 0;
1623 
1624 		cpa->force_flush_all = 1;
1625 		/*
1626 		 * The high mapping range is imprecise, so ignore the
1627 		 * return value.
1628 		 */
1629 		__change_page_attr_set_clr(&alias_cpa, 0);
1630 	}
1631 #endif
1632 
1633 	return 0;
1634 }
1635 
1636 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1637 {
1638 	unsigned long numpages = cpa->numpages;
1639 	unsigned long rempages = numpages;
1640 	int ret = 0;
1641 
1642 	while (rempages) {
1643 		/*
1644 		 * Store the remaining nr of pages for the large page
1645 		 * preservation check.
1646 		 */
1647 		cpa->numpages = rempages;
1648 		/* for array changes, we can't use large page */
1649 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1650 			cpa->numpages = 1;
1651 
1652 		if (!debug_pagealloc_enabled())
1653 			spin_lock(&cpa_lock);
1654 		ret = __change_page_attr(cpa, checkalias);
1655 		if (!debug_pagealloc_enabled())
1656 			spin_unlock(&cpa_lock);
1657 		if (ret)
1658 			goto out;
1659 
1660 		if (checkalias) {
1661 			ret = cpa_process_alias(cpa);
1662 			if (ret)
1663 				goto out;
1664 		}
1665 
1666 		/*
1667 		 * Adjust the number of pages with the result of the
1668 		 * CPA operation. Either a large page has been
1669 		 * preserved or a single page update happened.
1670 		 */
1671 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1672 		rempages -= cpa->numpages;
1673 		cpa->curpage += cpa->numpages;
1674 	}
1675 
1676 out:
1677 	/* Restore the original numpages */
1678 	cpa->numpages = numpages;
1679 	return ret;
1680 }
1681 
1682 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1683 				    pgprot_t mask_set, pgprot_t mask_clr,
1684 				    int force_split, int in_flag,
1685 				    struct page **pages)
1686 {
1687 	struct cpa_data cpa;
1688 	int ret, cache, checkalias;
1689 
1690 	memset(&cpa, 0, sizeof(cpa));
1691 
1692 	/*
1693 	 * Check, if we are requested to set a not supported
1694 	 * feature.  Clearing non-supported features is OK.
1695 	 */
1696 	mask_set = canon_pgprot(mask_set);
1697 
1698 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1699 		return 0;
1700 
1701 	/* Ensure we are PAGE_SIZE aligned */
1702 	if (in_flag & CPA_ARRAY) {
1703 		int i;
1704 		for (i = 0; i < numpages; i++) {
1705 			if (addr[i] & ~PAGE_MASK) {
1706 				addr[i] &= PAGE_MASK;
1707 				WARN_ON_ONCE(1);
1708 			}
1709 		}
1710 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1711 		/*
1712 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1713 		 * No need to check in that case
1714 		 */
1715 		if (*addr & ~PAGE_MASK) {
1716 			*addr &= PAGE_MASK;
1717 			/*
1718 			 * People should not be passing in unaligned addresses:
1719 			 */
1720 			WARN_ON_ONCE(1);
1721 		}
1722 	}
1723 
1724 	/* Must avoid aliasing mappings in the highmem code */
1725 	kmap_flush_unused();
1726 
1727 	vm_unmap_aliases();
1728 
1729 	cpa.vaddr = addr;
1730 	cpa.pages = pages;
1731 	cpa.numpages = numpages;
1732 	cpa.mask_set = mask_set;
1733 	cpa.mask_clr = mask_clr;
1734 	cpa.flags = 0;
1735 	cpa.curpage = 0;
1736 	cpa.force_split = force_split;
1737 
1738 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1739 		cpa.flags |= in_flag;
1740 
1741 	/* No alias checking for _NX bit modifications */
1742 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1743 	/* Has caller explicitly disabled alias checking? */
1744 	if (in_flag & CPA_NO_CHECK_ALIAS)
1745 		checkalias = 0;
1746 
1747 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1748 
1749 	/*
1750 	 * Check whether we really changed something:
1751 	 */
1752 	if (!(cpa.flags & CPA_FLUSHTLB))
1753 		goto out;
1754 
1755 	/*
1756 	 * No need to flush, when we did not set any of the caching
1757 	 * attributes:
1758 	 */
1759 	cache = !!pgprot2cachemode(mask_set);
1760 
1761 	/*
1762 	 * On error; flush everything to be sure.
