1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 #include <linux/libnvdimm.h> 19 #include <linux/vmstat.h> 20 #include <linux/kernel.h> 21 #include <linux/cc_platform.h> 22 #include <linux/set_memory.h> 23 #include <linux/memregion.h> 24 25 #include <asm/e820/api.h> 26 #include <asm/processor.h> 27 #include <asm/tlbflush.h> 28 #include <asm/sections.h> 29 #include <asm/setup.h> 30 #include <linux/uaccess.h> 31 #include <asm/pgalloc.h> 32 #include <asm/proto.h> 33 #include <asm/memtype.h> 34 #include <asm/hyperv-tlfs.h> 35 #include <asm/mshyperv.h> 36 37 #include "../mm_internal.h" 38 39 /* 40 * The current flushing context - we pass it instead of 5 arguments: 41 */ 42 struct cpa_data { 43 unsigned long *vaddr; 44 pgd_t *pgd; 45 pgprot_t mask_set; 46 pgprot_t mask_clr; 47 unsigned long numpages; 48 unsigned long curpage; 49 unsigned long pfn; 50 unsigned int flags; 51 unsigned int force_split : 1, 52 force_static_prot : 1, 53 force_flush_all : 1; 54 struct page **pages; 55 }; 56 57 enum cpa_warn { 58 CPA_CONFLICT, 59 CPA_PROTECT, 60 CPA_DETECT, 61 }; 62 63 static const int cpa_warn_level = CPA_PROTECT; 64 65 /* 66 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 67 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 68 * entries change the page attribute in parallel to some other cpu 69 * splitting a large page entry along with changing the attribute. 70 */ 71 static DEFINE_SPINLOCK(cpa_lock); 72 73 #define CPA_FLUSHTLB 1 74 #define CPA_ARRAY 2 75 #define CPA_PAGES_ARRAY 4 76 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 77 78 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 79 { 80 return __pgprot(cachemode2protval(pcm)); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 85 86 void update_page_count(int level, unsigned long pages) 87 { 88 /* Protect against CPA */ 89 spin_lock(&pgd_lock); 90 direct_pages_count[level] += pages; 91 spin_unlock(&pgd_lock); 92 } 93 94 static void split_page_count(int level) 95 { 96 if (direct_pages_count[level] == 0) 97 return; 98 99 direct_pages_count[level]--; 100 if (system_state == SYSTEM_RUNNING) { 101 if (level == PG_LEVEL_2M) 102 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 103 else if (level == PG_LEVEL_1G) 104 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 105 } 106 direct_pages_count[level - 1] += PTRS_PER_PTE; 107 } 108 109 void arch_report_meminfo(struct seq_file *m) 110 { 111 seq_printf(m, "DirectMap4k: %8lu kB\n", 112 direct_pages_count[PG_LEVEL_4K] << 2); 113 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 114 seq_printf(m, "DirectMap2M: %8lu kB\n", 115 direct_pages_count[PG_LEVEL_2M] << 11); 116 #else 117 seq_printf(m, "DirectMap4M: %8lu kB\n", 118 direct_pages_count[PG_LEVEL_2M] << 12); 119 #endif 120 if (direct_gbpages) 121 seq_printf(m, "DirectMap1G: %8lu kB\n", 122 direct_pages_count[PG_LEVEL_1G] << 20); 123 } 124 #else 125 static inline void split_page_count(int level) { } 126 #endif 127 128 #ifdef CONFIG_X86_CPA_STATISTICS 129 130 static unsigned long cpa_1g_checked; 131 static unsigned long cpa_1g_sameprot; 132 static unsigned long cpa_1g_preserved; 133 static unsigned long cpa_2m_checked; 134 static unsigned long cpa_2m_sameprot; 135 static unsigned long cpa_2m_preserved; 136 static unsigned long cpa_4k_install; 137 138 static inline void cpa_inc_1g_checked(void) 139 { 140 cpa_1g_checked++; 141 } 142 143 static inline void cpa_inc_2m_checked(void) 144 { 145 cpa_2m_checked++; 146 } 147 148 static inline void cpa_inc_4k_install(void) 149 { 150 data_race(cpa_4k_install++); 151 } 152 153 static inline void cpa_inc_lp_sameprot(int level) 154 { 155 if (level == PG_LEVEL_1G) 156 cpa_1g_sameprot++; 157 else 158 cpa_2m_sameprot++; 159 } 160 161 static inline void cpa_inc_lp_preserved(int level) 162 { 163 if (level == PG_LEVEL_1G) 164 cpa_1g_preserved++; 165 else 166 cpa_2m_preserved++; 167 } 168 169 static int cpastats_show(struct seq_file *m, void *p) 170 { 171 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 172 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 173 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 174 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 175 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 176 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 177 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 178 return 0; 179 } 180 181 static int cpastats_open(struct inode *inode, struct file *file) 182 { 183 return single_open(file, cpastats_show, NULL); 184 } 185 186 static const struct file_operations cpastats_fops = { 187 .open = cpastats_open, 188 .read = seq_read, 189 .llseek = seq_lseek, 190 .release = single_release, 191 }; 192 193 static int __init cpa_stats_init(void) 194 { 195 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 196 &cpastats_fops); 197 return 0; 198 } 199 late_initcall(cpa_stats_init); 200 #else 201 static inline void cpa_inc_1g_checked(void) { } 202 static inline void cpa_inc_2m_checked(void) { } 203 static inline void cpa_inc_4k_install(void) { } 204 static inline void cpa_inc_lp_sameprot(int level) { } 205 static inline void cpa_inc_lp_preserved(int level) { } 206 #endif 207 208 209 static inline int 210 within(unsigned long addr, unsigned long start, unsigned long end) 211 { 212 return addr >= start && addr < end; 213 } 214 215 static inline int 216 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 217 { 218 return addr >= start && addr <= end; 219 } 220 221 #ifdef CONFIG_X86_64 222 223 /* 224 * The kernel image is mapped into two places in the virtual address space 225 * (addresses without KASLR, of course): 226 * 227 * 1. The kernel direct map (0xffff880000000000) 228 * 2. The "high kernel map" (0xffffffff81000000) 229 * 230 * We actually execute out of #2. If we get the address of a kernel symbol, it 231 * points to #2, but almost all physical-to-virtual translations point to #1. 232 * 233 * This is so that we can have both a directmap of all physical memory *and* 234 * take full advantage of the the limited (s32) immediate addressing range (2G) 235 * of x86_64. 236 * 237 * See Documentation/arch/x86/x86_64/mm.rst for more detail. 238 */ 239 240 static inline unsigned long highmap_start_pfn(void) 241 { 242 return __pa_symbol(_text) >> PAGE_SHIFT; 243 } 244 245 static inline unsigned long highmap_end_pfn(void) 246 { 247 /* Do not reference physical address outside the kernel. */ 248 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 249 } 250 251 static bool __cpa_pfn_in_highmap(unsigned long pfn) 252 { 253 /* 254 * Kernel text has an alias mapping at a high address, known 255 * here as "highmap". 256 */ 257 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 258 } 259 260 #else 261 262 static bool __cpa_pfn_in_highmap(unsigned long pfn) 263 { 264 /* There is no highmap on 32-bit */ 265 return false; 266 } 267 268 #endif 269 270 /* 271 * See set_mce_nospec(). 272 * 273 * Machine check recovery code needs to change cache mode of poisoned pages to 274 * UC to avoid speculative access logging another error. But passing the 275 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 276 * speculative access. So we cheat and flip the top bit of the address. This 277 * works fine for the code that updates the page tables. But at the end of the 278 * process we need to flush the TLB and cache and the non-canonical address 279 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 280 * 281 * But in the common case we already have a canonical address. This code 282 * will fix the top bit if needed and is a no-op otherwise. 283 */ 284 static inline unsigned long fix_addr(unsigned long addr) 285 { 286 #ifdef CONFIG_X86_64 287 return (long)(addr << 1) >> 1; 288 #else 289 return addr; 290 #endif 291 } 292 293 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 294 { 295 if (cpa->flags & CPA_PAGES_ARRAY) { 296 struct page *page = cpa->pages[idx]; 297 298 if (unlikely(PageHighMem(page))) 299 return 0; 300 301 return (unsigned long)page_address(page); 302 } 303 304 if (cpa->flags & CPA_ARRAY) 305 return cpa->vaddr[idx]; 306 307 return *cpa->vaddr + idx * PAGE_SIZE; 308 } 309 310 /* 311 * Flushing functions 312 */ 313 314 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 315 { 316 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 317 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 318 void *vend = vaddr + size; 319 320 if (p >= vend) 321 return; 322 323 for (; p < vend; p += clflush_size) 324 clflushopt(p); 325 } 326 327 /** 328 * clflush_cache_range - flush a cache range with clflush 329 * @vaddr: virtual start address 330 * @size: number of bytes to flush 331 * 332 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 333 * SFENCE to avoid ordering issues. 