xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/memtype.h>
28 #include <asm/set_memory.h>
29 
30 #include "../mm_internal.h"
31 
32 /*
33  * The current flushing context - we pass it instead of 5 arguments:
34  */
35 struct cpa_data {
36 	unsigned long	*vaddr;
37 	pgd_t		*pgd;
38 	pgprot_t	mask_set;
39 	pgprot_t	mask_clr;
40 	unsigned long	numpages;
41 	unsigned long	curpage;
42 	unsigned long	pfn;
43 	unsigned int	flags;
44 	unsigned int	force_split		: 1,
45 			force_static_prot	: 1;
46 	struct page	**pages;
47 };
48 
49 enum cpa_warn {
50 	CPA_CONFLICT,
51 	CPA_PROTECT,
52 	CPA_DETECT,
53 };
54 
55 static const int cpa_warn_level = CPA_PROTECT;
56 
57 /*
58  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
59  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
60  * entries change the page attribute in parallel to some other cpu
61  * splitting a large page entry along with changing the attribute.
62  */
63 static DEFINE_SPINLOCK(cpa_lock);
64 
65 #define CPA_FLUSHTLB 1
66 #define CPA_ARRAY 2
67 #define CPA_PAGES_ARRAY 4
68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
69 
70 #ifdef CONFIG_PROC_FS
71 static unsigned long direct_pages_count[PG_LEVEL_NUM];
72 
73 void update_page_count(int level, unsigned long pages)
74 {
75 	/* Protect against CPA */
76 	spin_lock(&pgd_lock);
77 	direct_pages_count[level] += pages;
78 	spin_unlock(&pgd_lock);
79 }
80 
81 static void split_page_count(int level)
82 {
83 	if (direct_pages_count[level] == 0)
84 		return;
85 
86 	direct_pages_count[level]--;
87 	direct_pages_count[level - 1] += PTRS_PER_PTE;
88 }
89 
90 void arch_report_meminfo(struct seq_file *m)
91 {
92 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
93 			direct_pages_count[PG_LEVEL_4K] << 2);
94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
95 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
96 			direct_pages_count[PG_LEVEL_2M] << 11);
97 #else
98 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
99 			direct_pages_count[PG_LEVEL_2M] << 12);
100 #endif
101 	if (direct_gbpages)
102 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
103 			direct_pages_count[PG_LEVEL_1G] << 20);
104 }
105 #else
106 static inline void split_page_count(int level) { }
107 #endif
108 
109 #ifdef CONFIG_X86_CPA_STATISTICS
110 
111 static unsigned long cpa_1g_checked;
112 static unsigned long cpa_1g_sameprot;
113 static unsigned long cpa_1g_preserved;
114 static unsigned long cpa_2m_checked;
115 static unsigned long cpa_2m_sameprot;
116 static unsigned long cpa_2m_preserved;
117 static unsigned long cpa_4k_install;
118 
119 static inline void cpa_inc_1g_checked(void)
120 {
121 	cpa_1g_checked++;
122 }
123 
124 static inline void cpa_inc_2m_checked(void)
125 {
126 	cpa_2m_checked++;
127 }
128 
129 static inline void cpa_inc_4k_install(void)
130 {
131 	cpa_4k_install++;
132 }
133 
134 static inline void cpa_inc_lp_sameprot(int level)
135 {
136 	if (level == PG_LEVEL_1G)
137 		cpa_1g_sameprot++;
138 	else
139 		cpa_2m_sameprot++;
140 }
141 
142 static inline void cpa_inc_lp_preserved(int level)
143 {
144 	if (level == PG_LEVEL_1G)
145 		cpa_1g_preserved++;
146 	else
147 		cpa_2m_preserved++;
148 }
149 
150 static int cpastats_show(struct seq_file *m, void *p)
151 {
152 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
153 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
154 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
155 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
156 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
157 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
158 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
159 	return 0;
160 }
161 
162 static int cpastats_open(struct inode *inode, struct file *file)
163 {
164 	return single_open(file, cpastats_show, NULL);
165 }
166 
167 static const struct file_operations cpastats_fops = {
168 	.open		= cpastats_open,
169 	.read		= seq_read,
170 	.llseek		= seq_lseek,
171 	.release	= single_release,
172 };
173 
174 static int __init cpa_stats_init(void)
175 {
176 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
177 			    &cpastats_fops);
178 	return 0;
179 }
180 late_initcall(cpa_stats_init);
181 #else
182 static inline void cpa_inc_1g_checked(void) { }
183 static inline void cpa_inc_2m_checked(void) { }
184 static inline void cpa_inc_4k_install(void) { }
185 static inline void cpa_inc_lp_sameprot(int level) { }
186 static inline void cpa_inc_lp_preserved(int level) { }
187 #endif
188 
189 
190 static inline int
191 within(unsigned long addr, unsigned long start, unsigned long end)
192 {
193 	return addr >= start && addr < end;
194 }
195 
196 static inline int
197 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
198 {
199 	return addr >= start && addr <= end;
200 }
201 
202 #ifdef CONFIG_X86_64
203 
204 static inline unsigned long highmap_start_pfn(void)
205 {
206 	return __pa_symbol(_text) >> PAGE_SHIFT;
207 }
208 
209 static inline unsigned long highmap_end_pfn(void)
210 {
211 	/* Do not reference physical address outside the kernel. */
212 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
213 }
214 
215 static bool __cpa_pfn_in_highmap(unsigned long pfn)
216 {
217 	/*
218 	 * Kernel text has an alias mapping at a high address, known
219 	 * here as "highmap".
220 	 */
221 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
222 }
223 
224 #else
225 
226 static bool __cpa_pfn_in_highmap(unsigned long pfn)
227 {
228 	/* There is no highmap on 32-bit */
229 	return false;
230 }
231 
232 #endif
233 
234 /*
235  * See set_mce_nospec().
236  *
237  * Machine check recovery code needs to change cache mode of poisoned pages to
238  * UC to avoid speculative access logging another error. But passing the
239  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
240  * speculative access. So we cheat and flip the top bit of the address. This
241  * works fine for the code that updates the page tables. But at the end of the
242  * process we need to flush the TLB and cache and the non-canonical address
243  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
244  *
245  * But in the common case we already have a canonical address. This code
246  * will fix the top bit if needed and is a no-op otherwise.
247  */
248 static inline unsigned long fix_addr(unsigned long addr)
249 {
250 #ifdef CONFIG_X86_64
251 	return (long)(addr << 1) >> 1;
252 #else
253 	return addr;
254 #endif
255 }
256 
257 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
258 {
259 	if (cpa->flags & CPA_PAGES_ARRAY) {
260 		struct page *page = cpa->pages[idx];
261 
262 		if (unlikely(PageHighMem(page)))
263 			return 0;
264 
265 		return (unsigned long)page_address(page);
266 	}
267 
268 	if (cpa->flags & CPA_ARRAY)
269 		return cpa->vaddr[idx];
270 
271 	return *cpa->vaddr + idx * PAGE_SIZE;
272 }
273 
274 /*
275  * Flushing functions
276  */
277 
278 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
279 {
280 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
281 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
282 	void *vend = vaddr + size;
283 
284 	if (p >= vend)
285 		return;
286 
287 	for (; p < vend; p += clflush_size)
288 		clflushopt(p);
289 }
290 
291 /**
292  * clflush_cache_range - flush a cache range with clflush
293  * @vaddr:	virtual start address
294  * @size:	number of bytes to flush
295  *
296  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
297  * SFENCE to avoid ordering issues.
298  */
299 void clflush_cache_range(void *vaddr, unsigned int size)
300 {
301 	mb();
302 	clflush_cache_range_opt(vaddr, size);
303 	mb();
304 }
305 EXPORT_SYMBOL_GPL(clflush_cache_range);
306 
307 void arch_invalidate_pmem(void *addr, size_t size)
308 {
309 	clflush_cache_range(addr, size);
310 }
311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
312 
313 static void __cpa_flush_all(void *arg)
314 {
315 	unsigned long cache = (unsigned long)arg;
316 
317 	/*
318 	 * Flush all to work around Errata in early athlons regarding
319 	 * large page flushing.
