1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 19 #include <asm/e820/api.h> 20 #include <asm/processor.h> 21 #include <asm/tlbflush.h> 22 #include <asm/sections.h> 23 #include <asm/setup.h> 24 #include <linux/uaccess.h> 25 #include <asm/pgalloc.h> 26 #include <asm/proto.h> 27 #include <asm/memtype.h> 28 #include <asm/set_memory.h> 29 30 #include "../mm_internal.h" 31 32 /* 33 * The current flushing context - we pass it instead of 5 arguments: 34 */ 35 struct cpa_data { 36 unsigned long *vaddr; 37 pgd_t *pgd; 38 pgprot_t mask_set; 39 pgprot_t mask_clr; 40 unsigned long numpages; 41 unsigned long curpage; 42 unsigned long pfn; 43 unsigned int flags; 44 unsigned int force_split : 1, 45 force_static_prot : 1; 46 struct page **pages; 47 }; 48 49 enum cpa_warn { 50 CPA_CONFLICT, 51 CPA_PROTECT, 52 CPA_DETECT, 53 }; 54 55 static const int cpa_warn_level = CPA_PROTECT; 56 57 /* 58 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 59 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 60 * entries change the page attribute in parallel to some other cpu 61 * splitting a large page entry along with changing the attribute. 62 */ 63 static DEFINE_SPINLOCK(cpa_lock); 64 65 #define CPA_FLUSHTLB 1 66 #define CPA_ARRAY 2 67 #define CPA_PAGES_ARRAY 4 68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 69 70 #ifdef CONFIG_PROC_FS 71 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 72 73 void update_page_count(int level, unsigned long pages) 74 { 75 /* Protect against CPA */ 76 spin_lock(&pgd_lock); 77 direct_pages_count[level] += pages; 78 spin_unlock(&pgd_lock); 79 } 80 81 static void split_page_count(int level) 82 { 83 if (direct_pages_count[level] == 0) 84 return; 85 86 direct_pages_count[level]--; 87 direct_pages_count[level - 1] += PTRS_PER_PTE; 88 } 89 90 void arch_report_meminfo(struct seq_file *m) 91 { 92 seq_printf(m, "DirectMap4k: %8lu kB\n", 93 direct_pages_count[PG_LEVEL_4K] << 2); 94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 95 seq_printf(m, "DirectMap2M: %8lu kB\n", 96 direct_pages_count[PG_LEVEL_2M] << 11); 97 #else 98 seq_printf(m, "DirectMap4M: %8lu kB\n", 99 direct_pages_count[PG_LEVEL_2M] << 12); 100 #endif 101 if (direct_gbpages) 102 seq_printf(m, "DirectMap1G: %8lu kB\n", 103 direct_pages_count[PG_LEVEL_1G] << 20); 104 } 105 #else 106 static inline void split_page_count(int level) { } 107 #endif 108 109 #ifdef CONFIG_X86_CPA_STATISTICS 110 111 static unsigned long cpa_1g_checked; 112 static unsigned long cpa_1g_sameprot; 113 static unsigned long cpa_1g_preserved; 114 static unsigned long cpa_2m_checked; 115 static unsigned long cpa_2m_sameprot; 116 static unsigned long cpa_2m_preserved; 117 static unsigned long cpa_4k_install; 118 119 static inline void cpa_inc_1g_checked(void) 120 { 121 cpa_1g_checked++; 122 } 123 124 static inline void cpa_inc_2m_checked(void) 125 { 126 cpa_2m_checked++; 127 } 128 129 static inline void cpa_inc_4k_install(void) 130 { 131 cpa_4k_install++; 132 } 133 134 static inline void cpa_inc_lp_sameprot(int level) 135 { 136 if (level == PG_LEVEL_1G) 137 cpa_1g_sameprot++; 138 else 139 cpa_2m_sameprot++; 140 } 141 142 static inline void cpa_inc_lp_preserved(int level) 143 { 144 if (level == PG_LEVEL_1G) 145 cpa_1g_preserved++; 146 else 147 cpa_2m_preserved++; 148 } 149 150 static int cpastats_show(struct seq_file *m, void *p) 151 { 152 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 153 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 154 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 155 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 156 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 157 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 158 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 159 return 0; 160 } 161 162 static int cpastats_open(struct inode *inode, struct file *file) 163 { 164 return single_open(file, cpastats_show, NULL); 165 } 166 167 static const struct file_operations cpastats_fops = { 168 .open = cpastats_open, 169 .read = seq_read, 170 .llseek = seq_lseek, 171 .release = single_release, 172 }; 173 174 static int __init cpa_stats_init(void) 175 { 176 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 177 &cpastats_fops); 178 return 0; 179 } 180 late_initcall(cpa_stats_init); 181 #else 182 static inline void cpa_inc_1g_checked(void) { } 183 static inline void cpa_inc_2m_checked(void) { } 184 static inline void cpa_inc_4k_install(void) { } 185 static inline void cpa_inc_lp_sameprot(int level) { } 186 static inline void cpa_inc_lp_preserved(int level) { } 187 #endif 188 189 190 static inline int 191 within(unsigned long addr, unsigned long start, unsigned long end) 192 { 193 return addr >= start && addr < end; 194 } 195 196 static inline int 197 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 198 { 199 return addr >= start && addr <= end; 200 } 201 202 #ifdef CONFIG_X86_64 203 204 static inline unsigned long highmap_start_pfn(void) 205 { 206 return __pa_symbol(_text) >> PAGE_SHIFT; 207 } 208 209 static inline unsigned long highmap_end_pfn(void) 210 { 211 /* Do not reference physical address outside the kernel. */ 212 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 213 } 214 215 static bool __cpa_pfn_in_highmap(unsigned long pfn) 216 { 217 /* 218 * Kernel text has an alias mapping at a high address, known 219 * here as "highmap". 220 */ 221 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 222 } 223 224 #else 225 226 static bool __cpa_pfn_in_highmap(unsigned long pfn) 227 { 228 /* There is no highmap on 32-bit */ 229 return false; 230 } 231 232 #endif 233 234 /* 235 * See set_mce_nospec(). 236 * 237 * Machine check recovery code needs to change cache mode of poisoned pages to 238 * UC to avoid speculative access logging another error. But passing the 239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 240 * speculative access. So we cheat and flip the top bit of the address. This 241 * works fine for the code that updates the page tables. But at the end of the 242 * process we need to flush the TLB and cache and the non-canonical address 243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 244 * 245 * But in the common case we already have a canonical address. This code 246 * will fix the top bit if needed and is a no-op otherwise. 247 */ 248 static inline unsigned long fix_addr(unsigned long addr) 249 { 250 #ifdef CONFIG_X86_64 251 return (long)(addr << 1) >> 1; 252 #else 253 return addr; 254 #endif 255 } 256 257 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 258 { 259 if (cpa->flags & CPA_PAGES_ARRAY) { 260 struct page *page = cpa->pages[idx]; 261 262 if (unlikely(PageHighMem(page))) 263 return 0; 264 265 return (unsigned long)page_address(page); 266 } 267 268 if (cpa->flags & CPA_ARRAY) 269 return cpa->vaddr[idx]; 270 271 return *cpa->vaddr + idx * PAGE_SIZE; 272 } 273 274 /* 275 * Flushing functions 276 */ 277 278 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 279 { 280 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 281 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 282 void *vend = vaddr + size; 283 284 if (p >= vend) 285 return; 286 287 for (; p < vend; p += clflush_size) 288 clflushopt(p); 289 } 290 291 /** 292 * clflush_cache_range - flush a cache range with clflush 293 * @vaddr: virtual start address 294 * @size: number of bytes to flush 295 * 296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 297 * SFENCE to avoid ordering issues. 298 */ 299 void clflush_cache_range(void *vaddr, unsigned int size) 300 { 301 mb(); 302 clflush_cache_range_opt(vaddr, size); 303 mb(); 304 } 305 EXPORT_SYMBOL_GPL(clflush_cache_range); 306 307 void arch_invalidate_pmem(void *addr, size_t size) 308 { 309 clflush_cache_range(addr, size); 310 } 311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 312 313 static void __cpa_flush_all(void *arg) 314 { 315 unsigned long cache = (unsigned long)arg; 316 317 /* 318 * Flush all to work around Errata in early athlons regarding 319 * large page flushing. 