334 */ 335 void clflush_cache_range(void *vaddr, unsigned int size) 336 { 337 mb(); 338 clflush_cache_range_opt(vaddr, size); 339 mb(); 340 } 341 EXPORT_SYMBOL_GPL(clflush_cache_range); 342 343 #ifdef CONFIG_ARCH_HAS_PMEM_API 344 void arch_invalidate_pmem(void *addr, size_t size) 345 { 346 clflush_cache_range(addr, size); 347 } 348 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 349 #endif 350 351 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 352 bool cpu_cache_has_invalidate_memregion(void) 353 { 354 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); 355 } 356 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM); 357 358 int cpu_cache_invalidate_memregion(int res_desc) 359 { 360 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) 361 return -ENXIO; 362 wbinvd_on_all_cpus(); 363 return 0; 364 } 365 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM); 366 #endif 367 368 static void __cpa_flush_all(void *arg) 369 { 370 unsigned long cache = (unsigned long)arg; 371 372 /* 373 * Flush all to work around Errata in early athlons regarding 374 * large page flushing. 375 */ 376 __flush_tlb_all(); 377 378 if (cache && boot_cpu_data.x86 >= 4) 379 wbinvd(); 380 } 381 382 static void cpa_flush_all(unsigned long cache) 383 { 384 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 385 386 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 387 } 388 389 static void __cpa_flush_tlb(void *data) 390 { 391 struct cpa_data *cpa = data; 392 unsigned int i; 393 394 for (i = 0; i < cpa->numpages; i++) 395 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 396 } 397 398 static void cpa_flush(struct cpa_data *data, int cache) 399 { 400 struct cpa_data *cpa = data; 401 unsigned int i; 402 403 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 404 405 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 406 cpa_flush_all(cache); 407 return; 408 } 409 410 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 411 flush_tlb_all(); 412 else 413 on_each_cpu(__cpa_flush_tlb, cpa, 1); 414 415 if (!cache) 416 return; 417 418 mb(); 419 for (i = 0; i < cpa->numpages; i++) { 420 unsigned long addr = __cpa_addr(cpa, i); 421 unsigned int level; 422 423 pte_t *pte = lookup_address(addr, &level); 424 425 /* 426 * Only flush present addresses: 427 */ 428 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 429 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 430 } 431 mb(); 432 } 433 434 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 435 unsigned long r2_start, unsigned long r2_end) 436 { 437 return (r1_start <= r2_end && r1_end >= r2_start) || 438 (r2_start <= r1_end && r2_end >= r1_start); 439 } 440 441 #ifdef CONFIG_PCI_BIOS 442 /* 443 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 444 * based config access (CONFIG_PCI_GOBIOS) support. 445 */ 446 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 447 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 448 449 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 450 { 451 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 452 return _PAGE_NX; 453 return 0; 454 } 455 #else 456 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 457 { 458 return 0; 459 } 460 #endif 461 462 /* 463 * The .rodata section needs to be read-only. Using the pfn catches all 464 * aliases. This also includes __ro_after_init, so do not enforce until 465 * kernel_set_to_readonly is true. 466 */ 467 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 468 { 469 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 470 471 /* 472 * Note: __end_rodata is at page aligned and not inclusive, so 473 * subtract 1 to get the last enforced PFN in the rodata area. 474 */ 475 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 476 477 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 478 return _PAGE_RW; 479 return 0; 480 } 481 482 /* 483 * Protect kernel text against becoming non executable by forbidding 484 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 485 * out of which the kernel actually executes. Do not protect the low 486 * mapping. 487 * 488 * This does not cover __inittext since that is gone after boot. 489 */ 490 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 491 { 492 unsigned long t_end = (unsigned long)_etext - 1; 493 unsigned long t_start = (unsigned long)_text; 494 495 if (overlaps(start, end, t_start, t_end)) 496 return _PAGE_NX; 497 return 0; 498 } 499 500 #if defined(CONFIG_X86_64) 501 /* 502 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 503 * kernel text mappings for the large page aligned text, rodata sections 504 * will be always read-only. For the kernel identity mappings covering the 505 * holes caused by this alignment can be anything that user asks. 506 * 507 * This will preserve the large page mappings for kernel text/data at no 508 * extra cost. 509 */ 510 static pgprotval_t protect_kernel_text_ro(unsigned long start, 511 unsigned long end) 512 { 513 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 514 unsigned long t_start = (unsigned long)_text; 515 unsigned int level; 516 517 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 518 return 0; 519 /* 520 * Don't enforce the !RW mapping for the kernel text mapping, if 521 * the current mapping is already using small page mapping. No 522 * need to work hard to preserve large page mappings in this case. 523 * 524 * This also fixes the Linux Xen paravirt guest boot failure caused 525 * by unexpected read-only mappings for kernel identity 526 * mappings. In this paravirt guest case, the kernel text mapping 527 * and the kernel identity mapping share the same page-table pages, 528 * so the protections for kernel text and identity mappings have to 529 * be the same. 530 */ 531 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 532 return _PAGE_RW; 533 return 0; 534 } 535 #else 536 static pgprotval_t protect_kernel_text_ro(unsigned long start, 537 unsigned long end) 538 { 539 return 0; 540 } 541 #endif 542 543 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 544 { 545 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 546 } 547 548 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 549 unsigned long start, unsigned long end, 550 unsigned long pfn, const char *txt) 551 { 552 static const char *lvltxt[] = { 553 [CPA_CONFLICT] = "conflict", 554 [CPA_PROTECT] = "protect", 555 [CPA_DETECT] = "detect", 556 }; 557 558 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 559 return; 560 561 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 562 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 563 (unsigned long long)val); 564 } 565 566 /* 567 * Certain areas of memory on x86 require very specific protection flags, 568 * for example the BIOS area or kernel text. Callers don't always get this 569 * right (again, ioremap() on BIOS memory is not uncommon) so this function 570 * checks and fixes these known static required protection bits. 571 */ 572 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 573 unsigned long pfn, unsigned long npg, 574 unsigned long lpsize, int warnlvl) 575 { 576 pgprotval_t forbidden, res; 577 unsigned long end; 578 579 /* 580 * There is no point in checking RW/NX conflicts when the requested 581 * mapping is setting the page !PRESENT. 582 */ 583 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 584 return prot; 585 586 /* Operate on the virtual address */ 587 end = start + npg * PAGE_SIZE - 1; 588 589 res = protect_kernel_text(start, end); 590 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 591 forbidden = res; 592 593 /* 594 * Special case to preserve a large page. If the change spawns the 595 * full large page mapping then there is no point to split it 596 * up. Happens with ftrace and is going to be removed once ftrace 597 * switched to text_poke(). 598 */ 599 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 600 res = protect_kernel_text_ro(start, end); 601 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 602 forbidden |= res; 603 } 604 605 /* Check the PFN directly */ 606 res = protect_pci_bios(pfn, pfn + npg - 1); 607 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 608 forbidden |= res; 609 610 res = protect_rodata(pfn, pfn + npg - 1); 611 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 612 forbidden |= res; 613 614 return __pgprot(pgprot_val(prot) & ~forbidden); 615 } 616 617 /* 618 * Validate strict W^X semantics. 