320 	 */
321 	__flush_tlb_all();
322 
323 	if (cache && boot_cpu_data.x86 >= 4)
324 		wbinvd();
325 }
326 
327 static void cpa_flush_all(unsigned long cache)
328 {
329 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
330 
331 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
332 }
333 
334 static void __cpa_flush_tlb(void *data)
335 {
336 	struct cpa_data *cpa = data;
337 	unsigned int i;
338 
339 	for (i = 0; i < cpa->numpages; i++)
340 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
341 }
342 
343 static void cpa_flush(struct cpa_data *data, int cache)
344 {
345 	struct cpa_data *cpa = data;
346 	unsigned int i;
347 
348 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
349 
350 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
351 		cpa_flush_all(cache);
352 		return;
353 	}
354 
355 	if (cpa->numpages <= tlb_single_page_flush_ceiling)
356 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
357 	else
358 		flush_tlb_all();
359 
360 	if (!cache)
361 		return;
362 
363 	mb();
364 	for (i = 0; i < cpa->numpages; i++) {
365 		unsigned long addr = __cpa_addr(cpa, i);
366 		unsigned int level;
367 
368 		pte_t *pte = lookup_address(addr, &level);
369 
370 		/*
371 		 * Only flush present addresses:
372 		 */
373 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
374 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
375 	}
376 	mb();
377 }
378 
379 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
380 		     unsigned long r2_start, unsigned long r2_end)
381 {
382 	return (r1_start <= r2_end && r1_end >= r2_start) ||
383 		(r2_start <= r1_end && r2_end >= r1_start);
384 }
385 
386 #ifdef CONFIG_PCI_BIOS
387 /*
388  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
389  * based config access (CONFIG_PCI_GOBIOS) support.
390  */
391 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
392 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
393 
394 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
395 {
396 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
397 		return _PAGE_NX;
398 	return 0;
399 }
400 #else
401 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
402 {
403 	return 0;
404 }
405 #endif
406 
407 /*
408  * The .rodata section needs to be read-only. Using the pfn catches all
409  * aliases.  This also includes __ro_after_init, so do not enforce until
410  * kernel_set_to_readonly is true.
411  */
412 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
413 {
414 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
415 
416 	/*
417 	 * Note: __end_rodata is at page aligned and not inclusive, so
418 	 * subtract 1 to get the last enforced PFN in the rodata area.
419 	 */
420 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
421 
422 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
423 		return _PAGE_RW;
424 	return 0;
425 }
426 
427 /*
428  * Protect kernel text against becoming non executable by forbidding
429  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
430  * out of which the kernel actually executes.  Do not protect the low
431  * mapping.
432  *
433  * This does not cover __inittext since that is gone after boot.
434  */
435 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
436 {
437 	unsigned long t_end = (unsigned long)_etext - 1;
438 	unsigned long t_start = (unsigned long)_text;
439 
440 	if (overlaps(start, end, t_start, t_end))
441 		return _PAGE_NX;
442 	return 0;
443 }
444 
445 #if defined(CONFIG_X86_64)
446 /*
447  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
448  * kernel text mappings for the large page aligned text, rodata sections
449  * will be always read-only. For the kernel identity mappings covering the
450  * holes caused by this alignment can be anything that user asks.
451  *
452  * This will preserve the large page mappings for kernel text/data at no
453  * extra cost.
454  */
455 static pgprotval_t protect_kernel_text_ro(unsigned long start,
456 					  unsigned long end)
457 {
458 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
459 	unsigned long t_start = (unsigned long)_text;
460 	unsigned int level;
461 
462 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
463 		return 0;
464 	/*
465 	 * Don't enforce the !RW mapping for the kernel text mapping, if
466 	 * the current mapping is already using small page mapping.  No
467 	 * need to work hard to preserve large page mappings in this case.
468 	 *
469 	 * This also fixes the Linux Xen paravirt guest boot failure caused
470 	 * by unexpected read-only mappings for kernel identity
471 	 * mappings. In this paravirt guest case, the kernel text mapping
472 	 * and the kernel identity mapping share the same page-table pages,
473 	 * so the protections for kernel text and identity mappings have to
474 	 * be the same.
475 	 */
476 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
477 		return _PAGE_RW;
478 	return 0;
479 }
480 #else
481 static pgprotval_t protect_kernel_text_ro(unsigned long start,
482 					  unsigned long end)
483 {
484 	return 0;
485 }
486 #endif
487 
488 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
489 {
490 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
491 }
492 
493 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
494 				  unsigned long start, unsigned long end,
495 				  unsigned long pfn, const char *txt)
496 {
497 	static const char *lvltxt[] = {
498 		[CPA_CONFLICT]	= "conflict",
499 		[CPA_PROTECT]	= "protect",
500 		[CPA_DETECT]	= "detect",
501 	};
502 
503 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
504 		return;
505 
506 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
507 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
508 		(unsigned long long)val);
509 }
510 
511 /*
512  * Certain areas of memory on x86 require very specific protection flags,
513  * for example the BIOS area or kernel text. Callers don't always get this
514  * right (again, ioremap() on BIOS memory is not uncommon) so this function
515  * checks and fixes these known static required protection bits.
516  */
517 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
518 					  unsigned long pfn, unsigned long npg,
519 					  unsigned long lpsize, int warnlvl)
520 {
521 	pgprotval_t forbidden, res;
522 	unsigned long end;
523 
524 	/*
525 	 * There is no point in checking RW/NX conflicts when the requested
526 	 * mapping is setting the page !PRESENT.
527 	 */
528 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
529 		return prot;
530 
531 	/* Operate on the virtual address */
532 	end = start + npg * PAGE_SIZE - 1;
533 
534 	res = protect_kernel_text(start, end);
535 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
536 	forbidden = res;
537 
538 	/*
539 	 * Special case to preserve a large page. If the change spawns the
540 	 * full large page mapping then there is no point to split it
541 	 * up. Happens with ftrace and is going to be removed once ftrace
542 	 * switched to text_poke().
543 	 */
544 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
545 		res = protect_kernel_text_ro(start, end);
546 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
547 		forbidden |= res;
548 	}
549 
550 	/* Check the PFN directly */
551 	res = protect_pci_bios(pfn, pfn + npg - 1);
552 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
553 	forbidden |= res;
554 
555 	res = protect_rodata(pfn, pfn + npg - 1);
556 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
557 	forbidden |= res;
558 
559 	return __pgprot(pgprot_val(prot) & ~forbidden);
560 }
561 
562 /*
563  * Lookup the page table entry for a virtual address in a specific pgd.
564  * Return a pointer to the entry and the level of the mapping.
565  */
566 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
567 			     unsigned int *level)
568 {
569 	p4d_t *p4d;
570 	pud_t *pud;
571 	pmd_t *pmd;
572 
573 	*level = PG_LEVEL_NONE;
574 
575 	if (pgd_none(*pgd))
576 		return NULL;
577 
578 	p4d = p4d_offset(pgd, address);
579 	if (p4d_none(*p4d))
580 		return NULL;
581 
582 	*level = PG_LEVEL_512G;
583 	if (p4d_large(*p4d) || !p4d_present(*p4d))
584 		return (pte_t *)p4d;
585 
586 	pud = pud_offset(p4d, address);
587 	if (pud_none(*pud))
588 		return NULL;
589 
590 	*level = PG_LEVEL_1G;
591 	if (pud_large(*pud) || !pud_present(*pud))
592 		return (pte_t *)pud;
593 
594 	pmd = pmd_offset(pud, address);
595 	if (pmd_none(*pmd))
596 		return NULL;
597 
598 	*level = PG_LEVEL_2M;
599 	if (pmd_large(*pmd) || !pmd_present(*pmd))
600 		return (pte_t *)pmd;
601 
602 	*level = PG_LEVEL_4K;
603 
604 	return pte_offset_kernel(pmd, address);
605 }
606 
607 /*
608  * Lookup the page table entry for a virtual address. Return a pointer
609  * to the entry and the level of the mapping.
610  *
611  * Note: We return pud and pmd either when the entry is marked large
612  * or when the present bit is not set. Otherwise we would return a
613  * pointer to a nonexisting mapping.