320 */ 321 __flush_tlb_all(); 322 323 if (cache && boot_cpu_data.x86 >= 4) 324 wbinvd(); 325 } 326 327 static void cpa_flush_all(unsigned long cache) 328 { 329 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 330 331 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 332 } 333 334 static void __cpa_flush_tlb(void *data) 335 { 336 struct cpa_data *cpa = data; 337 unsigned int i; 338 339 for (i = 0; i < cpa->numpages; i++) 340 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 341 } 342 343 static void cpa_flush(struct cpa_data *data, int cache) 344 { 345 struct cpa_data *cpa = data; 346 unsigned int i; 347 348 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 349 350 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 351 cpa_flush_all(cache); 352 return; 353 } 354 355 if (cpa->numpages <= tlb_single_page_flush_ceiling) 356 on_each_cpu(__cpa_flush_tlb, cpa, 1); 357 else 358 flush_tlb_all(); 359 360 if (!cache) 361 return; 362 363 mb(); 364 for (i = 0; i < cpa->numpages; i++) { 365 unsigned long addr = __cpa_addr(cpa, i); 366 unsigned int level; 367 368 pte_t *pte = lookup_address(addr, &level); 369 370 /* 371 * Only flush present addresses: 372 */ 373 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 374 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 375 } 376 mb(); 377 } 378 379 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 380 unsigned long r2_start, unsigned long r2_end) 381 { 382 return (r1_start <= r2_end && r1_end >= r2_start) || 383 (r2_start <= r1_end && r2_end >= r1_start); 384 } 385 386 #ifdef CONFIG_PCI_BIOS 387 /* 388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 389 * based config access (CONFIG_PCI_GOBIOS) support. 390 */ 391 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 392 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 393 394 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 395 { 396 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 397 return _PAGE_NX; 398 return 0; 399 } 400 #else 401 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 402 { 403 return 0; 404 } 405 #endif 406 407 /* 408 * The .rodata section needs to be read-only. Using the pfn catches all 409 * aliases. This also includes __ro_after_init, so do not enforce until 410 * kernel_set_to_readonly is true. 411 */ 412 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 413 { 414 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 415 416 /* 417 * Note: __end_rodata is at page aligned and not inclusive, so 418 * subtract 1 to get the last enforced PFN in the rodata area. 419 */ 420 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 421 422 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 423 return _PAGE_RW; 424 return 0; 425 } 426 427 /* 428 * Protect kernel text against becoming non executable by forbidding 429 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 430 * out of which the kernel actually executes. Do not protect the low 431 * mapping. 432 * 433 * This does not cover __inittext since that is gone after boot. 434 */ 435 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 436 { 437 unsigned long t_end = (unsigned long)_etext - 1; 438 unsigned long t_start = (unsigned long)_text; 439 440 if (overlaps(start, end, t_start, t_end)) 441 return _PAGE_NX; 442 return 0; 443 } 444 445 #if defined(CONFIG_X86_64) 446 /* 447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 448 * kernel text mappings for the large page aligned text, rodata sections 449 * will be always read-only. For the kernel identity mappings covering the 450 * holes caused by this alignment can be anything that user asks. 451 * 452 * This will preserve the large page mappings for kernel text/data at no 453 * extra cost. 454 */ 455 static pgprotval_t protect_kernel_text_ro(unsigned long start, 456 unsigned long end) 457 { 458 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 459 unsigned long t_start = (unsigned long)_text; 460 unsigned int level; 461 462 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 463 return 0; 464 /* 465 * Don't enforce the !RW mapping for the kernel text mapping, if 466 * the current mapping is already using small page mapping. No 