619 */ 620 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, 621 unsigned long pfn, unsigned long npg) 622 { 623 unsigned long end; 624 625 /* 626 * 32-bit has some unfixable W+X issues, like EFI code 627 * and writeable data being in the same page. Disable 628 * detection and enforcement there. 629 */ 630 if (IS_ENABLED(CONFIG_X86_32)) 631 return new; 632 633 /* Only verify when NX is supported: */ 634 if (!(__supported_pte_mask & _PAGE_NX)) 635 return new; 636 637 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) 638 return new; 639 640 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) 641 return new; 642 643 end = start + npg * PAGE_SIZE - 1; 644 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", 645 (unsigned long long)pgprot_val(old), 646 (unsigned long long)pgprot_val(new), 647 start, end, pfn); 648 649 /* 650 * For now, allow all permission change attempts by returning the 651 * attempted permissions. This can 'return old' to actively 652 * refuse the permission change at a later time. 653 */ 654 return new; 655 } 656 657 /* 658 * Lookup the page table entry for a virtual address in a specific pgd. 659 * Return a pointer to the entry and the level of the mapping. 660 */ 661 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 662 unsigned int *level) 663 { 664 p4d_t *p4d; 665 pud_t *pud; 666 pmd_t *pmd; 667 668 *level = PG_LEVEL_NONE; 669 670 if (pgd_none(*pgd)) 671 return NULL; 672 673 p4d = p4d_offset(pgd, address); 674 if (p4d_none(*p4d)) 675 return NULL; 676 677 *level = PG_LEVEL_512G; 678 if (p4d_large(*p4d) || !p4d_present(*p4d)) 679 return (pte_t *)p4d; 680 681 pud = pud_offset(p4d, address); 682 if (pud_none(*pud)) 683 return NULL; 684 685 *level = PG_LEVEL_1G; 686 if (pud_large(*pud) || !pud_present(*pud)) 687 return (pte_t *)pud; 688 689 pmd = pmd_offset(pud, address); 690 if (pmd_none(*pmd)) 691 return NULL; 692 693 *level = PG_LEVEL_2M; 694 if (pmd_large(*pmd) || !pmd_present(*pmd)) 695 return (pte_t *)pmd; 696 697 *level = PG_LEVEL_4K; 698 699 return pte_offset_kernel(pmd, address); 700 } 701 702 /* 703 * Lookup the page table entry for a virtual address. Return a pointer 704 * to the entry and the level of the mapping. 705 * 706 * Note: We return pud and pmd either when the entry is marked large 707 * or when the present bit is not set. Otherwise we would return a 708 * pointer to a nonexisting mapping. 709 */ 710 pte_t *lookup_address(unsigned long address, unsigned int *level) 711 { 712 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 713 } 714 EXPORT_SYMBOL_GPL(lookup_address); 715 716 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 717 unsigned int *level) 718 { 719 if (cpa->pgd) 720 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 721 address, level); 722 723 return lookup_address(address, level); 724 } 725 726 /* 727 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 728 * or NULL if not present. 729 */ 730 pmd_t *lookup_pmd_address(unsigned long address) 731 { 732 pgd_t *pgd; 733 p4d_t *p4d; 734 pud_t *pud; 735 736 pgd = pgd_offset_k(address); 737 if (pgd_none(*pgd)) 738 return NULL; 739 740 p4d = p4d_offset(pgd, address); 741 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 742 return NULL; 743 744 pud = pud_offset(p4d, address); 745 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 746 return NULL; 747 748 return pmd_offset(pud, address); 749 } 750 751 /* 752 * This is necessary because __pa() does not work on some 753 * kinds of memory, like vmalloc() or the alloc_remap() 754 * areas on 32-bit NUMA systems. The percpu areas can 755 * end up in this kind of memory, for instance. 756 * 757 * This could be optimized, but it is only intended to be 758 * used at initialization time, and keeping it 759 * unoptimized should increase the testing coverage for 760 * the more obscure platforms. 761 */ 762 phys_addr_t slow_virt_to_phys(void *__virt_addr) 763 { 764 unsigned long virt_addr = (unsigned long)__virt_addr; 765 phys_addr_t phys_addr; 766 unsigned long offset; 767 enum pg_level level; 768 pte_t *pte; 769 770 pte = lookup_address(virt_addr, &level); 771 BUG_ON(!pte); 772 773 /* 774 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 775 * before being left-shifted PAGE_SHIFT bits -- this trick is to 776 * make 32-PAE kernel work correctly. 777 */ 778 switch (level) { 779 case PG_LEVEL_1G: 780 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 781 offset = virt_addr & ~PUD_MASK; 782 break; 783 case PG_LEVEL_2M: 784 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 785 offset = virt_addr & ~PMD_MASK; 786 break; 787 default: 788 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 789 offset = virt_addr & ~PAGE_MASK; 790 } 791 792 return (phys_addr_t)(phys_addr | offset); 793 } 794 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 795 796 /* 797 * Set the new pmd in all the pgds we know about: 798 */ 799 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 800 { 801 /* change init_mm */ 802 set_pte_atomic(kpte, pte); 803 #ifdef CONFIG_X86_32 804 if (!SHARED_KERNEL_PMD) { 805 struct page *page; 806 807 list_for_each_entry(page, &pgd_list, lru) { 808 pgd_t *pgd; 809 p4d_t *p4d; 810 pud_t *pud; 811 pmd_t *pmd; 812 813 pgd = (pgd_t *)page_address(page) + pgd_index(address); 814 p4d = p4d_offset(pgd, address); 815 pud = pud_offset(p4d, address); 816 pmd = pmd_offset(pud, address); 817 set_pte_atomic((pte_t *)pmd, pte); 818 } 819 } 820 #endif 821 } 822 823 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 824 { 825 /* 826 * _PAGE_GLOBAL means "global page" for present PTEs. 827 * But, it is also used to indicate _PAGE_PROTNONE 828 * for non-present PTEs. 829 * 830 * This ensures that a _PAGE_GLOBAL PTE going from 831 * present to non-present is not confused as 832 * _PAGE_PROTNONE. 833 */ 834 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 835 pgprot_val(prot) &= ~_PAGE_GLOBAL; 836 837 return prot; 838 } 839 840 static int __should_split_large_page(pte_t *kpte, unsigned long address, 841 struct cpa_data *cpa) 842 { 843 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 844 pgprot_t old_prot, new_prot, req_prot, chk_prot; 845 pte_t new_pte, *tmp; 846 enum pg_level level; 847 848 /* 849 * Check for races, another CPU might have split this page 850 * up already: 851 */ 852 tmp = _lookup_address_cpa(cpa, address, &level); 853 if (tmp != kpte) 854 return 1; 855 856 switch (level) { 857 case PG_LEVEL_2M: 858 old_prot = pmd_pgprot(*(pmd_t *)kpte); 859 old_pfn = pmd_pfn(*(pmd_t *)kpte); 860 cpa_inc_2m_checked(); 861 break; 862 case PG_LEVEL_1G: 863 old_prot = pud_pgprot(*(pud_t *)kpte); 864 old_pfn = pud_pfn(*(pud_t *)kpte); 865 cpa_inc_1g_checked(); 866 break; 867 default: 868 return -EINVAL; 869 } 870 871 psize = page_level_size(level); 872 pmask = page_level_mask(level); 873 874 /* 875 * Calculate the number of pages, which fit into this large 876 * page starting at address: 877 */ 878 lpaddr = (address + psize) & pmask; 879 numpages = (lpaddr - address) >> PAGE_SHIFT; 880 if (numpages < cpa->numpages) 881 cpa->numpages = numpages; 882 883 /* 884 * We are safe now. Check whether the new pgprot is the same: 885 * Convert protection attributes to 4k-format, as cpa->mask* are set 886 * up accordingly. 887 */ 888 889 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 890 req_prot = pgprot_large_2_4k(old_prot); 891 892 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 893 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 894 895 /* 896 * req_prot is in format of 4k pages. It must be converted to large 897 * page format: the caching mode includes the PAT bit located at 898 * different bit positions in the two formats. 899 */ 900 req_prot = pgprot_4k_2_large(req_prot); 901 req_prot = pgprot_clear_protnone_bits(req_prot); 902 if (pgprot_val(req_prot) & _PAGE_PRESENT) 903 pgprot_val(req_prot) |= _PAGE_PSE; 904 905 /* 906 * old_pfn points to the large page base pfn. So we need to add the 907 * offset of the virtual address: 908 */ 909 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 910 cpa->pfn = pfn; 911 912 /* 913 * Calculate the large page base address and the number of 4K pages 914 * in the large page 915 */ 916 lpaddr = address & pmask; 917 numpages = psize >> PAGE_SHIFT; 918 919 /* 920 * Sanity check that the existing mapping is correct versus the static 921 * protections. static_protections() guards against !PRESENT, so no 922 * extra conditional required here. 923 */ 924 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 925 psize, CPA_CONFLICT); 926 927 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 928 /* 929 * Split the large page and tell the split code to 930 * enforce static protections. 