614  */
615 pte_t *lookup_address(unsigned long address, unsigned int *level)
616 {
617 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
618 }
619 EXPORT_SYMBOL_GPL(lookup_address);
620 
621 /*
622  * Lookup the page table entry for a virtual address in a given mm. Return a
623  * pointer to the entry and the level of the mapping.
624  */
625 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
626 			    unsigned int *level)
627 {
628 	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
629 }
630 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
631 
632 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
633 				  unsigned int *level)
634 {
635 	if (cpa->pgd)
636 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
637 					       address, level);
638 
639 	return lookup_address(address, level);
640 }
641 
642 /*
643  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
644  * or NULL if not present.
645  */
646 pmd_t *lookup_pmd_address(unsigned long address)
647 {
648 	pgd_t *pgd;
649 	p4d_t *p4d;
650 	pud_t *pud;
651 
652 	pgd = pgd_offset_k(address);
653 	if (pgd_none(*pgd))
654 		return NULL;
655 
656 	p4d = p4d_offset(pgd, address);
657 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
658 		return NULL;
659 
660 	pud = pud_offset(p4d, address);
661 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
662 		return NULL;
663 
664 	return pmd_offset(pud, address);
665 }
666 
667 /*
668  * This is necessary because __pa() does not work on some
669  * kinds of memory, like vmalloc() or the alloc_remap()
670  * areas on 32-bit NUMA systems.  The percpu areas can
671  * end up in this kind of memory, for instance.
672  *
673  * This could be optimized, but it is only intended to be
674  * used at inititalization time, and keeping it
675  * unoptimized should increase the testing coverage for
676  * the more obscure platforms.
677  */
678 phys_addr_t slow_virt_to_phys(void *__virt_addr)
679 {
680 	unsigned long virt_addr = (unsigned long)__virt_addr;
681 	phys_addr_t phys_addr;
682 	unsigned long offset;
683 	enum pg_level level;
684 	pte_t *pte;
685 
686 	pte = lookup_address(virt_addr, &level);
687 	BUG_ON(!pte);
688 
689 	/*
690 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
691 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
692 	 * make 32-PAE kernel work correctly.
693 	 */
694 	switch (level) {
695 	case PG_LEVEL_1G:
696 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
697 		offset = virt_addr & ~PUD_PAGE_MASK;
698 		break;
699 	case PG_LEVEL_2M:
700 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
701 		offset = virt_addr & ~PMD_PAGE_MASK;
702 		break;
703 	default:
704 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
705 		offset = virt_addr & ~PAGE_MASK;
706 	}
707 
708 	return (phys_addr_t)(phys_addr | offset);
709 }
710 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
711 
712 /*
713  * Set the new pmd in all the pgds we know about:
714  */
715 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
716 {
717 	/* change init_mm */
718 	set_pte_atomic(kpte, pte);
719 #ifdef CONFIG_X86_32
720 	if (!SHARED_KERNEL_PMD) {
721 		struct page *page;
722 
723 		list_for_each_entry(page, &pgd_list, lru) {
724 			pgd_t *pgd;
725 			p4d_t *p4d;
726 			pud_t *pud;
727 			pmd_t *pmd;
728 
729 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
730 			p4d = p4d_offset(pgd, address);
731 			pud = pud_offset(p4d, address);
732 			pmd = pmd_offset(pud, address);
733 			set_pte_atomic((pte_t *)pmd, pte);
734 		}
735 	}
736 #endif
737 }
738 
739 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
740 {
741 	/*
742 	 * _PAGE_GLOBAL means "global page" for present PTEs.
743 	 * But, it is also used to indicate _PAGE_PROTNONE
744 	 * for non-present PTEs.
745 	 *
746 	 * This ensures that a _PAGE_GLOBAL PTE going from
747 	 * present to non-present is not confused as
748 	 * _PAGE_PROTNONE.
749 	 */
750 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
751 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
752 
753 	return prot;
754 }
755 
756 static int __should_split_large_page(pte_t *kpte, unsigned long address,
757 				     struct cpa_data *cpa)
758 {
759 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
760 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
761 	pte_t new_pte, *tmp;
762 	enum pg_level level;
763 
764 	/*
765 	 * Check for races, another CPU might have split this page
766 	 * up already:
767 	 */
768 	tmp = _lookup_address_cpa(cpa, address, &level);
769 	if (tmp != kpte)
770 		return 1;
771 
772 	switch (level) {
773 	case PG_LEVEL_2M:
774 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
775 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
776 		cpa_inc_2m_checked();
777 		break;
778 	case PG_LEVEL_1G:
779 		old_prot = pud_pgprot(*(pud_t *)kpte);
780 		old_pfn = pud_pfn(*(pud_t *)kpte);
781 		cpa_inc_1g_checked();
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	psize = page_level_size(level);
788 	pmask = page_level_mask(level);
789 
790 	/*
791 	 * Calculate the number of pages, which fit into this large
792 	 * page starting at address:
793 	 */
794 	lpaddr = (address + psize) & pmask;
795 	numpages = (lpaddr - address) >> PAGE_SHIFT;
796 	if (numpages < cpa->numpages)
797 		cpa->numpages = numpages;
798 
799 	/*
800 	 * We are safe now. Check whether the new pgprot is the same:
801 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
802 	 * up accordingly.
803 	 */
804 
805 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
806 	req_prot = pgprot_large_2_4k(old_prot);
807 
808 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
809 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
810 
811 	/*
812 	 * req_prot is in format of 4k pages. It must be converted to large
813 	 * page format: the caching mode includes the PAT bit located at
814 	 * different bit positions in the two formats.
815 	 */
816 	req_prot = pgprot_4k_2_large(req_prot);
817 	req_prot = pgprot_clear_protnone_bits(req_prot);
818 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
819 		pgprot_val(req_prot) |= _PAGE_PSE;
820 
821 	/*
822 	 * old_pfn points to the large page base pfn. So we need to add the
823 	 * offset of the virtual address:
824 	 */
825 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
826 	cpa->pfn = pfn;
827 
828 	/*
829 	 * Calculate the large page base address and the number of 4K pages
830 	 * in the large page
831 	 */
832 	lpaddr = address & pmask;
833 	numpages = psize >> PAGE_SHIFT;
834 
835 	/*
836 	 * Sanity check that the existing mapping is correct versus the static
837 	 * protections. static_protections() guards against !PRESENT, so no
838 	 * extra conditional required here.
839 	 */
840 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
841 				      psize, CPA_CONFLICT);
842 
843 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
844 		/*
845 		 * Split the large page and tell the split code to
846 		 * enforce static protections.
847 		 */
848 		cpa->force_static_prot = 1;
849 		return 1;
850 	}
851 
852 	/*
853 	 * Optimization: If the requested pgprot is the same as the current
854 	 * pgprot, then the large page can be preserved and no updates are
855 	 * required independent of alignment and length of the requested
856 	 * range. The above already established that the current pgprot is
857 	 * correct, which in consequence makes the requested pgprot correct
858 	 * as well if it is the same. The static protection scan below will
859 	 * not come to a different conclusion.
860 	 */
861 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
862 		cpa_inc_lp_sameprot(level);
863 		return 0;
864 	}
865 
866 	/*
867 	 * If the requested range does not cover the full page, split it up
868 	 */
869 	if (address != lpaddr || cpa->numpages != numpages)
870 		return 1;
871 
872 	/*
873 	 * Check whether the requested pgprot is conflicting with a static
874 	 * protection requirement in the large page.
875 	 */
876 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
877 				      psize, CPA_DETECT);
878 
879 	/*
880 	 * If there is a conflict, split the large page.
881 	 *
882 	 * There used to be a 4k wise evaluation trying really hard to
883 	 * preserve the large pages, but experimentation has shown, that this
884 	 * does not help at all. There might be corner cases which would
885 	 * preserve one large page occasionally, but it's really not worth the
886 	 * extra code and cycles for the common case.