467 * need to work hard to preserve large page mappings in this case. 468 * 469 * This also fixes the Linux Xen paravirt guest boot failure caused 470 * by unexpected read-only mappings for kernel identity 471 * mappings. In this paravirt guest case, the kernel text mapping 472 * and the kernel identity mapping share the same page-table pages, 473 * so the protections for kernel text and identity mappings have to 474 * be the same. 475 */ 476 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 477 return _PAGE_RW; 478 return 0; 479 } 480 #else 481 static pgprotval_t protect_kernel_text_ro(unsigned long start, 482 unsigned long end) 483 { 484 return 0; 485 } 486 #endif 487 488 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 489 { 490 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 491 } 492 493 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 494 unsigned long start, unsigned long end, 495 unsigned long pfn, const char *txt) 496 { 497 static const char *lvltxt[] = { 498 [CPA_CONFLICT] = "conflict", 499 [CPA_PROTECT] = "protect", 500 [CPA_DETECT] = "detect", 501 }; 502 503 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 504 return; 505 506 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 507 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 508 (unsigned long long)val); 509 } 510 511 /* 512 * Certain areas of memory on x86 require very specific protection flags, 513 * for example the BIOS area or kernel text. Callers don't always get this 514 * right (again, ioremap() on BIOS memory is not uncommon) so this function 515 * checks and fixes these known static required protection bits. 516 */ 517 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 518 unsigned long pfn, unsigned long npg, 519 unsigned long lpsize, int warnlvl) 520 { 521 pgprotval_t forbidden, res; 522 unsigned long end; 523 524 /* 525 * There is no point in checking RW/NX conflicts when the requested 526 * mapping is setting the page !PRESENT. 527 */ 528 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 529 return prot; 530 531 /* Operate on the virtual address */ 532 end = start + npg * PAGE_SIZE - 1; 533 534 res = protect_kernel_text(start, end); 535 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 536 forbidden = res; 537 538 /* 539 * Special case to preserve a large page. If the change spawns the 540 * full large page mapping then there is no point to split it 541 * up. Happens with ftrace and is going to be removed once ftrace 542 * switched to text_poke(). 543 */ 544 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 545 res = protect_kernel_text_ro(start, end); 546 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 547 forbidden |= res; 548 } 549 550 /* Check the PFN directly */ 551 res = protect_pci_bios(pfn, pfn + npg - 1); 552 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 553 forbidden |= res; 554 555 res = protect_rodata(pfn, pfn + npg - 1); 556 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 557 forbidden |= res; 558 559 return __pgprot(pgprot_val(prot) & ~forbidden); 560 } 561 562 /* 563 * Lookup the page table entry for a virtual address in a specific pgd. 564 * Return a pointer to the entry and the level of the mapping. 565 */ 566 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 567 unsigned int *level) 568 { 569 p4d_t *p4d; 570 pud_t *pud; 571 pmd_t *pmd; 572 573 *level = PG_LEVEL_NONE; 574 575 if (pgd_none(*pgd)) 576 return NULL; 577 578 p4d = p4d_offset(pgd, address); 579 if (p4d_none(*p4d)) 580 return NULL; 581 582 *level = PG_LEVEL_512G; 583 if (p4d_large(*p4d) || !p4d_present(*p4d)) 584 return (pte_t *)p4d; 585 586 pud = pud_offset(p4d, address); 587 if (pud_none(*pud)) 588 return NULL; 589 590 *level = PG_LEVEL_1G; 591 if (pud_large(*pud) || !pud_present(*pud)) 592 return (pte_t *)pud; 593 594 pmd = pmd_offset(pud, address); 595 if (pmd_none(*pmd)) 596 return NULL; 597 598 *level = PG_LEVEL_2M; 599 if (pmd_large(*pmd) || !pmd_present(*pmd)) 600 return (pte_t *)pmd; 601 602 *level = PG_LEVEL_4K; 603 604 return pte_offset_kernel(pmd, address); 605 } 606 607 /* 608 * Lookup the page table entry for a virtual address. Return a pointer 609 * to the entry and the level of the mapping. 