931 */ 932 cpa->force_static_prot = 1; 933 return 1; 934 } 935 936 /* 937 * Optimization: If the requested pgprot is the same as the current 938 * pgprot, then the large page can be preserved and no updates are 939 * required independent of alignment and length of the requested 940 * range. The above already established that the current pgprot is 941 * correct, which in consequence makes the requested pgprot correct 942 * as well if it is the same. The static protection scan below will 943 * not come to a different conclusion. 944 */ 945 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 946 cpa_inc_lp_sameprot(level); 947 return 0; 948 } 949 950 /* 951 * If the requested range does not cover the full page, split it up 952 */ 953 if (address != lpaddr || cpa->numpages != numpages) 954 return 1; 955 956 /* 957 * Check whether the requested pgprot is conflicting with a static 958 * protection requirement in the large page. 959 */ 960 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 961 psize, CPA_DETECT); 962 963 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages); 964 965 /* 966 * If there is a conflict, split the large page. 967 * 968 * There used to be a 4k wise evaluation trying really hard to 969 * preserve the large pages, but experimentation has shown, that this 970 * does not help at all. There might be corner cases which would 971 * preserve one large page occasionally, but it's really not worth the 972 * extra code and cycles for the common case. 973 */ 974 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 975 return 1; 976 977 /* All checks passed. Update the large page mapping. */ 978 new_pte = pfn_pte(old_pfn, new_prot); 979 __set_pmd_pte(kpte, address, new_pte); 980 cpa->flags |= CPA_FLUSHTLB; 981 cpa_inc_lp_preserved(level); 982 return 0; 983 } 984 985 static int should_split_large_page(pte_t *kpte, unsigned long address, 986 struct cpa_data *cpa) 987 { 988 int do_split; 989 990 if (cpa->force_split) 991 return 1; 992 993 spin_lock(&pgd_lock); 994 do_split = __should_split_large_page(kpte, address, cpa); 995 spin_unlock(&pgd_lock); 996 997 return do_split; 998 } 999 1000 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 1001 pgprot_t ref_prot, unsigned long address, 1002 unsigned long size) 1003 { 1004 unsigned int npg = PFN_DOWN(size); 1005 pgprot_t prot; 1006 1007 /* 1008 * If should_split_large_page() discovered an inconsistent mapping, 1009 * remove the invalid protection in the split mapping. 1010 */ 1011 if (!cpa->force_static_prot) 1012 goto set; 1013 1014 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1015 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 1016 1017 if (pgprot_val(prot) == pgprot_val(ref_prot)) 1018 goto set; 1019 1020 /* 1021 * If this is splitting a PMD, fix it up. PUD splits cannot be 1022 * fixed trivially as that would require to rescan the newly 1023 * installed PMD mappings after returning from split_large_page() 1024 * so an eventual further split can allocate the necessary PTE 1025 * pages. Warn for now and revisit it in case this actually 1026 * happens. 1027 */ 1028 if (size == PAGE_SIZE) 1029 ref_prot = prot; 1030 else 1031 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 1032 set: 1033 set_pte(pte, pfn_pte(pfn, ref_prot)); 1034 } 1035 1036 static int 1037 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 1038 struct page *base) 1039 { 1040 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 1041 pte_t *pbase = (pte_t *)page_address(base); 1042 unsigned int i, level; 1043 pgprot_t ref_prot; 1044 pte_t *tmp; 1045 1046 spin_lock(&pgd_lock); 1047 /* 1048 * Check for races, another CPU might have split this page 1049 * up for us already: 1050 */ 1051 tmp = _lookup_address_cpa(cpa, address, &level); 1052 if (tmp != kpte) { 1053 spin_unlock(&pgd_lock); 1054 return 1; 1055 } 1056 1057 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 1058 1059 switch (level) { 1060 case PG_LEVEL_2M: 1061 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 1062 /* 1063 * Clear PSE (aka _PAGE_PAT) and move 1064 * PAT bit to correct position. 1065 */ 1066 ref_prot = pgprot_large_2_4k(ref_prot); 1067 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 1068 lpaddr = address & PMD_MASK; 1069 lpinc = PAGE_SIZE; 1070 break; 1071 1072 case PG_LEVEL_1G: 1073 ref_prot = pud_pgprot(*(pud_t *)kpte); 1074 ref_pfn = pud_pfn(*(pud_t *)kpte); 1075 pfninc = PMD_SIZE >> PAGE_SHIFT; 1076 lpaddr = address & PUD_MASK; 1077 lpinc = PMD_SIZE; 1078 /* 1079 * Clear the PSE flags if the PRESENT flag is not set 1080 * otherwise pmd_present/pmd_huge will return true 1081 * even on a non present pmd. 1082 */ 1083 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1084 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1085 break; 1086 1087 default: 1088 spin_unlock(&pgd_lock); 1089 return 1; 1090 } 1091 1092 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1093 1094 /* 1095 * Get the target pfn from the original entry: 1096 */ 1097 pfn = ref_pfn; 1098 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1099 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1100 1101 if (virt_addr_valid(address)) { 1102 unsigned long pfn = PFN_DOWN(__pa(address)); 1103 1104 if (pfn_range_is_mapped(pfn, pfn + 1)) 1105 split_page_count(level); 1106 } 1107 1108 /* 1109 * Install the new, split up pagetable. 1110 * 1111 * We use the standard kernel pagetable protections for the new 1112 * pagetable protections, the actual ptes set above control the 1113 * primary protection behavior: 1114 */ 1115 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1116 1117 /* 1118 * Do a global flush tlb after splitting the large page 1119 * and before we do the actual change page attribute in the PTE. 1120 * 1121 * Without this, we violate the TLB application note, that says: 1122 * "The TLBs may contain both ordinary and large-page 1123 * translations for a 4-KByte range of linear addresses. This 1124 * may occur if software modifies the paging structures so that 1125 * the page size used for the address range changes. If the two 1126 * translations differ with respect to page frame or attributes 1127 * (e.g., permissions), processor behavior is undefined and may 1128 * be implementation-specific." 1129 * 1130 * We do this global tlb flush inside the cpa_lock, so that we 1131 * don't allow any other cpu, with stale tlb entries change the 1132 * page attribute in parallel, that also falls into the 1133 * just split large page entry. 1134 */ 1135 flush_tlb_all(); 1136 spin_unlock(&pgd_lock); 1137 1138 return 0; 1139 } 1140 1141 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1142 unsigned long address) 1143 { 1144 struct page *base; 1145 1146 if (!debug_pagealloc_enabled()) 1147 spin_unlock(&cpa_lock); 1148 base = alloc_pages(GFP_KERNEL, 0); 1149 if (!debug_pagealloc_enabled()) 1150 spin_lock(&cpa_lock); 1151 if (!base) 1152 return -ENOMEM; 1153 1154 if (__split_large_page(cpa, kpte, address, base)) 1155 __free_page(base); 1156 1157 return 0; 1158 } 1159 1160 static bool try_to_free_pte_page(pte_t *pte) 1161 { 1162 int i; 1163 1164 for (i = 0; i < PTRS_PER_PTE; i++) 1165 if (!pte_none(pte[i])) 1166 return false; 1167 1168 free_page((unsigned long)pte); 1169 return true; 1170 } 1171 1172 static bool try_to_free_pmd_page(pmd_t *pmd) 1173 { 1174 int i; 1175 1176 for (i = 0; i < PTRS_PER_PMD; i++) 1177 if (!pmd_none(pmd[i])) 1178 return false; 1179 1180 free_page((unsigned long)pmd); 1181 return true; 1182 } 1183 1184 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1185 { 1186 pte_t *pte = pte_offset_kernel(pmd, start); 1187 1188 while (start < end) { 1189 set_pte(pte, __pte(0)); 1190 1191 start += PAGE_SIZE; 1192 pte++; 1193 } 1194 1195 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1196 pmd_clear(pmd); 1197 return true; 1198 } 1199 return false; 1200 } 1201 1202 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1203 unsigned long start, unsigned long end) 1204 { 1205 if (unmap_pte_range(pmd, start, end)) 1206 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1207 pud_clear(pud); 1208 } 1209 1210 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1211 { 1212 pmd_t *pmd = pmd_offset(pud, start); 1213 1214 /* 1215 * Not on a 2MB page boundary? 1216 */ 1217 if (start & (PMD_SIZE - 1)) { 1218 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1219 unsigned long pre_end = min_t(unsigned long, end, next_page); 1220 1221 __unmap_pmd_range(pud, pmd, start, pre_end); 1222 1223 start = pre_end; 1224 pmd++; 1225 } 1226 1227 /* 1228 * Try to unmap in 2M chunks. 