887 	 */
888 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
889 		return 1;
890 
891 	/* All checks passed. Update the large page mapping. */
892 	new_pte = pfn_pte(old_pfn, new_prot);
893 	__set_pmd_pte(kpte, address, new_pte);
894 	cpa->flags |= CPA_FLUSHTLB;
895 	cpa_inc_lp_preserved(level);
896 	return 0;
897 }
898 
899 static int should_split_large_page(pte_t *kpte, unsigned long address,
900 				   struct cpa_data *cpa)
901 {
902 	int do_split;
903 
904 	if (cpa->force_split)
905 		return 1;
906 
907 	spin_lock(&pgd_lock);
908 	do_split = __should_split_large_page(kpte, address, cpa);
909 	spin_unlock(&pgd_lock);
910 
911 	return do_split;
912 }
913 
914 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
915 			  pgprot_t ref_prot, unsigned long address,
916 			  unsigned long size)
917 {
918 	unsigned int npg = PFN_DOWN(size);
919 	pgprot_t prot;
920 
921 	/*
922 	 * If should_split_large_page() discovered an inconsistent mapping,
923 	 * remove the invalid protection in the split mapping.
924 	 */
925 	if (!cpa->force_static_prot)
926 		goto set;
927 
928 	/* Hand in lpsize = 0 to enforce the protection mechanism */
929 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
930 
931 	if (pgprot_val(prot) == pgprot_val(ref_prot))
932 		goto set;
933 
934 	/*
935 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
936 	 * fixed trivially as that would require to rescan the newly
937 	 * installed PMD mappings after returning from split_large_page()
938 	 * so an eventual further split can allocate the necessary PTE
939 	 * pages. Warn for now and revisit it in case this actually
940 	 * happens.
941 	 */
942 	if (size == PAGE_SIZE)
943 		ref_prot = prot;
944 	else
945 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
946 set:
947 	set_pte(pte, pfn_pte(pfn, ref_prot));
948 }
949 
950 static int
951 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
952 		   struct page *base)
953 {
954 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
955 	pte_t *pbase = (pte_t *)page_address(base);
956 	unsigned int i, level;
957 	pgprot_t ref_prot;
958 	pte_t *tmp;
959 
960 	spin_lock(&pgd_lock);
961 	/*
962 	 * Check for races, another CPU might have split this page
963 	 * up for us already:
964 	 */
965 	tmp = _lookup_address_cpa(cpa, address, &level);
966 	if (tmp != kpte) {
967 		spin_unlock(&pgd_lock);
968 		return 1;
969 	}
970 
971 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
972 
973 	switch (level) {
974 	case PG_LEVEL_2M:
975 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
976 		/*
977 		 * Clear PSE (aka _PAGE_PAT) and move
978 		 * PAT bit to correct position.
979 		 */
980 		ref_prot = pgprot_large_2_4k(ref_prot);
981 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
982 		lpaddr = address & PMD_MASK;
983 		lpinc = PAGE_SIZE;
984 		break;
985 
986 	case PG_LEVEL_1G:
987 		ref_prot = pud_pgprot(*(pud_t *)kpte);
988 		ref_pfn = pud_pfn(*(pud_t *)kpte);
989 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
990 		lpaddr = address & PUD_MASK;
991 		lpinc = PMD_SIZE;
992 		/*
993 		 * Clear the PSE flags if the PRESENT flag is not set
994 		 * otherwise pmd_present/pmd_huge will return true
995 		 * even on a non present pmd.
996 		 */
997 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
998 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
999 		break;
1000 
1001 	default:
1002 		spin_unlock(&pgd_lock);
1003 		return 1;
1004 	}
1005 
1006 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1007 
1008 	/*
1009 	 * Get the target pfn from the original entry:
1010 	 */
1011 	pfn = ref_pfn;
1012 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1013 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1014 
1015 	if (virt_addr_valid(address)) {
1016 		unsigned long pfn = PFN_DOWN(__pa(address));
1017 
1018 		if (pfn_range_is_mapped(pfn, pfn + 1))
1019 			split_page_count(level);
1020 	}
1021 
1022 	/*
1023 	 * Install the new, split up pagetable.
1024 	 *
1025 	 * We use the standard kernel pagetable protections for the new
1026 	 * pagetable protections, the actual ptes set above control the
1027 	 * primary protection behavior:
1028 	 */
1029 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1030 
1031 	/*
1032 	 * Do a global flush tlb after splitting the large page
1033 	 * and before we do the actual change page attribute in the PTE.
1034 	 *
1035 	 * Without this, we violate the TLB application note, that says:
1036 	 * "The TLBs may contain both ordinary and large-page
1037 	 *  translations for a 4-KByte range of linear addresses. This
1038 	 *  may occur if software modifies the paging structures so that
1039 	 *  the page size used for the address range changes. If the two
1040 	 *  translations differ with respect to page frame or attributes
1041 	 *  (e.g., permissions), processor behavior is undefined and may
1042 	 *  be implementation-specific."
1043 	 *
1044 	 * We do this global tlb flush inside the cpa_lock, so that we
1045 	 * don't allow any other cpu, with stale tlb entries change the
1046 	 * page attribute in parallel, that also falls into the
1047 	 * just split large page entry.
1048 	 */
1049 	flush_tlb_all();
1050 	spin_unlock(&pgd_lock);
1051 
1052 	return 0;
1053 }
1054 
1055 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1056 			    unsigned long address)
1057 {
1058 	struct page *base;
1059 
1060 	if (!debug_pagealloc_enabled())
1061 		spin_unlock(&cpa_lock);
1062 	base = alloc_pages(GFP_KERNEL, 0);
1063 	if (!debug_pagealloc_enabled())
1064 		spin_lock(&cpa_lock);
1065 	if (!base)
1066 		return -ENOMEM;
1067 
1068 	if (__split_large_page(cpa, kpte, address, base))
1069 		__free_page(base);
1070 
1071 	return 0;
1072 }
1073 
1074 static bool try_to_free_pte_page(pte_t *pte)
1075 {
1076 	int i;
1077 
1078 	for (i = 0; i < PTRS_PER_PTE; i++)
1079 		if (!pte_none(pte[i]))
1080 			return false;
1081 
1082 	free_page((unsigned long)pte);
1083 	return true;
1084 }
1085 
1086 static bool try_to_free_pmd_page(pmd_t *pmd)
1087 {
1088 	int i;
1089 
1090 	for (i = 0; i < PTRS_PER_PMD; i++)
1091 		if (!pmd_none(pmd[i]))
1092 			return false;
1093 
1094 	free_page((unsigned long)pmd);
1095 	return true;
1096 }
1097 
1098 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1099 {
1100 	pte_t *pte = pte_offset_kernel(pmd, start);
1101 
1102 	while (start < end) {
1103 		set_pte(pte, __pte(0));
1104 
1105 		start += PAGE_SIZE;
1106 		pte++;
1107 	}
1108 
1109 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1110 		pmd_clear(pmd);
1111 		return true;
1112 	}
1113 	return false;
1114 }
1115 
1116 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1117 			      unsigned long start, unsigned long end)
1118 {
1119 	if (unmap_pte_range(pmd, start, end))
1120 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1121 			pud_clear(pud);
1122 }
1123 
1124 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1125 {
1126 	pmd_t *pmd = pmd_offset(pud, start);
1127 
1128 	/*
1129 	 * Not on a 2MB page boundary?
1130 	 */
1131 	if (start & (PMD_SIZE - 1)) {
1132 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1133 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1134 
1135 		__unmap_pmd_range(pud, pmd, start, pre_end);
1136 
1137 		start = pre_end;
1138 		pmd++;
1139 	}
1140 
1141 	/*
1142 	 * Try to unmap in 2M chunks.
1143 	 */
1144 	while (end - start >= PMD_SIZE) {
1145 		if (pmd_large(*pmd))
1146 			pmd_clear(pmd);
1147 		else
1148 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1149 
1150 		start += PMD_SIZE;
1151 		pmd++;
1152 	}
1153 
1154 	/*
1155 	 * 4K leftovers?
1156 	 */
1157 	if (start < end)
1158 		return __unmap_pmd_range(pud, pmd, start, end);
1159 
1160 	/*
1161 	 * Try again to free the PMD page if haven't succeeded above.
1162 	 */
1163 	if (!pud_none(*pud))
1164 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1165 			pud_clear(pud);
1166 }
1167 
1168 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1169 {
1170 	pud_t *pud = pud_offset(p4d, start);
1171 
1172 	/*
1173 	 * Not on a GB page boundary?