610 * 611 * Note: We return pud and pmd either when the entry is marked large 612 * or when the present bit is not set. Otherwise we would return a 613 * pointer to a nonexisting mapping. 614 */ 615 pte_t *lookup_address(unsigned long address, unsigned int *level) 616 { 617 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 618 } 619 EXPORT_SYMBOL_GPL(lookup_address); 620 621 /* 622 * Lookup the page table entry for a virtual address in a given mm. Return a 623 * pointer to the entry and the level of the mapping. 624 */ 625 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, 626 unsigned int *level) 627 { 628 return lookup_address_in_pgd(pgd_offset(mm, address), address, level); 629 } 630 EXPORT_SYMBOL_GPL(lookup_address_in_mm); 631 632 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 633 unsigned int *level) 634 { 635 if (cpa->pgd) 636 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 637 address, level); 638 639 return lookup_address(address, level); 640 } 641 642 /* 643 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 644 * or NULL if not present. 645 */ 646 pmd_t *lookup_pmd_address(unsigned long address) 647 { 648 pgd_t *pgd; 649 p4d_t *p4d; 650 pud_t *pud; 651 652 pgd = pgd_offset_k(address); 653 if (pgd_none(*pgd)) 654 return NULL; 655 656 p4d = p4d_offset(pgd, address); 657 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 658 return NULL; 659 660 pud = pud_offset(p4d, address); 661 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 662 return NULL; 663 664 return pmd_offset(pud, address); 665 } 666 667 /* 668 * This is necessary because __pa() does not work on some 669 * kinds of memory, like vmalloc() or the alloc_remap() 670 * areas on 32-bit NUMA systems. The percpu areas can 671 * end up in this kind of memory, for instance. 672 * 673 * This could be optimized, but it is only intended to be 674 * used at inititalization time, and keeping it 675 * unoptimized should increase the testing coverage for 676 * the more obscure platforms. 677 */ 678 phys_addr_t slow_virt_to_phys(void *__virt_addr) 679 { 680 unsigned long virt_addr = (unsigned long)__virt_addr; 681 phys_addr_t phys_addr; 682 unsigned long offset; 683 enum pg_level level; 684 pte_t *pte; 685 686 pte = lookup_address(virt_addr, &level); 687 BUG_ON(!pte); 688 689 /* 690 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 691 * before being left-shifted PAGE_SHIFT bits -- this trick is to 692 * make 32-PAE kernel work correctly. 693 */ 694 switch (level) { 695 case PG_LEVEL_1G: 696 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 697 offset = virt_addr & ~PUD_PAGE_MASK; 698 break; 699 case PG_LEVEL_2M: 700 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 701 offset = virt_addr & ~PMD_PAGE_MASK; 702 break; 703 default: 704 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 705 offset = virt_addr & ~PAGE_MASK; 706 } 707 708 return (phys_addr_t)(phys_addr | offset); 709 } 710 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 711 712 /* 713 * Set the new pmd in all the pgds we know about: 714 */ 715 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 716 { 717 /* change init_mm */ 718 set_pte_atomic(kpte, pte); 719 #ifdef CONFIG_X86_32 720 if (!SHARED_KERNEL_PMD) { 721 struct page *page; 722 723 list_for_each_entry(page, &pgd_list, lru) { 724 pgd_t *pgd; 725 p4d_t *p4d; 726 pud_t *pud; 727 pmd_t *pmd; 728 729 pgd = (pgd_t *)page_address(page) + pgd_index(address); 730 p4d = p4d_offset(pgd, address); 731 pud = pud_offset(p4d, address); 732 pmd = pmd_offset(pud, address); 733 set_pte_atomic((pte_t *)pmd, pte); 734 } 735 } 736 #endif 737 } 738 739 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 740 { 741 /* 742 * _PAGE_GLOBAL means "global page" for present PTEs. 743 * But, it is also used to indicate _PAGE_PROTNONE 744 * for non-present PTEs. 745 * 746 * This ensures that a _PAGE_GLOBAL PTE going from 747 * present to non-present is not confused as 748 * _PAGE_PROTNONE. 