1229 */ 1230 while (end - start >= PMD_SIZE) { 1231 if (pmd_large(*pmd)) 1232 pmd_clear(pmd); 1233 else 1234 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1235 1236 start += PMD_SIZE; 1237 pmd++; 1238 } 1239 1240 /* 1241 * 4K leftovers? 1242 */ 1243 if (start < end) 1244 return __unmap_pmd_range(pud, pmd, start, end); 1245 1246 /* 1247 * Try again to free the PMD page if haven't succeeded above. 1248 */ 1249 if (!pud_none(*pud)) 1250 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1251 pud_clear(pud); 1252 } 1253 1254 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1255 { 1256 pud_t *pud = pud_offset(p4d, start); 1257 1258 /* 1259 * Not on a GB page boundary? 1260 */ 1261 if (start & (PUD_SIZE - 1)) { 1262 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1263 unsigned long pre_end = min_t(unsigned long, end, next_page); 1264 1265 unmap_pmd_range(pud, start, pre_end); 1266 1267 start = pre_end; 1268 pud++; 1269 } 1270 1271 /* 1272 * Try to unmap in 1G chunks? 1273 */ 1274 while (end - start >= PUD_SIZE) { 1275 1276 if (pud_large(*pud)) 1277 pud_clear(pud); 1278 else 1279 unmap_pmd_range(pud, start, start + PUD_SIZE); 1280 1281 start += PUD_SIZE; 1282 pud++; 1283 } 1284 1285 /* 1286 * 2M leftovers? 1287 */ 1288 if (start < end) 1289 unmap_pmd_range(pud, start, end); 1290 1291 /* 1292 * No need to try to free the PUD page because we'll free it in 1293 * populate_pgd's error path 1294 */ 1295 } 1296 1297 static int alloc_pte_page(pmd_t *pmd) 1298 { 1299 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1300 if (!pte) 1301 return -1; 1302 1303 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1304 return 0; 1305 } 1306 1307 static int alloc_pmd_page(pud_t *pud) 1308 { 1309 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1310 if (!pmd) 1311 return -1; 1312 1313 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1314 return 0; 1315 } 1316 1317 static void populate_pte(struct cpa_data *cpa, 1318 unsigned long start, unsigned long end, 1319 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1320 { 1321 pte_t *pte; 1322 1323 pte = pte_offset_kernel(pmd, start); 1324 1325 pgprot = pgprot_clear_protnone_bits(pgprot); 1326 1327 while (num_pages-- && start < end) { 1328 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1329 1330 start += PAGE_SIZE; 1331 cpa->pfn++; 1332 pte++; 1333 } 1334 } 1335 1336 static long populate_pmd(struct cpa_data *cpa, 1337 unsigned long start, unsigned long end, 1338 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1339 { 1340 long cur_pages = 0; 1341 pmd_t *pmd; 1342 pgprot_t pmd_pgprot; 1343 1344 /* 1345 * Not on a 2M boundary? 1346 */ 1347 if (start & (PMD_SIZE - 1)) { 1348 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1349 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1350 1351 pre_end = min_t(unsigned long, pre_end, next_page); 1352 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1353 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1354 1355 /* 1356 * Need a PTE page? 1357 */ 1358 pmd = pmd_offset(pud, start); 1359 if (pmd_none(*pmd)) 1360 if (alloc_pte_page(pmd)) 1361 return -1; 1362 1363 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1364 1365 start = pre_end; 1366 } 1367 1368 /* 1369 * We mapped them all? 1370 */ 1371 if (num_pages == cur_pages) 1372 return cur_pages; 1373 1374 pmd_pgprot = pgprot_4k_2_large(pgprot); 1375 1376 while (end - start >= PMD_SIZE) { 1377 1378 /* 1379 * We cannot use a 1G page so allocate a PMD page if needed. 1380 */ 1381 if (pud_none(*pud)) 1382 if (alloc_pmd_page(pud)) 1383 return -1; 1384 1385 pmd = pmd_offset(pud, start); 1386 1387 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1388 canon_pgprot(pmd_pgprot)))); 1389 1390 start += PMD_SIZE; 1391 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1392 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1393 } 1394 1395 /* 1396 * Map trailing 4K pages. 1397 */ 1398 if (start < end) { 1399 pmd = pmd_offset(pud, start); 1400 if (pmd_none(*pmd)) 1401 if (alloc_pte_page(pmd)) 1402 return -1; 1403 1404 populate_pte(cpa, start, end, num_pages - cur_pages, 1405 pmd, pgprot); 1406 } 1407 return num_pages; 1408 } 1409 1410 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1411 pgprot_t pgprot) 1412 { 1413 pud_t *pud; 1414 unsigned long end; 1415 long cur_pages = 0; 1416 pgprot_t pud_pgprot; 1417 1418 end = start + (cpa->numpages << PAGE_SHIFT); 1419 1420 /* 1421 * Not on a Gb page boundary? => map everything up to it with 1422 * smaller pages. 1423 */ 1424 if (start & (PUD_SIZE - 1)) { 1425 unsigned long pre_end; 1426 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1427 1428 pre_end = min_t(unsigned long, end, next_page); 1429 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1430 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1431 1432 pud = pud_offset(p4d, start); 1433 1434 /* 1435 * Need a PMD page? 1436 */ 1437 if (pud_none(*pud)) 1438 if (alloc_pmd_page(pud)) 1439 return -1; 1440 1441 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1442 pud, pgprot); 1443 if (cur_pages < 0) 1444 return cur_pages; 1445 1446 start = pre_end; 1447 } 1448 1449 /* We mapped them all? */ 1450 if (cpa->numpages == cur_pages) 1451 return cur_pages; 1452 1453 pud = pud_offset(p4d, start); 1454 pud_pgprot = pgprot_4k_2_large(pgprot); 1455 1456 /* 1457 * Map everything starting from the Gb boundary, possibly with 1G pages 1458 */ 1459 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1460 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1461 canon_pgprot(pud_pgprot)))); 1462 1463 start += PUD_SIZE; 1464 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1465 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1466 pud++; 1467 } 1468 1469 /* Map trailing leftover */ 1470 if (start < end) { 1471 long tmp; 1472 1473 pud = pud_offset(p4d, start); 1474 if (pud_none(*pud)) 1475 if (alloc_pmd_page(pud)) 1476 return -1; 1477 1478 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1479 pud, pgprot); 1480 if (tmp < 0) 1481 return cur_pages; 1482 1483 cur_pages += tmp; 1484 } 1485 return cur_pages; 1486 } 1487 1488 /* 1489 * Restrictions for kernel page table do not necessarily apply when mapping in 1490 * an alternate PGD. 1491 */ 1492 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1493 { 1494 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1495 pud_t *pud = NULL; /* shut up gcc */ 1496 p4d_t *p4d; 1497 pgd_t *pgd_entry; 1498 long ret; 1499 1500 pgd_entry = cpa->pgd + pgd_index(addr); 1501 1502 if (pgd_none(*pgd_entry)) { 1503 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1504 if (!p4d) 1505 return -1; 1506 1507 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1508 } 1509 1510 /* 1511 * Allocate a PUD page and hand it down for mapping. 1512 */ 1513 p4d = p4d_offset(pgd_entry, addr); 1514 if (p4d_none(*p4d)) { 1515 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1516 if (!pud) 1517 return -1; 1518 1519 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1520 } 1521 1522 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1523 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1524 1525 ret = populate_pud(cpa, addr, p4d, pgprot); 1526 if (ret < 0) { 1527 /* 1528 * Leave the PUD page in place in case some other CPU or thread 1529 * already found it, but remove any useless entries we just 1530 * added to it. 1531 */ 1532 unmap_pud_range(p4d, addr, 1533 addr + (cpa->numpages << PAGE_SHIFT)); 1534 return ret; 1535 } 1536 1537 cpa->numpages = ret; 1538 return 0; 1539 } 1540 1541 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1542 int primary) 1543 { 1544 if (cpa->pgd) { 1545 /* 1546 * Right now, we only execute this code path when mapping 1547 * the EFI virtual memory map regions, no other users 1548 * provide a ->pgd value. This may change in the future. 1549 */ 1550 return populate_pgd(cpa, vaddr); 1551 } 1552 1553 /* 1554 * Ignore all non primary paths. 1555 */ 1556 if (!primary) { 1557 cpa->numpages = 1; 1558 return 0; 1559 } 1560 1561 /* 1562 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1563 * to have holes. 1564 * Also set numpages to '1' indicating that we processed cpa req for 1565 * one virtual address page and its pfn. TBD: numpages can be set based 1566 * on the initial value and the level returned by lookup_address(). 