1763 	 */
1764 	if (ret) {
1765 		cpa_flush_all(cache);
1766 		goto out;
1767 	}
1768 
1769 	cpa_flush(&cpa, cache);
1770 out:
1771 	return ret;
1772 }
1773 
1774 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1775 				       pgprot_t mask, int array)
1776 {
1777 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1778 		(array ? CPA_ARRAY : 0), NULL);
1779 }
1780 
1781 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1782 					 pgprot_t mask, int array)
1783 {
1784 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1785 		(array ? CPA_ARRAY : 0), NULL);
1786 }
1787 
1788 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1789 				       pgprot_t mask)
1790 {
1791 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1792 		CPA_PAGES_ARRAY, pages);
1793 }
1794 
1795 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1796 					 pgprot_t mask)
1797 {
1798 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1799 		CPA_PAGES_ARRAY, pages);
1800 }
1801 
1802 /*
1803  * _set_memory_prot is an internal helper for callers that have been passed
1804  * a pgprot_t value from upper layers and a reservation has already been taken.
1805  * If you want to set the pgprot to a specific page protocol, use the
1806  * set_memory_xx() functions.
1807  */
1808 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1809 {
1810 	return change_page_attr_set_clr(&addr, numpages, prot,
1811 					__pgprot(~pgprot_val(prot)), 0, 0,
1812 					NULL);
1813 }
1814 
1815 int _set_memory_uc(unsigned long addr, int numpages)
1816 {
1817 	/*
1818 	 * for now UC MINUS. see comments in ioremap()
1819 	 * If you really need strong UC use ioremap_uc(), but note
1820 	 * that you cannot override IO areas with set_memory_*() as
1821 	 * these helpers cannot work with IO memory.
1822 	 */
1823 	return change_page_attr_set(&addr, numpages,
1824 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1825 				    0);
1826 }
1827 
1828 int set_memory_uc(unsigned long addr, int numpages)
1829 {
1830 	int ret;
1831 
1832 	/*
1833 	 * for now UC MINUS. see comments in ioremap()
1834 	 */
1835 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1836 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1837 	if (ret)
1838 		goto out_err;
1839 
1840 	ret = _set_memory_uc(addr, numpages);
1841 	if (ret)
1842 		goto out_free;
1843 
1844 	return 0;
1845 
1846 out_free:
1847 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1848 out_err:
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL(set_memory_uc);
1852 
1853 int _set_memory_wc(unsigned long addr, int numpages)
1854 {
1855 	int ret;
1856 
1857 	ret = change_page_attr_set(&addr, numpages,
1858 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1859 				   0);
1860 	if (!ret) {
1861 		ret = change_page_attr_set_clr(&addr, numpages,
1862 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1863 					       __pgprot(_PAGE_CACHE_MASK),
1864 					       0, 0, NULL);
1865 	}
1866 	return ret;
1867 }
1868 
1869 int set_memory_wc(unsigned long addr, int numpages)
1870 {
1871 	int ret;
1872 
1873 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1874 		_PAGE_CACHE_MODE_WC, NULL);
1875 	if (ret)
1876 		return ret;
1877 
1878 	ret = _set_memory_wc(addr, numpages);
1879 	if (ret)
1880 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1881 
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL(set_memory_wc);
1885 
1886 int _set_memory_wt(unsigned long addr, int numpages)
1887 {
1888 	return change_page_attr_set(&addr, numpages,
1889 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1890 }
1891 
1892 int _set_memory_wb(unsigned long addr, int numpages)
1893 {
1894 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1895 	return change_page_attr_clear(&addr, numpages,
1896 				      __pgprot(_PAGE_CACHE_MASK), 0);
1897 }
1898 
1899 int set_memory_wb(unsigned long addr, int numpages)
1900 {
1901 	int ret;
1902 
1903 	ret = _set_memory_wb(addr, numpages);
1904 	if (ret)
1905 		return ret;
1906 
1907 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(set_memory_wb);