749 */ 750 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 751 pgprot_val(prot) &= ~_PAGE_GLOBAL; 752 753 return prot; 754 } 755 756 static int __should_split_large_page(pte_t *kpte, unsigned long address, 757 struct cpa_data *cpa) 758 { 759 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 760 pgprot_t old_prot, new_prot, req_prot, chk_prot; 761 pte_t new_pte, *tmp; 762 enum pg_level level; 763 764 /* 765 * Check for races, another CPU might have split this page 766 * up already: 767 */ 768 tmp = _lookup_address_cpa(cpa, address, &level); 769 if (tmp != kpte) 770 return 1; 771 772 switch (level) { 773 case PG_LEVEL_2M: 774 old_prot = pmd_pgprot(*(pmd_t *)kpte); 775 old_pfn = pmd_pfn(*(pmd_t *)kpte); 776 cpa_inc_2m_checked(); 777 break; 778 case PG_LEVEL_1G: 779 old_prot = pud_pgprot(*(pud_t *)kpte); 780 old_pfn = pud_pfn(*(pud_t *)kpte); 781 cpa_inc_1g_checked(); 782 break; 783 default: 784 return -EINVAL; 785 } 786 787 psize = page_level_size(level); 788 pmask = page_level_mask(level); 789 790 /* 791 * Calculate the number of pages, which fit into this large 792 * page starting at address: 793 */ 794 lpaddr = (address + psize) & pmask; 795 numpages = (lpaddr - address) >> PAGE_SHIFT; 796 if (numpages < cpa->numpages) 797 cpa->numpages = numpages; 798 799 /* 800 * We are safe now. Check whether the new pgprot is the same: 801 * Convert protection attributes to 4k-format, as cpa->mask* are set 802 * up accordingly. 803 */ 804 805 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 806 req_prot = pgprot_large_2_4k(old_prot); 807 808 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 809 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 810 811 /* 812 * req_prot is in format of 4k pages. It must be converted to large 813 * page format: the caching mode includes the PAT bit located at 814 * different bit positions in the two formats. 815 */ 816 req_prot = pgprot_4k_2_large(req_prot); 817 req_prot = pgprot_clear_protnone_bits(req_prot); 818 if (pgprot_val(req_prot) & _PAGE_PRESENT) 819 pgprot_val(req_prot) |= _PAGE_PSE; 820 821 /* 822 * old_pfn points to the large page base pfn. So we need to add the 823 * offset of the virtual address: 824 */ 825 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 826 cpa->pfn = pfn; 827 828 /* 829 * Calculate the large page base address and the number of 4K pages 830 * in the large page 831 */ 832 lpaddr = address & pmask; 833 numpages = psize >> PAGE_SHIFT; 834 835 /* 836 * Sanity check that the existing mapping is correct versus the static 837 * protections. static_protections() guards against !PRESENT, so no 838 * extra conditional required here. 839 */ 840 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 841 psize, CPA_CONFLICT); 842 843 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 844 /* 845 * Split the large page and tell the split code to 846 * enforce static protections. 847 */ 848 cpa->force_static_prot = 1; 849 return 1; 850 } 851 852 /* 853 * Optimization: If the requested pgprot is the same as the current 854 * pgprot, then the large page can be preserved and no updates are 855 * required independent of alignment and length of the requested 856 * range. The above already established that the current pgprot is 857 * correct, which in consequence makes the requested pgprot correct 858 * as well if it is the same. The static protection scan below will 859 * not come to a different conclusion. 