1174 	 */
1175 	if (start & (PUD_SIZE - 1)) {
1176 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1177 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1178 
1179 		unmap_pmd_range(pud, start, pre_end);
1180 
1181 		start = pre_end;
1182 		pud++;
1183 	}
1184 
1185 	/*
1186 	 * Try to unmap in 1G chunks?
1187 	 */
1188 	while (end - start >= PUD_SIZE) {
1189 
1190 		if (pud_large(*pud))
1191 			pud_clear(pud);
1192 		else
1193 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1194 
1195 		start += PUD_SIZE;
1196 		pud++;
1197 	}
1198 
1199 	/*
1200 	 * 2M leftovers?
1201 	 */
1202 	if (start < end)
1203 		unmap_pmd_range(pud, start, end);
1204 
1205 	/*
1206 	 * No need to try to free the PUD page because we'll free it in
1207 	 * populate_pgd's error path
1208 	 */
1209 }
1210 
1211 static int alloc_pte_page(pmd_t *pmd)
1212 {
1213 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1214 	if (!pte)
1215 		return -1;
1216 
1217 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1218 	return 0;
1219 }
1220 
1221 static int alloc_pmd_page(pud_t *pud)
1222 {
1223 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1224 	if (!pmd)
1225 		return -1;
1226 
1227 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1228 	return 0;
1229 }
1230 
1231 static void populate_pte(struct cpa_data *cpa,
1232 			 unsigned long start, unsigned long end,
1233 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1234 {
1235 	pte_t *pte;
1236 
1237 	pte = pte_offset_kernel(pmd, start);
1238 
1239 	pgprot = pgprot_clear_protnone_bits(pgprot);
1240 
1241 	while (num_pages-- && start < end) {
1242 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1243 
1244 		start	 += PAGE_SIZE;
1245 		cpa->pfn++;
1246 		pte++;
1247 	}
1248 }
1249 
1250 static long populate_pmd(struct cpa_data *cpa,
1251 			 unsigned long start, unsigned long end,
1252 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1253 {
1254 	long cur_pages = 0;
1255 	pmd_t *pmd;
1256 	pgprot_t pmd_pgprot;
1257 
1258 	/*
1259 	 * Not on a 2M boundary?
1260 	 */
1261 	if (start & (PMD_SIZE - 1)) {
1262 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1263 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1264 
1265 		pre_end   = min_t(unsigned long, pre_end, next_page);
1266 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1267 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1268 
1269 		/*
1270 		 * Need a PTE page?
1271 		 */
1272 		pmd = pmd_offset(pud, start);
1273 		if (pmd_none(*pmd))
1274 			if (alloc_pte_page(pmd))
1275 				return -1;
1276 
1277 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1278 
1279 		start = pre_end;
1280 	}
1281 
1282 	/*
1283 	 * We mapped them all?
1284 	 */
1285 	if (num_pages == cur_pages)
1286 		return cur_pages;
1287 
1288 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1289 
1290 	while (end - start >= PMD_SIZE) {
1291 
1292 		/*
1293 		 * We cannot use a 1G page so allocate a PMD page if needed.
1294 		 */
1295 		if (pud_none(*pud))
1296 			if (alloc_pmd_page(pud))
1297 				return -1;
1298 
1299 		pmd = pmd_offset(pud, start);
1300 
1301 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1302 					canon_pgprot(pmd_pgprot))));
1303 
1304 		start	  += PMD_SIZE;
1305 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1306 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1307 	}
1308 
1309 	/*
1310 	 * Map trailing 4K pages.
1311 	 */
1312 	if (start < end) {
1313 		pmd = pmd_offset(pud, start);
1314 		if (pmd_none(*pmd))
1315 			if (alloc_pte_page(pmd))
1316 				return -1;
1317 
1318 		populate_pte(cpa, start, end, num_pages - cur_pages,
1319 			     pmd, pgprot);
1320 	}
1321 	return num_pages;
1322 }
1323 
1324 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1325 			pgprot_t pgprot)
1326 {
1327 	pud_t *pud;
1328 	unsigned long end;
1329 	long cur_pages = 0;
1330 	pgprot_t pud_pgprot;
1331 
1332 	end = start + (cpa->numpages << PAGE_SHIFT);
1333 
1334 	/*
1335 	 * Not on a Gb page boundary? => map everything up to it with
1336 	 * smaller pages.
1337 	 */
1338 	if (start & (PUD_SIZE - 1)) {
1339 		unsigned long pre_end;
1340 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1341 
1342 		pre_end   = min_t(unsigned long, end, next_page);
1343 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1344 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1345 
1346 		pud = pud_offset(p4d, start);
1347 
1348 		/*
1349 		 * Need a PMD page?
1350 		 */
1351 		if (pud_none(*pud))
1352 			if (alloc_pmd_page(pud))
1353 				return -1;
1354 
1355 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1356 					 pud, pgprot);
1357 		if (cur_pages < 0)
1358 			return cur_pages;
1359 
1360 		start = pre_end;
1361 	}
1362 
1363 	/* We mapped them all? */
1364 	if (cpa->numpages == cur_pages)
1365 		return cur_pages;
1366 
1367 	pud = pud_offset(p4d, start);
1368 	pud_pgprot = pgprot_4k_2_large(pgprot);
1369 
1370 	/*
1371 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1372 	 */
1373 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1374 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1375 				   canon_pgprot(pud_pgprot))));
1376 
1377 		start	  += PUD_SIZE;
1378 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1379 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1380 		pud++;
1381 	}
1382 
1383 	/* Map trailing leftover */
1384 	if (start < end) {
1385 		long tmp;
1386 
1387 		pud = pud_offset(p4d, start);
1388 		if (pud_none(*pud))
1389 			if (alloc_pmd_page(pud))
1390 				return -1;
1391 
1392 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1393 				   pud, pgprot);
1394 		if (tmp < 0)
1395 			return cur_pages;
1396 
1397 		cur_pages += tmp;
1398 	}
1399 	return cur_pages;
1400 }
1401 
1402 /*
1403  * Restrictions for kernel page table do not necessarily apply when mapping in
1404  * an alternate PGD.
1405  */
1406 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1407 {
1408 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1409 	pud_t *pud = NULL;	/* shut up gcc */
1410 	p4d_t *p4d;
1411 	pgd_t *pgd_entry;
1412 	long ret;
1413 
1414 	pgd_entry = cpa->pgd + pgd_index(addr);
1415 
1416 	if (pgd_none(*pgd_entry)) {
1417 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1418 		if (!p4d)
1419 			return -1;
1420 
1421 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1422 	}
1423 
1424 	/*
1425 	 * Allocate a PUD page and hand it down for mapping.
1426 	 */
1427 	p4d = p4d_offset(pgd_entry, addr);
1428 	if (p4d_none(*p4d)) {
1429 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1430 		if (!pud)
1431 			return -1;
1432 
1433 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1434 	}
1435 
1436 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1437 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1438 
1439 	ret = populate_pud(cpa, addr, p4d, pgprot);
1440 	if (ret < 0) {
1441 		/*
1442 		 * Leave the PUD page in place in case some other CPU or thread
1443 		 * already found it, but remove any useless entries we just
1444 		 * added to it.
1445 		 */
1446 		unmap_pud_range(p4d, addr,
1447 				addr + (cpa->numpages << PAGE_SHIFT));
1448 		return ret;
1449 	}
1450 
1451 	cpa->numpages = ret;
1452 	return 0;
1453 }
1454 
1455 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1456 			       int primary)
1457 {
1458 	if (cpa->pgd) {
1459 		/*
1460 		 * Right now, we only execute this code path when mapping
1461 		 * the EFI virtual memory map regions, no other users
1462 		 * provide a ->pgd value. This may change in the future.
1463 		 */
1464 		return populate_pgd(cpa, vaddr);
1465 	}
1466 
1467 	/*
1468 	 * Ignore all non primary paths.
1469 	 */
1470 	if (!primary) {
1471 		cpa->numpages = 1;
1472 		return 0;
1473 	}
1474 
1475 	/*
1476 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1477 	 * to have holes.