1567 */ 1568 if (within(vaddr, PAGE_OFFSET, 1569 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1570 cpa->numpages = 1; 1571 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1572 return 0; 1573 1574 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1575 /* Faults in the highmap are OK, so do not warn: */ 1576 return -EFAULT; 1577 } else { 1578 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1579 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1580 *cpa->vaddr); 1581 1582 return -EFAULT; 1583 } 1584 } 1585 1586 static int __change_page_attr(struct cpa_data *cpa, int primary) 1587 { 1588 unsigned long address; 1589 int do_split, err; 1590 unsigned int level; 1591 pte_t *kpte, old_pte; 1592 1593 address = __cpa_addr(cpa, cpa->curpage); 1594 repeat: 1595 kpte = _lookup_address_cpa(cpa, address, &level); 1596 if (!kpte) 1597 return __cpa_process_fault(cpa, address, primary); 1598 1599 old_pte = *kpte; 1600 if (pte_none(old_pte)) 1601 return __cpa_process_fault(cpa, address, primary); 1602 1603 if (level == PG_LEVEL_4K) { 1604 pte_t new_pte; 1605 pgprot_t old_prot = pte_pgprot(old_pte); 1606 pgprot_t new_prot = pte_pgprot(old_pte); 1607 unsigned long pfn = pte_pfn(old_pte); 1608 1609 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1610 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1611 1612 cpa_inc_4k_install(); 1613 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1614 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1615 CPA_PROTECT); 1616 1617 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1); 1618 1619 new_prot = pgprot_clear_protnone_bits(new_prot); 1620 1621 /* 1622 * We need to keep the pfn from the existing PTE, 1623 * after all we're only going to change it's attributes 1624 * not the memory it points to 1625 */ 1626 new_pte = pfn_pte(pfn, new_prot); 1627 cpa->pfn = pfn; 1628 /* 1629 * Do we really change anything ? 1630 */ 1631 if (pte_val(old_pte) != pte_val(new_pte)) { 1632 set_pte_atomic(kpte, new_pte); 1633 cpa->flags |= CPA_FLUSHTLB; 1634 } 1635 cpa->numpages = 1; 1636 return 0; 1637 } 1638 1639 /* 1640 * Check, whether we can keep the large page intact 1641 * and just change the pte: 1642 */ 1643 do_split = should_split_large_page(kpte, address, cpa); 1644 /* 1645 * When the range fits into the existing large page, 1646 * return. cp->numpages and cpa->tlbflush have been updated in 1647 * try_large_page: 1648 */ 1649 if (do_split <= 0) 1650 return do_split; 1651 1652 /* 1653 * We have to split the large page: 1654 */ 1655 err = split_large_page(cpa, kpte, address); 1656 if (!err) 1657 goto repeat; 1658 1659 return err; 1660 } 1661 1662 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); 1663 1664 /* 1665 * Check the directmap and "high kernel map" 'aliases'. 1666 */ 1667 static int cpa_process_alias(struct cpa_data *cpa) 1668 { 1669 struct cpa_data alias_cpa; 1670 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1671 unsigned long vaddr; 1672 int ret; 1673 1674 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1675 return 0; 1676 1677 /* 1678 * No need to redo, when the primary call touched the direct 1679 * mapping already: 1680 */ 1681 vaddr = __cpa_addr(cpa, cpa->curpage); 1682 if (!(within(vaddr, PAGE_OFFSET, 1683 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1684 1685 alias_cpa = *cpa; 1686 alias_cpa.vaddr = &laddr; 1687 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1688 alias_cpa.curpage = 0; 1689 1690 /* Directmap always has NX set, do not modify. */ 1691 if (__supported_pte_mask & _PAGE_NX) { 1692 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1693 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1694 } 1695 1696 cpa->force_flush_all = 1; 1697 1698 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1699 if (ret) 1700 return ret; 1701 } 1702 1703 #ifdef CONFIG_X86_64 1704 /* 1705 * If the primary call didn't touch the high mapping already 1706 * and the physical address is inside the kernel map, we need 1707 * to touch the high mapped kernel as well: 1708 */ 1709 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1710 __cpa_pfn_in_highmap(cpa->pfn)) { 1711 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1712 __START_KERNEL_map - phys_base; 1713 alias_cpa = *cpa; 1714 alias_cpa.vaddr = &temp_cpa_vaddr; 1715 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1716 alias_cpa.curpage = 0; 1717 1718 /* 1719 * [_text, _brk_end) also covers data, do not modify NX except 1720 * in cases where the highmap is the primary target. 1721 */ 1722 if (__supported_pte_mask & _PAGE_NX) { 1723 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1724 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1725 } 1726 1727 cpa->force_flush_all = 1; 1728 /* 1729 * The high mapping range is imprecise, so ignore the 1730 * return value. 1731 */ 1732 __change_page_attr_set_clr(&alias_cpa, 0); 1733 } 1734 #endif 1735 1736 return 0; 1737 } 1738 1739 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) 1740 { 1741 unsigned long numpages = cpa->numpages; 1742 unsigned long rempages = numpages; 1743 int ret = 0; 1744 1745 /* 1746 * No changes, easy! 1747 */ 1748 if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && 1749 !cpa->force_split) 1750 return ret; 1751 1752 while (rempages) { 1753 /* 1754 * Store the remaining nr of pages for the large page 1755 * preservation check. 1756 */ 1757 cpa->numpages = rempages; 1758 /* for array changes, we can't use large page */ 1759 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1760 cpa->numpages = 1; 1761 1762 if (!debug_pagealloc_enabled()) 1763 spin_lock(&cpa_lock); 1764 ret = __change_page_attr(cpa, primary); 1765 if (!debug_pagealloc_enabled()) 1766 spin_unlock(&cpa_lock); 1767 if (ret) 1768 goto out; 1769 1770 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { 1771 ret = cpa_process_alias(cpa); 1772 if (ret) 1773 goto out; 1774 } 1775 1776 /* 1777 * Adjust the number of pages with the result of the 1778 * CPA operation. Either a large page has been 1779 * preserved or a single page update happened. 1780 */ 1781 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1782 rempages -= cpa->numpages; 1783 cpa->curpage += cpa->numpages; 1784 } 1785 1786 out: 1787 /* Restore the original numpages */ 1788 cpa->numpages = numpages; 1789 return ret; 1790 } 1791 1792 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1793 pgprot_t mask_set, pgprot_t mask_clr, 1794 int force_split, int in_flag, 1795 struct page **pages) 1796 { 1797 struct cpa_data cpa; 1798 int ret, cache; 1799 1800 memset(&cpa, 0, sizeof(cpa)); 1801 1802 /* 1803 * Check, if we are requested to set a not supported 1804 * feature. Clearing non-supported features is OK. 1805 */ 1806 mask_set = canon_pgprot(mask_set); 1807 1808 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1809 return 0; 1810 1811 /* Ensure we are PAGE_SIZE aligned */ 1812 if (in_flag & CPA_ARRAY) { 1813 int i; 1814 for (i = 0; i < numpages; i++) { 1815 if (addr[i] & ~PAGE_MASK) { 1816 addr[i] &= PAGE_MASK; 1817 WARN_ON_ONCE(1); 1818 } 1819 } 1820 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1821 /* 1822 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1823 * No need to check in that case 1824 */ 1825 if (*addr & ~PAGE_MASK) { 1826 *addr &= PAGE_MASK; 1827 /* 1828 * People should not be passing in unaligned addresses: 1829 */ 1830 WARN_ON_ONCE(1); 1831 } 1832 } 1833 1834 /* Must avoid aliasing mappings in the highmem code */ 1835 kmap_flush_unused(); 1836 1837 vm_unmap_aliases(); 1838 1839 cpa.vaddr = addr; 1840 cpa.pages = pages; 1841 cpa.numpages = numpages; 1842 cpa.mask_set = mask_set; 1843 cpa.mask_clr = mask_clr; 1844 cpa.flags = in_flag; 1845 cpa.curpage = 0; 1846 cpa.force_split = force_split; 1847 1848 ret = __change_page_attr_set_clr(&cpa, 1); 1849 1850 /* 1851 * Check whether we really changed something: 1852 */ 1853 if (!(cpa.flags & CPA_FLUSHTLB)) 1854 goto out; 1855 1856 /* 1857 * No need to flush, when we did not set any of the caching 1858 * attributes: 1859 */ 1860 cache = !!pgprot2cachemode(mask_set); 1861 1862 /* 1863 * On error; flush everything to be sure. 1864 */ 1865 if (ret) { 1866 cpa_flush_all(cache); 1867 goto out; 1868 } 1869 1870 cpa_flush(&cpa, cache); 1871 out: 1872 return ret; 1873 } 1874 1875 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1876 pgprot_t mask, int array) 1877 { 1878 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1879 (array ? CPA_ARRAY : 0), NULL); 1880 } 1881 1882 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1883 pgprot_t mask, int array) 1884 { 1885 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1886 (array ? CPA_ARRAY : 0), NULL); 1887 } 1888 1889 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1890 pgprot_t mask) 1891 { 1892 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1893 CPA_PAGES_ARRAY, pages); 1894 } 1895 1896 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1897 pgprot_t mask) 1898 { 1899 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1900 CPA_PAGES_ARRAY, pages); 1901 } 1902 1903 /* 1904 * __set_memory_prot is an internal helper for callers that have been passed 1905 * a pgprot_t value from upper layers and a reservation has already been taken. 