1911 
1912 int set_memory_x(unsigned long addr, int numpages)
1913 {
1914 	if (!(__supported_pte_mask & _PAGE_NX))
1915 		return 0;
1916 
1917 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1918 }
1919 
1920 int set_memory_nx(unsigned long addr, int numpages)
1921 {
1922 	if (!(__supported_pte_mask & _PAGE_NX))
1923 		return 0;
1924 
1925 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1926 }
1927 
1928 int set_memory_ro(unsigned long addr, int numpages)
1929 {
1930 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1931 }
1932 
1933 int set_memory_rw(unsigned long addr, int numpages)
1934 {
1935 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1936 }
1937 
1938 int set_memory_np(unsigned long addr, int numpages)
1939 {
1940 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1941 }
1942 
1943 int set_memory_np_noalias(unsigned long addr, int numpages)
1944 {
1945 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1946 
1947 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1948 					__pgprot(_PAGE_PRESENT), 0,
1949 					cpa_flags, NULL);
1950 }
1951 
1952 int set_memory_4k(unsigned long addr, int numpages)
1953 {
1954 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1955 					__pgprot(0), 1, 0, NULL);
1956 }
1957 
1958 int set_memory_nonglobal(unsigned long addr, int numpages)
1959 {
1960 	return change_page_attr_clear(&addr, numpages,
1961 				      __pgprot(_PAGE_GLOBAL), 0);
1962 }
1963 
1964 int set_memory_global(unsigned long addr, int numpages)
1965 {
1966 	return change_page_attr_set(&addr, numpages,
1967 				    __pgprot(_PAGE_GLOBAL), 0);
1968 }
1969 
1970 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1971 {
1972 	struct cpa_data cpa;
1973 	int ret;
1974 
1975 	/* Nothing to do if memory encryption is not active */
1976 	if (!mem_encrypt_active())
1977 		return 0;
1978 
1979 	/* Should not be working on unaligned addresses */
1980 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1981 		addr &= PAGE_MASK;
1982 
1983 	memset(&cpa, 0, sizeof(cpa));
1984 	cpa.vaddr = &addr;
1985 	cpa.numpages = numpages;
1986 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1987 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1988 	cpa.pgd = init_mm.pgd;
1989 
1990 	/* Must avoid aliasing mappings in the highmem code */
1991 	kmap_flush_unused();
1992 	vm_unmap_aliases();
1993 
1994 	/*
1995 	 * Before changing the encryption attribute, we need to flush caches.
1996 	 */
1997 	cpa_flush(&cpa, 1);
1998 
1999 	ret = __change_page_attr_set_clr(&cpa, 1);
2000 
2001 	/*
2002 	 * After changing the encryption attribute, we need to flush TLBs again
2003 	 * in case any speculative TLB caching occurred (but no need to flush
2004 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2005 	 * flushing gets optimized in the cpa_flush() path use the same logic
2006 	 * as above.
2007 	 */
2008 	cpa_flush(&cpa, 0);
2009 
2010 	return ret;
2011 }
2012 
2013 int set_memory_encrypted(unsigned long addr, int numpages)
2014 {
2015 	return __set_memory_enc_dec(addr, numpages, true);
2016 }
2017 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2018 
2019 int set_memory_decrypted(unsigned long addr, int numpages)
2020 {
2021 	return __set_memory_enc_dec(addr, numpages, false);
2022 }
2023 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2024 
2025 int set_pages_uc(struct page *page, int numpages)
2026 {
2027 	unsigned long addr = (unsigned long)page_address(page);
2028 
2029 	return set_memory_uc(addr, numpages);
2030 }
2031 EXPORT_SYMBOL(set_pages_uc);
2032 
2033 static int _set_pages_array(struct page **pages, int numpages,
2034 		enum page_cache_mode new_type)
2035 {
2036 	unsigned long start;
2037 	unsigned long end;
2038 	enum page_cache_mode set_type;
2039 	int i;
2040 	int free_idx;
2041 	int ret;
2042 
2043 	for (i = 0; i < numpages; i++) {
2044 		if (PageHighMem(pages[i]))
2045 			continue;
2046 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2047 		end = start + PAGE_SIZE;
2048 		if (memtype_reserve(start, end, new_type, NULL))
2049 			goto err_out;