1478 	 * Also set numpages to '1' indicating that we processed cpa req for
1479 	 * one virtual address page and its pfn. TBD: numpages can be set based
1480 	 * on the initial value and the level returned by lookup_address().
1481 	 */
1482 	if (within(vaddr, PAGE_OFFSET,
1483 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1484 		cpa->numpages = 1;
1485 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1486 		return 0;
1487 
1488 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1489 		/* Faults in the highmap are OK, so do not warn: */
1490 		return -EFAULT;
1491 	} else {
1492 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1493 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1494 			*cpa->vaddr);
1495 
1496 		return -EFAULT;
1497 	}
1498 }
1499 
1500 static int __change_page_attr(struct cpa_data *cpa, int primary)
1501 {
1502 	unsigned long address;
1503 	int do_split, err;
1504 	unsigned int level;
1505 	pte_t *kpte, old_pte;
1506 
1507 	address = __cpa_addr(cpa, cpa->curpage);
1508 repeat:
1509 	kpte = _lookup_address_cpa(cpa, address, &level);
1510 	if (!kpte)
1511 		return __cpa_process_fault(cpa, address, primary);
1512 
1513 	old_pte = *kpte;
1514 	if (pte_none(old_pte))
1515 		return __cpa_process_fault(cpa, address, primary);
1516 
1517 	if (level == PG_LEVEL_4K) {
1518 		pte_t new_pte;
1519 		pgprot_t new_prot = pte_pgprot(old_pte);
1520 		unsigned long pfn = pte_pfn(old_pte);
1521 
1522 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1523 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1524 
1525 		cpa_inc_4k_install();
1526 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1527 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1528 					      CPA_PROTECT);
1529 
1530 		new_prot = pgprot_clear_protnone_bits(new_prot);
1531 
1532 		/*
1533 		 * We need to keep the pfn from the existing PTE,
1534 		 * after all we're only going to change it's attributes
1535 		 * not the memory it points to
1536 		 */
1537 		new_pte = pfn_pte(pfn, new_prot);
1538 		cpa->pfn = pfn;
1539 		/*
1540 		 * Do we really change anything ?
1541 		 */
1542 		if (pte_val(old_pte) != pte_val(new_pte)) {
1543 			set_pte_atomic(kpte, new_pte);
1544 			cpa->flags |= CPA_FLUSHTLB;
1545 		}
1546 		cpa->numpages = 1;
1547 		return 0;
1548 	}
1549 
1550 	/*
1551 	 * Check, whether we can keep the large page intact
1552 	 * and just change the pte:
1553 	 */
1554 	do_split = should_split_large_page(kpte, address, cpa);
1555 	/*
1556 	 * When the range fits into the existing large page,
1557 	 * return. cp->numpages and cpa->tlbflush have been updated in
1558 	 * try_large_page:
1559 	 */
1560 	if (do_split <= 0)
1561 		return do_split;
1562 
1563 	/*
1564 	 * We have to split the large page:
1565 	 */
1566 	err = split_large_page(cpa, kpte, address);
1567 	if (!err)
1568 		goto repeat;
1569 
1570 	return err;
1571 }
1572 
1573 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1574 
1575 static int cpa_process_alias(struct cpa_data *cpa)
1576 {
1577 	struct cpa_data alias_cpa;
1578 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1579 	unsigned long vaddr;
1580 	int ret;
1581 
1582 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1583 		return 0;
1584 
1585 	/*
1586 	 * No need to redo, when the primary call touched the direct
1587 	 * mapping already:
1588 	 */
1589 	vaddr = __cpa_addr(cpa, cpa->curpage);
1590 	if (!(within(vaddr, PAGE_OFFSET,
1591 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1592 
1593 		alias_cpa = *cpa;
1594 		alias_cpa.vaddr = &laddr;
1595 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1596 		alias_cpa.curpage = 0;
1597 
1598 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1599 		if (ret)
1600 			return ret;
1601 	}
1602 
1603 #ifdef CONFIG_X86_64
1604 	/*
1605 	 * If the primary call didn't touch the high mapping already
1606 	 * and the physical address is inside the kernel map, we need
1607 	 * to touch the high mapped kernel as well:
1608 	 */
1609 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1610 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1611 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1612 					       __START_KERNEL_map - phys_base;
1613 		alias_cpa = *cpa;
1614 		alias_cpa.vaddr = &temp_cpa_vaddr;
1615 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1616 		alias_cpa.curpage = 0;
1617 
1618 		/*
1619 		 * The high mapping range is imprecise, so ignore the
1620 		 * return value.
1621 		 */
1622 		__change_page_attr_set_clr(&alias_cpa, 0);
1623 	}
1624 #endif
1625 
1626 	return 0;
1627 }
1628 
1629 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1630 {
1631 	unsigned long numpages = cpa->numpages;
1632 	unsigned long rempages = numpages;
1633 	int ret = 0;
1634 
1635 	while (rempages) {
1636 		/*
1637 		 * Store the remaining nr of pages for the large page
1638 		 * preservation check.
1639 		 */
1640 		cpa->numpages = rempages;
1641 		/* for array changes, we can't use large page */
1642 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1643 			cpa->numpages = 1;
1644 
1645 		if (!debug_pagealloc_enabled())
1646 			spin_lock(&cpa_lock);
1647 		ret = __change_page_attr(cpa, checkalias);
1648 		if (!debug_pagealloc_enabled())
1649 			spin_unlock(&cpa_lock);
1650 		if (ret)
1651 			goto out;
1652 
1653 		if (checkalias) {
1654 			ret = cpa_process_alias(cpa);
1655 			if (ret)
1656 				goto out;
1657 		}
1658 
1659 		/*
1660 		 * Adjust the number of pages with the result of the
1661 		 * CPA operation. Either a large page has been
1662 		 * preserved or a single page update happened.
1663 		 */
1664 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1665 		rempages -= cpa->numpages;
1666 		cpa->curpage += cpa->numpages;
1667 	}
1668 
1669 out:
1670 	/* Restore the original numpages */
1671 	cpa->numpages = numpages;
1672 	return ret;
1673 }
1674 
1675 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1676 				    pgprot_t mask_set, pgprot_t mask_clr,
1677 				    int force_split, int in_flag,
1678 				    struct page **pages)
1679 {
1680 	struct cpa_data cpa;
1681 	int ret, cache, checkalias;
1682 
1683 	memset(&cpa, 0, sizeof(cpa));
1684 
1685 	/*
1686 	 * Check, if we are requested to set a not supported
1687 	 * feature.  Clearing non-supported features is OK.
1688 	 */
1689 	mask_set = canon_pgprot(mask_set);
1690 
1691 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1692 		return 0;
1693 
1694 	/* Ensure we are PAGE_SIZE aligned */
1695 	if (in_flag & CPA_ARRAY) {
1696 		int i;
1697 		for (i = 0; i < numpages; i++) {
1698 			if (addr[i] & ~PAGE_MASK) {
1699 				addr[i] &= PAGE_MASK;
1700 				WARN_ON_ONCE(1);
1701 			}
1702 		}
1703 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1704 		/*
1705 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1706 		 * No need to check in that case
1707 		 */
1708 		if (*addr & ~PAGE_MASK) {
1709 			*addr &= PAGE_MASK;
1710 			/*
1711 			 * People should not be passing in unaligned addresses:
1712 			 */
1713 			WARN_ON_ONCE(1);
1714 		}
1715 	}
1716 
1717 	/* Must avoid aliasing mappings in the highmem code */
1718 	kmap_flush_unused();
1719 
1720 	vm_unmap_aliases();
1721 
1722 	cpa.vaddr = addr;
1723 	cpa.pages = pages;
1724 	cpa.numpages = numpages;
1725 	cpa.mask_set = mask_set;
1726 	cpa.mask_clr = mask_clr;
1727 	cpa.flags = 0;
1728 	cpa.curpage = 0;
1729 	cpa.force_split = force_split;
1730 
1731 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1732 		cpa.flags |= in_flag;
1733 
1734 	/* No alias checking for _NX bit modifications */
1735 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1736 	/* Has caller explicitly disabled alias checking? */
1737 	if (in_flag & CPA_NO_CHECK_ALIAS)
1738 		checkalias = 0;
1739 
1740 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1741 
1742 	/*
1743 	 * Check whether we really changed something:
1744 	 */
1745 	if (!(cpa.flags & CPA_FLUSHTLB))
1746 		goto out;
1747 
1748 	/*
1749 	 * No need to flush, when we did not set any of the caching
1750 	 * attributes:
1751 	 */
1752 	cache = !!pgprot2cachemode(mask_set);
1753 
1754 	/*
1755 	 * On error; flush everything to be sure.