860 */ 861 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 862 cpa_inc_lp_sameprot(level); 863 return 0; 864 } 865 866 /* 867 * If the requested range does not cover the full page, split it up 868 */ 869 if (address != lpaddr || cpa->numpages != numpages) 870 return 1; 871 872 /* 873 * Check whether the requested pgprot is conflicting with a static 874 * protection requirement in the large page. 875 */ 876 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 877 psize, CPA_DETECT); 878 879 /* 880 * If there is a conflict, split the large page. 881 * 882 * There used to be a 4k wise evaluation trying really hard to 883 * preserve the large pages, but experimentation has shown, that this 884 * does not help at all. There might be corner cases which would 885 * preserve one large page occasionally, but it's really not worth the 886 * extra code and cycles for the common case. 887 */ 888 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 889 return 1; 890 891 /* All checks passed. Update the large page mapping. */ 892 new_pte = pfn_pte(old_pfn, new_prot); 893 __set_pmd_pte(kpte, address, new_pte); 894 cpa->flags |= CPA_FLUSHTLB; 895 cpa_inc_lp_preserved(level); 896 return 0; 897 } 898 899 static int should_split_large_page(pte_t *kpte, unsigned long address, 900 struct cpa_data *cpa) 901 { 902 int do_split; 903 904 if (cpa->force_split) 905 return 1; 906 907 spin_lock(&pgd_lock); 908 do_split = __should_split_large_page(kpte, address, cpa); 909 spin_unlock(&pgd_lock); 910 911 return do_split; 912 } 913 914 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 915 pgprot_t ref_prot, unsigned long address, 916 unsigned long size) 917 { 918 unsigned int npg = PFN_DOWN(size); 919 pgprot_t prot; 920 921 /* 922 * If should_split_large_page() discovered an inconsistent mapping, 923 * remove the invalid protection in the split mapping. 924 */ 925 if (!cpa->force_static_prot) 926 goto set; 927 928 /* Hand in lpsize = 0 to enforce the protection mechanism */ 929 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 930 931 if (pgprot_val(prot) == pgprot_val(ref_prot)) 932 goto set; 933 934 /* 935 * If this is splitting a PMD, fix it up. PUD splits cannot be 936 * fixed trivially as that would require to rescan the newly 937 * installed PMD mappings after returning from split_large_page() 938 * so an eventual further split can allocate the necessary PTE 939 * pages. Warn for now and revisit it in case this actually 940 * happens. 941 */ 942 if (size == PAGE_SIZE) 943 ref_prot = prot; 944 else 945 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 946 set: 947 set_pte(pte, pfn_pte(pfn, ref_prot)); 948 } 949 950 static int 951 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 952 struct page *base) 953 { 954 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 955 pte_t *pbase = (pte_t *)page_address(base); 956 unsigned int i, level; 957 pgprot_t ref_prot; 958 pte_t *tmp; 959 960 spin_lock(&pgd_lock); 961 /* 962 * Check for races, another CPU might have split this page 963 * up for us already: 964 */ 965 tmp = _lookup_address_cpa(cpa, address, &level); 966 if (tmp != kpte) { 967 spin_unlock(&pgd_lock); 968 return 1; 969 } 970 971 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 972 973 switch (level) { 974 case PG_LEVEL_2M: 975 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 976 /* 977 * Clear PSE (aka _PAGE_PAT) and move 978 * PAT bit to correct position. 979 */ 980 ref_prot = pgprot_large_2_4k(ref_prot); 981 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 982 lpaddr = address & PMD_MASK; 983 lpinc = PAGE_SIZE; 984 break; 985 986 case PG_LEVEL_1G: 987 ref_prot = pud_pgprot(*(pud_t *)kpte); 988 ref_pfn = pud_pfn(*(pud_t *)kpte); 989 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; 990 lpaddr = address & PUD_MASK; 991 lpinc = PMD_SIZE; 992 /* 993 * Clear the PSE flags if the PRESENT flag is not set 994 * otherwise pmd_present/pmd_huge will return true 995 * even on a non present pmd. 996 */ 997 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 998 pgprot_val(ref_prot) &= ~_PAGE_PSE; 999 break; 1000 1001 default: 1002 spin_unlock(&pgd_lock); 1003 return 1; 1004 } 1005 1006 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1007 1008 /* 1009 * Get the target pfn from the original entry: 1010 */ 1011 pfn = ref_pfn; 1012 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1013 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1014 1015 if (virt_addr_valid(address)) { 1016 unsigned long pfn = PFN_DOWN(__pa(address)); 1017 1018 if (pfn_range_is_mapped(pfn, pfn + 1)) 1019 split_page_count(level); 1020 } 1021 1022 /* 1023 * Install the new, split up pagetable. 