1906 * If you want to set the pgprot to a specific page protocol, use the 1907 * set_memory_xx() functions. 1908 */ 1909 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1910 { 1911 return change_page_attr_set_clr(&addr, numpages, prot, 1912 __pgprot(~pgprot_val(prot)), 0, 0, 1913 NULL); 1914 } 1915 1916 int _set_memory_uc(unsigned long addr, int numpages) 1917 { 1918 /* 1919 * for now UC MINUS. see comments in ioremap() 1920 * If you really need strong UC use ioremap_uc(), but note 1921 * that you cannot override IO areas with set_memory_*() as 1922 * these helpers cannot work with IO memory. 1923 */ 1924 return change_page_attr_set(&addr, numpages, 1925 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1926 0); 1927 } 1928 1929 int set_memory_uc(unsigned long addr, int numpages) 1930 { 1931 int ret; 1932 1933 /* 1934 * for now UC MINUS. see comments in ioremap() 1935 */ 1936 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1937 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1938 if (ret) 1939 goto out_err; 1940 1941 ret = _set_memory_uc(addr, numpages); 1942 if (ret) 1943 goto out_free; 1944 1945 return 0; 1946 1947 out_free: 1948 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1949 out_err: 1950 return ret; 1951 } 1952 EXPORT_SYMBOL(set_memory_uc); 1953 1954 int _set_memory_wc(unsigned long addr, int numpages) 1955 { 1956 int ret; 1957 1958 ret = change_page_attr_set(&addr, numpages, 1959 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1960 0); 1961 if (!ret) { 1962 ret = change_page_attr_set_clr(&addr, numpages, 1963 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1964 __pgprot(_PAGE_CACHE_MASK), 1965 0, 0, NULL); 1966 } 1967 return ret; 1968 } 1969 1970 int set_memory_wc(unsigned long addr, int numpages) 1971 { 1972 int ret; 1973 1974 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1975 _PAGE_CACHE_MODE_WC, NULL); 1976 if (ret) 1977 return ret; 1978 1979 ret = _set_memory_wc(addr, numpages); 1980 if (ret) 1981 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1982 1983 return ret; 1984 } 1985 EXPORT_SYMBOL(set_memory_wc); 1986 1987 int _set_memory_wt(unsigned long addr, int numpages) 1988 { 1989 return change_page_attr_set(&addr, numpages, 1990 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1991 } 1992 1993 int _set_memory_wb(unsigned long addr, int numpages) 1994 { 1995 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1996 return change_page_attr_clear(&addr, numpages, 1997 __pgprot(_PAGE_CACHE_MASK), 0); 1998 } 1999 2000 int set_memory_wb(unsigned long addr, int numpages) 2001 { 2002 int ret; 2003 2004 ret = _set_memory_wb(addr, numpages); 2005 if (ret) 2006 return ret; 2007 2008 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 2009 return 0; 2010 } 2011 EXPORT_SYMBOL(set_memory_wb); 2012 2013 /* Prevent speculative access to a page by marking it not-present */ 2014 #ifdef CONFIG_X86_64 2015 int set_mce_nospec(unsigned long pfn) 2016 { 2017 unsigned long decoy_addr; 2018 int rc; 2019 2020 /* SGX pages are not in the 1:1 map */ 2021 if (arch_is_platform_page(pfn << PAGE_SHIFT)) 2022 return 0; 2023 /* 2024 * We would like to just call: 2025 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); 2026 * but doing that would radically increase the odds of a 2027 * speculative access to the poison page because we'd have 2028 * the virtual address of the kernel 1:1 mapping sitting 2029 * around in registers. 2030 * Instead we get tricky. We create a non-canonical address 2031 * that looks just like the one we want, but has bit 63 flipped. 2032 * This relies on set_memory_XX() properly sanitizing any __pa() 2033 * results with __PHYSICAL_MASK or PTE_PFN_MASK. 2034 */ 2035 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); 2036 2037 rc = set_memory_np(decoy_addr, 1); 2038 if (rc) 2039 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); 2040 return rc; 2041 } 2042 2043 static int set_memory_p(unsigned long *addr, int numpages) 2044 { 2045 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2046 } 2047 2048 /* Restore full speculative operation to the pfn. */ 2049 int clear_mce_nospec(unsigned long pfn) 2050 { 2051 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); 2052 2053 return set_memory_p(&addr, 1); 2054 } 2055 EXPORT_SYMBOL_GPL(clear_mce_nospec); 2056 #endif /* CONFIG_X86_64 */ 2057 2058 int set_memory_x(unsigned long addr, int numpages) 2059 { 2060 if (!(__supported_pte_mask & _PAGE_NX)) 2061 return 0; 2062 2063 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 2064 } 2065 2066 int set_memory_nx(unsigned long addr, int numpages) 2067 { 2068 if (!(__supported_pte_mask & _PAGE_NX)) 2069 return 0; 2070 2071 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 2072 } 2073 2074 int set_memory_ro(unsigned long addr, int numpages) 2075 { 2076 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 2077 } 2078 2079 int set_memory_rox(unsigned long addr, int numpages) 2080 { 2081 pgprot_t clr = __pgprot(_PAGE_RW); 2082 2083 if (__supported_pte_mask & _PAGE_NX) 2084 clr.pgprot |= _PAGE_NX; 2085 2086 return change_page_attr_clear(&addr, numpages, clr, 0); 2087 } 2088 2089 int set_memory_rw(unsigned long addr, int numpages) 2090 { 2091 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 2092 } 2093 2094 int set_memory_np(unsigned long addr, int numpages) 2095 { 2096 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2097 } 2098 2099 int set_memory_np_noalias(unsigned long addr, int numpages) 2100 { 2101 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2102 __pgprot(_PAGE_PRESENT), 0, 2103 CPA_NO_CHECK_ALIAS, NULL); 2104 } 2105 2106 int set_memory_4k(unsigned long addr, int numpages) 2107 { 2108 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2109 __pgprot(0), 1, 0, NULL); 2110 } 2111 2112 int set_memory_nonglobal(unsigned long addr, int numpages) 2113 { 2114 return change_page_attr_clear(&addr, numpages, 2115 __pgprot(_PAGE_GLOBAL), 0); 2116 } 2117 2118 int set_memory_global(unsigned long addr, int numpages) 2119 { 2120 return change_page_attr_set(&addr, numpages, 2121 __pgprot(_PAGE_GLOBAL), 0); 2122 } 2123 2124 /* 2125 * __set_memory_enc_pgtable() is used for the hypervisors that get 2126 * informed about "encryption" status via page tables. 2127 */ 2128 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) 2129 { 2130 pgprot_t empty = __pgprot(0); 2131 struct cpa_data cpa; 2132 int ret; 2133 2134 /* Should not be working on unaligned addresses */ 2135 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 2136 addr &= PAGE_MASK; 2137 2138 memset(&cpa, 0, sizeof(cpa)); 2139 cpa.vaddr = &addr; 2140 cpa.numpages = numpages; 2141 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); 2142 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); 2143 cpa.pgd = init_mm.pgd; 2144 2145 /* Must avoid aliasing mappings in the highmem code */ 2146 kmap_flush_unused(); 2147 vm_unmap_aliases(); 2148 2149 /* Flush the caches as needed before changing the encryption attribute. */ 2150 if (x86_platform.guest.enc_tlb_flush_required(enc)) 2151 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); 2152 2153 /* Notify hypervisor that we are about to set/clr encryption attribute. */ 2154 x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); 2155 2156 ret = __change_page_attr_set_clr(&cpa, 1); 2157 2158 /* 2159 * After changing the encryption attribute, we need to flush TLBs again 2160 * in case any speculative TLB caching occurred (but no need to flush 2161 * caches again). We could just use cpa_flush_all(), but in case TLB 2162 * flushing gets optimized in the cpa_flush() path use the same logic 2163 * as above. 