1756 	 */
1757 	if (ret) {
1758 		cpa_flush_all(cache);
1759 		goto out;
1760 	}
1761 
1762 	cpa_flush(&cpa, cache);
1763 out:
1764 	return ret;
1765 }
1766 
1767 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1768 				       pgprot_t mask, int array)
1769 {
1770 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1771 		(array ? CPA_ARRAY : 0), NULL);
1772 }
1773 
1774 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1775 					 pgprot_t mask, int array)
1776 {
1777 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1778 		(array ? CPA_ARRAY : 0), NULL);
1779 }
1780 
1781 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1782 				       pgprot_t mask)
1783 {
1784 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1785 		CPA_PAGES_ARRAY, pages);
1786 }
1787 
1788 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1789 					 pgprot_t mask)
1790 {
1791 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1792 		CPA_PAGES_ARRAY, pages);
1793 }
1794 
1795 int _set_memory_uc(unsigned long addr, int numpages)
1796 {
1797 	/*
1798 	 * for now UC MINUS. see comments in ioremap()
1799 	 * If you really need strong UC use ioremap_uc(), but note
1800 	 * that you cannot override IO areas with set_memory_*() as
1801 	 * these helpers cannot work with IO memory.
1802 	 */
1803 	return change_page_attr_set(&addr, numpages,
1804 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1805 				    0);
1806 }
1807 
1808 int set_memory_uc(unsigned long addr, int numpages)
1809 {
1810 	int ret;
1811 
1812 	/*
1813 	 * for now UC MINUS. see comments in ioremap()
1814 	 */
1815 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1816 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1817 	if (ret)
1818 		goto out_err;
1819 
1820 	ret = _set_memory_uc(addr, numpages);
1821 	if (ret)
1822 		goto out_free;
1823 
1824 	return 0;
1825 
1826 out_free:
1827 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1828 out_err:
1829 	return ret;
1830 }
1831 EXPORT_SYMBOL(set_memory_uc);
1832 
1833 int _set_memory_wc(unsigned long addr, int numpages)
1834 {
1835 	int ret;
1836 
1837 	ret = change_page_attr_set(&addr, numpages,
1838 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1839 				   0);
1840 	if (!ret) {
1841 		ret = change_page_attr_set_clr(&addr, numpages,
1842 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1843 					       __pgprot(_PAGE_CACHE_MASK),
1844 					       0, 0, NULL);
1845 	}
1846 	return ret;
1847 }
1848 
1849 int set_memory_wc(unsigned long addr, int numpages)
1850 {
1851 	int ret;
1852 
1853 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1854 		_PAGE_CACHE_MODE_WC, NULL);
1855 	if (ret)
1856 		return ret;
1857 
1858 	ret = _set_memory_wc(addr, numpages);
1859 	if (ret)
1860 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(set_memory_wc);
1865 
1866 int _set_memory_wt(unsigned long addr, int numpages)
1867 {
1868 	return change_page_attr_set(&addr, numpages,
1869 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1870 }
1871 
1872 int _set_memory_wb(unsigned long addr, int numpages)
1873 {
1874 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1875 	return change_page_attr_clear(&addr, numpages,
1876 				      __pgprot(_PAGE_CACHE_MASK), 0);
1877 }
1878 
1879 int set_memory_wb(unsigned long addr, int numpages)
1880 {
1881 	int ret;
1882 
1883 	ret = _set_memory_wb(addr, numpages);
1884 	if (ret)
1885 		return ret;
1886 
1887 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL(set_memory_wb);
1891 
1892 int set_memory_x(unsigned long addr, int numpages)
1893 {
1894 	if (!(__supported_pte_mask & _PAGE_NX))
1895 		return 0;
1896 
1897 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1898 }
1899 
1900 int set_memory_nx(unsigned long addr, int numpages)
1901 {
1902 	if (!(__supported_pte_mask & _PAGE_NX))
1903 		return 0;
1904 
1905 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1906 }
1907 
1908 int set_memory_ro(unsigned long addr, int numpages)
1909 {
1910 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1911 }
1912 
1913 int set_memory_rw(unsigned long addr, int numpages)
1914 {
1915 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1916 }
1917 
1918 int set_memory_np(unsigned long addr, int numpages)
1919 {
1920 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1921 }
1922 
1923 int set_memory_np_noalias(unsigned long addr, int numpages)
1924 {
1925 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1926 
1927 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1928 					__pgprot(_PAGE_PRESENT), 0,
1929 					cpa_flags, NULL);
1930 }
1931 
1932 int set_memory_4k(unsigned long addr, int numpages)
1933 {
1934 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1935 					__pgprot(0), 1, 0, NULL);
1936 }
1937 
1938 int set_memory_nonglobal(unsigned long addr, int numpages)
1939 {
1940 	return change_page_attr_clear(&addr, numpages,
1941 				      __pgprot(_PAGE_GLOBAL), 0);
1942 }
1943 
1944 int set_memory_global(unsigned long addr, int numpages)
1945 {
1946 	return change_page_attr_set(&addr, numpages,
1947 				    __pgprot(_PAGE_GLOBAL), 0);
1948 }
1949 
1950 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1951 {
1952 	struct cpa_data cpa;
1953 	int ret;
1954 
1955 	/* Nothing to do if memory encryption is not active */
1956 	if (!mem_encrypt_active())
1957 		return 0;
1958 
1959 	/* Should not be working on unaligned addresses */
1960 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1961 		addr &= PAGE_MASK;
1962 
1963 	memset(&cpa, 0, sizeof(cpa));
1964 	cpa.vaddr = &addr;
1965 	cpa.numpages = numpages;
1966 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1967 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1968 	cpa.pgd = init_mm.pgd;
1969 
1970 	/* Must avoid aliasing mappings in the highmem code */
1971 	kmap_flush_unused();
1972 	vm_unmap_aliases();
1973 
1974 	/*
1975 	 * Before changing the encryption attribute, we need to flush caches.
1976 	 */
1977 	cpa_flush(&cpa, 1);
1978 
1979 	ret = __change_page_attr_set_clr(&cpa, 1);
1980 
1981 	/*
1982 	 * After changing the encryption attribute, we need to flush TLBs again
1983 	 * in case any speculative TLB caching occurred (but no need to flush
1984 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
1985 	 * flushing gets optimized in the cpa_flush() path use the same logic
1986 	 * as above.