2050 	}
2051 
2052 	/* If WC, set to UC- first and then WC */
2053 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2054 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2055 
2056 	ret = cpa_set_pages_array(pages, numpages,
2057 				  cachemode2pgprot(set_type));
2058 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2059 		ret = change_page_attr_set_clr(NULL, numpages,
2060 					       cachemode2pgprot(
2061 						_PAGE_CACHE_MODE_WC),
2062 					       __pgprot(_PAGE_CACHE_MASK),
2063 					       0, CPA_PAGES_ARRAY, pages);
2064 	if (ret)
2065 		goto err_out;
2066 	return 0; /* Success */
2067 err_out:
2068 	free_idx = i;
2069 	for (i = 0; i < free_idx; i++) {
2070 		if (PageHighMem(pages[i]))
2071 			continue;
2072 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2073 		end = start + PAGE_SIZE;
2074 		memtype_free(start, end);
2075 	}
2076 	return -EINVAL;
2077 }
2078 
2079 int set_pages_array_uc(struct page **pages, int numpages)
2080 {
2081 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2082 }
2083 EXPORT_SYMBOL(set_pages_array_uc);
2084 
2085 int set_pages_array_wc(struct page **pages, int numpages)
2086 {
2087 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2088 }
2089 EXPORT_SYMBOL(set_pages_array_wc);
2090 
2091 int set_pages_array_wt(struct page **pages, int numpages)
2092 {
2093 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2094 }
2095 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2096 
2097 int set_pages_wb(struct page *page, int numpages)
2098 {
2099 	unsigned long addr = (unsigned long)page_address(page);
2100 
2101 	return set_memory_wb(addr, numpages);
2102 }
2103 EXPORT_SYMBOL(set_pages_wb);
2104 
2105 int set_pages_array_wb(struct page **pages, int numpages)
2106 {
2107 	int retval;
2108 	unsigned long start;
2109 	unsigned long end;
2110 	int i;
2111 
2112 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2113 	retval = cpa_clear_pages_array(pages, numpages,
2114 			__pgprot(_PAGE_CACHE_MASK));
2115 	if (retval)
2116 		return retval;
2117 
2118 	for (i = 0; i < numpages; i++) {
2119 		if (PageHighMem(pages[i]))
2120 			continue;
2121 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2122 		end = start + PAGE_SIZE;
2123 		memtype_free(start, end);
2124 	}
2125 
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(set_pages_array_wb);
2129 
2130 int set_pages_ro(struct page *page, int numpages)
2131 {
2132 	unsigned long addr = (unsigned long)page_address(page);
2133 
2134 	return set_memory_ro(addr, numpages);
2135 }
2136 
2137 int set_pages_rw(struct page *page, int numpages)
2138 {
2139 	unsigned long addr = (unsigned long)page_address(page);
2140 
2141 	return set_memory_rw(addr, numpages);
2142 }
2143 
2144 static int __set_pages_p(struct page *page, int numpages)
2145 {
2146 	unsigned long tempaddr = (unsigned long) page_address(page);
2147 	struct cpa_data cpa = { .vaddr = &tempaddr,
2148 				.pgd = NULL,
2149 				.numpages = numpages,
2150 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2151 				.mask_clr = __pgprot(0),
2152 				.flags = 0};
2153 
2154 	/*
2155 	 * No alias checking needed for setting present flag. otherwise,
2156 	 * we may need to break large pages for 64-bit kernel text
2157 	 * mappings (this adds to complexity if we want to do this from
2158 	 * atomic context especially). Let's keep it simple!
2159 	 */
2160 	return __change_page_attr_set_clr(&cpa, 0);
2161 }
2162 
2163 static int __set_pages_np(struct page *page, int numpages)
2164 {
2165 	unsigned long tempaddr = (unsigned long) page_address(page);
2166 	struct cpa_data cpa = { .vaddr = &tempaddr,
2167 				.pgd = NULL,
2168 				.numpages = numpages,
2169 				.mask_set = __pgprot(0),
2170 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2171 				.flags = 0};
2172 
2173 	/*
2174 	 * No alias checking needed for setting not present flag. otherwise,
2175 	 * we may need to break large pages for 64-bit kernel text
2176 	 * mappings (this adds to complexity if we want to do this from
2177 	 * atomic context especially). Let's keep it simple!