2164 */ 2165 cpa_flush(&cpa, 0); 2166 2167 /* Notify hypervisor that we have successfully set/clr encryption attribute. */ 2168 if (!ret) { 2169 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc)) 2170 ret = -EIO; 2171 } 2172 2173 return ret; 2174 } 2175 2176 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 2177 { 2178 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 2179 return __set_memory_enc_pgtable(addr, numpages, enc); 2180 2181 return 0; 2182 } 2183 2184 int set_memory_encrypted(unsigned long addr, int numpages) 2185 { 2186 return __set_memory_enc_dec(addr, numpages, true); 2187 } 2188 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2189 2190 int set_memory_decrypted(unsigned long addr, int numpages) 2191 { 2192 return __set_memory_enc_dec(addr, numpages, false); 2193 } 2194 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2195 2196 int set_pages_uc(struct page *page, int numpages) 2197 { 2198 unsigned long addr = (unsigned long)page_address(page); 2199 2200 return set_memory_uc(addr, numpages); 2201 } 2202 EXPORT_SYMBOL(set_pages_uc); 2203 2204 static int _set_pages_array(struct page **pages, int numpages, 2205 enum page_cache_mode new_type) 2206 { 2207 unsigned long start; 2208 unsigned long end; 2209 enum page_cache_mode set_type; 2210 int i; 2211 int free_idx; 2212 int ret; 2213 2214 for (i = 0; i < numpages; i++) { 2215 if (PageHighMem(pages[i])) 2216 continue; 2217 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2218 end = start + PAGE_SIZE; 2219 if (memtype_reserve(start, end, new_type, NULL)) 2220 goto err_out; 2221 } 2222 2223 /* If WC, set to UC- first and then WC */ 2224 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2225 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2226 2227 ret = cpa_set_pages_array(pages, numpages, 2228 cachemode2pgprot(set_type)); 2229 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2230 ret = change_page_attr_set_clr(NULL, numpages, 2231 cachemode2pgprot( 2232 _PAGE_CACHE_MODE_WC), 2233 __pgprot(_PAGE_CACHE_MASK), 2234 0, CPA_PAGES_ARRAY, pages); 2235 if (ret) 2236 goto err_out; 2237 return 0; /* Success */ 2238 err_out: 2239 free_idx = i; 2240 for (i = 0; i < free_idx; i++) { 2241 if (PageHighMem(pages[i])) 2242 continue; 2243 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2244 end = start + PAGE_SIZE; 2245 memtype_free(start, end); 2246 } 2247 return -EINVAL; 2248 } 2249 2250 int set_pages_array_uc(struct page **pages, int numpages) 2251 { 2252 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2253 } 2254 EXPORT_SYMBOL(set_pages_array_uc); 2255 2256 int set_pages_array_wc(struct page **pages, int numpages) 2257 { 2258 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2259 } 2260 EXPORT_SYMBOL(set_pages_array_wc); 2261 2262 int set_pages_wb(struct page *page, int numpages) 2263 { 2264 unsigned long addr = (unsigned long)page_address(page); 2265 2266 return set_memory_wb(addr, numpages); 2267 } 2268 EXPORT_SYMBOL(set_pages_wb); 2269 2270 int set_pages_array_wb(struct page **pages, int numpages) 2271 { 2272 int retval; 2273 unsigned long start; 2274 unsigned long end; 2275 int i; 2276 2277 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2278 retval = cpa_clear_pages_array(pages, numpages, 2279 __pgprot(_PAGE_CACHE_MASK)); 2280 if (retval) 2281 return retval; 2282 2283 for (i = 0; i < numpages; i++) { 2284 if (PageHighMem(pages[i])) 2285 continue; 2286 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2287 end = start + PAGE_SIZE; 2288 memtype_free(start, end); 2289 } 2290 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(set_pages_array_wb); 2294 2295 int set_pages_ro(struct page *page, int numpages) 2296 { 2297 unsigned long addr = (unsigned long)page_address(page); 2298 2299 return set_memory_ro(addr, numpages); 2300 } 2301 2302 int set_pages_rw(struct page *page, int numpages) 2303 { 2304 unsigned long addr = (unsigned long)page_address(page); 2305 2306 return set_memory_rw(addr, numpages); 2307 } 2308 2309 static int __set_pages_p(struct page *page, int numpages) 2310 { 2311 unsigned long tempaddr = (unsigned long) page_address(page); 2312 struct cpa_data cpa = { .vaddr = &tempaddr, 2313 .pgd = NULL, 2314 .numpages = numpages, 2315 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2316 .mask_clr = __pgprot(0), 2317 .flags = CPA_NO_CHECK_ALIAS }; 2318 2319 /* 2320 * No alias checking needed for setting present flag. otherwise, 2321 * we may need to break large pages for 64-bit kernel text 2322 * mappings (this adds to complexity if we want to do this from 2323 * atomic context especially). Let's keep it simple! 2324 */ 2325 return __change_page_attr_set_clr(&cpa, 1); 2326 } 2327 2328 static int __set_pages_np(struct page *page, int numpages) 2329 { 2330 unsigned long tempaddr = (unsigned long) page_address(page); 2331 struct cpa_data cpa = { .vaddr = &tempaddr, 2332 .pgd = NULL, 2333 .numpages = numpages, 2334 .mask_set = __pgprot(0), 2335 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2336 .flags = CPA_NO_CHECK_ALIAS }; 2337 2338 /* 2339 * No alias checking needed for setting not present flag. otherwise, 2340 * we may need to break large pages for 64-bit kernel text 2341 * mappings (this adds to complexity if we want to do this from 2342 * atomic context especially). Let's keep it simple! 2343 */ 2344 return __change_page_attr_set_clr(&cpa, 1); 2345 } 2346 2347 int set_direct_map_invalid_noflush(struct page *page) 2348 { 2349 return __set_pages_np(page, 1); 2350 } 2351 2352 int set_direct_map_default_noflush(struct page *page) 2353 { 2354 return __set_pages_p(page, 1); 2355 } 2356 2357 #ifdef CONFIG_DEBUG_PAGEALLOC 2358 void __kernel_map_pages(struct page *page, int numpages, int enable) 2359 { 2360 if (PageHighMem(page)) 2361 return; 2362 if (!enable) { 2363 debug_check_no_locks_freed(page_address(page), 2364 numpages * PAGE_SIZE); 2365 } 2366 2367 /* 2368 * The return value is ignored as the calls cannot fail. 2369 * Large pages for identity mappings are not used at boot time 2370 * and hence no memory allocations during large page split. 2371 */ 2372 if (enable) 2373 __set_pages_p(page, numpages); 2374 else 2375 __set_pages_np(page, numpages); 2376 2377 /* 2378 * We should perform an IPI and flush all tlbs, 2379 * but that can deadlock->flush only current cpu. 2380 * Preemption needs to be disabled around __flush_tlb_all() due to 2381 * CR3 reload in __native_flush_tlb(). 2382 */ 2383 preempt_disable(); 2384 __flush_tlb_all(); 2385 preempt_enable(); 2386 2387 arch_flush_lazy_mmu_mode(); 2388 } 2389 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2390 2391 bool kernel_page_present(struct page *page) 2392 { 2393 unsigned int level; 2394 pte_t *pte; 2395 2396 if (PageHighMem(page)) 2397 return false; 2398 2399 pte = lookup_address((unsigned long)page_address(page), &level); 2400 return (pte_val(*pte) & _PAGE_PRESENT); 2401 } 2402 2403 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2404 unsigned numpages, unsigned long page_flags) 2405 { 2406 int retval = -EINVAL; 2407 2408 struct cpa_data cpa = { 2409 .vaddr = &address, 2410 .pfn = pfn, 2411 .pgd = pgd, 2412 .numpages = numpages, 2413 .mask_set = __pgprot(0), 2414 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2415 .flags = CPA_NO_CHECK_ALIAS, 2416 }; 2417 2418 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2419 2420 if (!(__supported_pte_mask & _PAGE_NX)) 2421 goto out; 2422 2423 if (!(page_flags & _PAGE_ENC)) 2424 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2425 2426 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2427 2428 retval = __change_page_attr_set_clr(&cpa, 1); 2429 __flush_tlb_all(); 2430 2431 out: 2432 return retval; 2433 } 2434 2435 /* 2436 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2437 * function shouldn't be used in an SMP environment. Presently, it's used only 2438 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2439 */ 2440 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2441 unsigned long numpages) 2442 { 2443 int retval; 2444 2445 /* 2446 * The typical sequence for unmapping is to find a pte through 2447 * lookup_address_in_pgd() (ideally, it should never return NULL because 2448 * the address is already mapped) and change it's protections. As pfn is 2449 * the *target* of a mapping, it's not useful while unmapping. 2450 */ 2451 struct cpa_data cpa = { 2452 .vaddr = &address, 2453 .pfn = 0, 2454 .pgd = pgd, 2455 .numpages = numpages, 2456 .mask_set = __pgprot(0), 2457 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2458 .flags = CPA_NO_CHECK_ALIAS, 2459 }; 2460 2461 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2462 2463 retval = __change_page_attr_set_clr(&cpa, 1); 2464 __flush_tlb_all(); 2465 2466 return retval; 2467 } 2468 2469 /* 2470 * The testcases use internal knowledge of the implementation that shouldn't 2471 * be exposed to the rest of the kernel. Include these directly here. 2472 */ 2473 #ifdef CONFIG_CPA_DEBUG 2474 #include "cpa-test.c" 2475 #endif 2476