1987 	 */
1988 	cpa_flush(&cpa, 0);
1989 
1990 	return ret;
1991 }
1992 
1993 int set_memory_encrypted(unsigned long addr, int numpages)
1994 {
1995 	return __set_memory_enc_dec(addr, numpages, true);
1996 }
1997 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1998 
1999 int set_memory_decrypted(unsigned long addr, int numpages)
2000 {
2001 	return __set_memory_enc_dec(addr, numpages, false);
2002 }
2003 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2004 
2005 int set_pages_uc(struct page *page, int numpages)
2006 {
2007 	unsigned long addr = (unsigned long)page_address(page);
2008 
2009 	return set_memory_uc(addr, numpages);
2010 }
2011 EXPORT_SYMBOL(set_pages_uc);
2012 
2013 static int _set_pages_array(struct page **pages, int numpages,
2014 		enum page_cache_mode new_type)
2015 {
2016 	unsigned long start;
2017 	unsigned long end;
2018 	enum page_cache_mode set_type;
2019 	int i;
2020 	int free_idx;
2021 	int ret;
2022 
2023 	for (i = 0; i < numpages; i++) {
2024 		if (PageHighMem(pages[i]))
2025 			continue;
2026 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2027 		end = start + PAGE_SIZE;
2028 		if (memtype_reserve(start, end, new_type, NULL))
2029 			goto err_out;
2030 	}
2031 
2032 	/* If WC, set to UC- first and then WC */
2033 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2034 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2035 
2036 	ret = cpa_set_pages_array(pages, numpages,
2037 				  cachemode2pgprot(set_type));
2038 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2039 		ret = change_page_attr_set_clr(NULL, numpages,
2040 					       cachemode2pgprot(
2041 						_PAGE_CACHE_MODE_WC),
2042 					       __pgprot(_PAGE_CACHE_MASK),
2043 					       0, CPA_PAGES_ARRAY, pages);
2044 	if (ret)
2045 		goto err_out;
2046 	return 0; /* Success */
2047 err_out:
2048 	free_idx = i;
2049 	for (i = 0; i < free_idx; i++) {
2050 		if (PageHighMem(pages[i]))
2051 			continue;
2052 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2053 		end = start + PAGE_SIZE;
2054 		memtype_free(start, end);
2055 	}
2056 	return -EINVAL;
2057 }
2058 
2059 int set_pages_array_uc(struct page **pages, int numpages)
2060 {
2061 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2062 }
2063 EXPORT_SYMBOL(set_pages_array_uc);
2064 
2065 int set_pages_array_wc(struct page **pages, int numpages)
2066 {
2067 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2068 }
2069 EXPORT_SYMBOL(set_pages_array_wc);
2070 
2071 int set_pages_array_wt(struct page **pages, int numpages)
2072 {
2073 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2074 }
2075 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2076 
2077 int set_pages_wb(struct page *page, int numpages)
2078 {
2079 	unsigned long addr = (unsigned long)page_address(page);
2080 
2081 	return set_memory_wb(addr, numpages);
2082 }
2083 EXPORT_SYMBOL(set_pages_wb);
2084 
2085 int set_pages_array_wb(struct page **pages, int numpages)
2086 {
2087 	int retval;
2088 	unsigned long start;
2089 	unsigned long end;
2090 	int i;
2091 
2092 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2093 	retval = cpa_clear_pages_array(pages, numpages,
2094 			__pgprot(_PAGE_CACHE_MASK));
2095 	if (retval)
2096 		return retval;
2097 
2098 	for (i = 0; i < numpages; i++) {
2099 		if (PageHighMem(pages[i]))
2100 			continue;
2101 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2102 		end = start + PAGE_SIZE;
2103 		memtype_free(start, end);
2104 	}
2105 
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL(set_pages_array_wb);
2109 
2110 int set_pages_ro(struct page *page, int numpages)
2111 {
2112 	unsigned long addr = (unsigned long)page_address(page);
2113 
2114 	return set_memory_ro(addr, numpages);
2115 }
2116 
2117 int set_pages_rw(struct page *page, int numpages)
2118 {
2119 	unsigned long addr = (unsigned long)page_address(page);
2120 
2121 	return set_memory_rw(addr, numpages);
2122 }
2123 
2124 static int __set_pages_p(struct page *page, int numpages)
2125 {
2126 	unsigned long tempaddr = (unsigned long) page_address(page);
2127 	struct cpa_data cpa = { .vaddr = &tempaddr,
2128 				.pgd = NULL,
2129 				.numpages = numpages,
2130 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2131 				.mask_clr = __pgprot(0),
2132 				.flags = 0};
2133 
2134 	/*
2135 	 * No alias checking needed for setting present flag. otherwise,
2136 	 * we may need to break large pages for 64-bit kernel text
2137 	 * mappings (this adds to complexity if we want to do this from
2138 	 * atomic context especially). Let's keep it simple!
2139 	 */
2140 	return __change_page_attr_set_clr(&cpa, 0);
2141 }
2142 
2143 static int __set_pages_np(struct page *page, int numpages)
2144 {
2145 	unsigned long tempaddr = (unsigned long) page_address(page);
2146 	struct cpa_data cpa = { .vaddr = &tempaddr,
2147 				.pgd = NULL,
2148 				.numpages = numpages,
2149 				.mask_set = __pgprot(0),
2150 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2151 				.flags = 0};
2152 
2153 	/*
2154 	 * No alias checking needed for setting not present flag. otherwise,
2155 	 * we may need to break large pages for 64-bit kernel text
2156 	 * mappings (this adds to complexity if we want to do this from
2157 	 * atomic context especially). Let's keep it simple!
2158 	 */
2159 	return __change_page_attr_set_clr(&cpa, 0);
2160 }
2161 
2162 int set_direct_map_invalid_noflush(struct page *page)
2163 {
2164 	return __set_pages_np(page, 1);
2165 }
2166 
2167 int set_direct_map_default_noflush(struct page *page)
2168 {
2169 	return __set_pages_p(page, 1);
2170 }
2171 
2172 void __kernel_map_pages(struct page *page, int numpages, int enable)
2173 {
2174 	if (PageHighMem(page))
2175 		return;
2176 	if (!enable) {
2177 		debug_check_no_locks_freed(page_address(page),
2178 					   numpages * PAGE_SIZE);
2179 	}
2180 
2181 	/*
2182 	 * The return value is ignored as the calls cannot fail.
2183 	 * Large pages for identity mappings are not used at boot time
2184 	 * and hence no memory allocations during large page split.
2185 	 */
2186 	if (enable)
2187 		__set_pages_p(page, numpages);
2188 	else
2189 		__set_pages_np(page, numpages);
2190 
2191 	/*
2192 	 * We should perform an IPI and flush all tlbs,
2193 	 * but that can deadlock->flush only current cpu.
2194 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2195 	 * CR3 reload in __native_flush_tlb().
2196 	 */
2197 	preempt_disable();
2198 	__flush_tlb_all();
2199 	preempt_enable();
2200 
2201 	arch_flush_lazy_mmu_mode();
2202 }
2203 
2204 #ifdef CONFIG_HIBERNATION
2205 bool kernel_page_present(struct page *page)
2206 {
2207 	unsigned int level;
2208 	pte_t *pte;
2209 
2210 	if (PageHighMem(page))
2211 		return false;
2212 
2213 	pte = lookup_address((unsigned long)page_address(page), &level);
2214 	return (pte_val(*pte) & _PAGE_PRESENT);
2215 }
2216 #endif /* CONFIG_HIBERNATION */
2217 
2218 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2219 				   unsigned numpages, unsigned long page_flags)
2220 {
2221 	int retval = -EINVAL;
2222 
2223 	struct cpa_data cpa = {
2224 		.vaddr = &address,
2225 		.pfn = pfn,
2226 		.pgd = pgd,
2227 		.numpages = numpages,
2228 		.mask_set = __pgprot(0),
2229 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2230 		.flags = 0,
2231 	};
2232 
2233 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2234 
2235 	if (!(__supported_pte_mask & _PAGE_NX))
2236 		goto out;
2237 
2238 	if (!(page_flags & _PAGE_ENC))
2239 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2240 
2241 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2242 
2243 	retval = __change_page_attr_set_clr(&cpa, 0);
2244 	__flush_tlb_all();
2245 
2246 out:
2247 	return retval;
2248 }
2249 
2250 /*
2251  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2252  * function shouldn't be used in an SMP environment. Presently, it's used only
2253  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2254  */
2255 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2256 				     unsigned long numpages)
2257 {
2258 	int retval;
2259 
2260 	/*
2261 	 * The typical sequence for unmapping is to find a pte through
2262 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2263 	 * the address is already mapped) and change it's protections. As pfn is
2264 	 * the *target* of a mapping, it's not useful while unmapping.
2265 	 */
2266 	struct cpa_data cpa = {
2267 		.vaddr		= &address,
2268 		.pfn		= 0,
2269 		.pgd		= pgd,
2270 		.numpages	= numpages,
2271 		.mask_set	= __pgprot(0),
2272 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2273 		.flags		= 0,
2274 	};
2275 
2276 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2277 
2278 	retval = __change_page_attr_set_clr(&cpa, 0);
2279 	__flush_tlb_all();
2280 
2281 	return retval;
2282 }
2283 
2284 /*
2285  * The testcases use internal knowledge of the implementation that shouldn't
2286  * be exposed to the rest of the kernel. Include these directly here.
2287  */
2288 #ifdef CONFIG_CPA_DEBUG
2289 #include "cpa-test.c"
2290 #endif
2291