2178 	 */
2179 	return __change_page_attr_set_clr(&cpa, 0);
2180 }
2181 
2182 int set_direct_map_invalid_noflush(struct page *page)
2183 {
2184 	return __set_pages_np(page, 1);
2185 }
2186 
2187 int set_direct_map_default_noflush(struct page *page)
2188 {
2189 	return __set_pages_p(page, 1);
2190 }
2191 
2192 void __kernel_map_pages(struct page *page, int numpages, int enable)
2193 {
2194 	if (PageHighMem(page))
2195 		return;
2196 	if (!enable) {
2197 		debug_check_no_locks_freed(page_address(page),
2198 					   numpages * PAGE_SIZE);
2199 	}
2200 
2201 	/*
2202 	 * The return value is ignored as the calls cannot fail.
2203 	 * Large pages for identity mappings are not used at boot time
2204 	 * and hence no memory allocations during large page split.
2205 	 */
2206 	if (enable)
2207 		__set_pages_p(page, numpages);
2208 	else
2209 		__set_pages_np(page, numpages);
2210 
2211 	/*
2212 	 * We should perform an IPI and flush all tlbs,
2213 	 * but that can deadlock->flush only current cpu.
2214 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2215 	 * CR3 reload in __native_flush_tlb().
2216 	 */
2217 	preempt_disable();
2218 	__flush_tlb_all();
2219 	preempt_enable();
2220 
2221 	arch_flush_lazy_mmu_mode();
2222 }
2223 
2224 #ifdef CONFIG_HIBERNATION
2225 bool kernel_page_present(struct page *page)
2226 {
2227 	unsigned int level;
2228 	pte_t *pte;
2229 
2230 	if (PageHighMem(page))
2231 		return false;
2232 
2233 	pte = lookup_address((unsigned long)page_address(page), &level);
2234 	return (pte_val(*pte) & _PAGE_PRESENT);
2235 }
2236 #endif /* CONFIG_HIBERNATION */
2237 
2238 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2239 				   unsigned numpages, unsigned long page_flags)
2240 {
2241 	int retval = -EINVAL;
2242 
2243 	struct cpa_data cpa = {
2244 		.vaddr = &address,
2245 		.pfn = pfn,
2246 		.pgd = pgd,
2247 		.numpages = numpages,
2248 		.mask_set = __pgprot(0),
2249 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2250 		.flags = 0,
2251 	};
2252 
2253 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2254 
2255 	if (!(__supported_pte_mask & _PAGE_NX))
2256 		goto out;
2257 
2258 	if (!(page_flags & _PAGE_ENC))
2259 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2260 
2261 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2262 
2263 	retval = __change_page_attr_set_clr(&cpa, 0);
2264 	__flush_tlb_all();
2265 
2266 out:
2267 	return retval;
2268 }
2269 
2270 /*
2271  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2272  * function shouldn't be used in an SMP environment. Presently, it's used only
2273  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2274  */
2275 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2276 				     unsigned long numpages)
2277 {
2278 	int retval;
2279 
2280 	/*
2281 	 * The typical sequence for unmapping is to find a pte through
2282 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2283 	 * the address is already mapped) and change it's protections. As pfn is
2284 	 * the *target* of a mapping, it's not useful while unmapping.
2285 	 */
2286 	struct cpa_data cpa = {
2287 		.vaddr		= &address,
2288 		.pfn		= 0,
2289 		.pgd		= pgd,
2290 		.numpages	= numpages,
2291 		.mask_set	= __pgprot(0),
2292 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2293 		.flags		= 0,
2294 	};
2295 
2296 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2297 
2298 	retval = __change_page_attr_set_clr(&cpa, 0);
2299 	__flush_tlb_all();
2300 
2301 	return retval;
2302 }
2303 
2304 /*
2305  * The testcases use internal knowledge of the implementation that shouldn't
2306  * be exposed to the rest of the kernel. Include these directly here.
2307  */
2308 #ifdef CONFIG_CPA_DEBUG
2309 #include "cpa-test.c"
2310 #endif
2311