1024 * 1025 * We use the standard kernel pagetable protections for the new 1026 * pagetable protections, the actual ptes set above control the 1027 * primary protection behavior: 1028 */ 1029 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1030 1031 /* 1032 * Do a global flush tlb after splitting the large page 1033 * and before we do the actual change page attribute in the PTE. 1034 * 1035 * Without this, we violate the TLB application note, that says: 1036 * "The TLBs may contain both ordinary and large-page 1037 * translations for a 4-KByte range of linear addresses. This 1038 * may occur if software modifies the paging structures so that 1039 * the page size used for the address range changes. If the two 1040 * translations differ with respect to page frame or attributes 1041 * (e.g., permissions), processor behavior is undefined and may 1042 * be implementation-specific." 1043 * 1044 * We do this global tlb flush inside the cpa_lock, so that we 1045 * don't allow any other cpu, with stale tlb entries change the 1046 * page attribute in parallel, that also falls into the 1047 * just split large page entry. 1048 */ 1049 flush_tlb_all(); 1050 spin_unlock(&pgd_lock); 1051 1052 return 0; 1053 } 1054 1055 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1056 unsigned long address) 1057 { 1058 struct page *base; 1059 1060 if (!debug_pagealloc_enabled()) 1061 spin_unlock(&cpa_lock); 1062 base = alloc_pages(GFP_KERNEL, 0); 1063 if (!debug_pagealloc_enabled()) 1064 spin_lock(&cpa_lock); 1065 if (!base) 1066 return -ENOMEM; 1067 1068 if (__split_large_page(cpa, kpte, address, base)) 1069 __free_page(base); 1070 1071 return 0; 1072 } 1073 1074 static bool try_to_free_pte_page(pte_t *pte) 1075 { 1076 int i; 1077 1078 for (i = 0; i < PTRS_PER_PTE; i++) 1079 if (!pte_none(pte[i])) 1080 return false; 1081 1082 free_page((unsigned long)pte); 1083 return true; 1084 } 1085 1086 static bool try_to_free_pmd_page(pmd_t *pmd) 1087 { 1088 int i; 1089 1090 for (i = 0; i < PTRS_PER_PMD; i++) 1091 if (!pmd_none(pmd[i])) 1092 return false; 1093 1094 free_page((unsigned long)pmd); 1095 return true; 1096 } 1097 1098 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1099 { 1100 pte_t *pte = pte_offset_kernel(pmd, start); 1101 1102 while (start < end) { 1103 set_pte(pte, __pte(0)); 1104 1105 start += PAGE_SIZE; 1106 pte++; 1107 } 1108 1109 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1110 pmd_clear(pmd); 1111 return true; 1112 } 1113 return false; 1114 } 1115 1116 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1117 unsigned long start, unsigned long end) 1118 { 1119 if (unmap_pte_range(pmd, start, end)) 1120 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1121 pud_clear(pud); 1122 } 1123 1124 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1125 { 1126 pmd_t *pmd = pmd_offset(pud, start); 1127 1128 /* 1129 * Not on a 2MB page boundary? 1130 */ 1131 if (start & (PMD_SIZE - 1)) { 1132 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1133 unsigned long pre_end = min_t(unsigned long, end, next_page); 1134 1135 __unmap_pmd_range(pud, pmd, start, pre_end); 1136 1137 start = pre_end; 1138 pmd++; 1139 } 1140 1141 /* 1142 * Try to unmap in 2M chunks. 1143 */ 1144 while (end - start >= PMD_SIZE) { 1145 if (pmd_large(*pmd)) 1146 pmd_clear(pmd); 1147 else 1148 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1149 1150 start += PMD_SIZE; 1151 pmd++; 1152 } 1153 1154 /* 1155 * 4K leftovers? 1156 */ 1157 if (start < end) 1158 return __unmap_pmd_range(pud, pmd, start, end); 1159 1160 /* 1161 * Try again to free the PMD page if haven't succeeded above. 1162 */ 1163 if (!pud_none(*pud)) 1164 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1165 pud_clear(pud); 1166 } 1167 1168 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1169 { 1170 pud_t *pud = pud_offset(p4d, start); 1171 1172 /* 1173 * Not on a GB page boundary? 1174 */ 1175 if (start & (PUD_SIZE - 1)) { 1176 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1177 unsigned long pre_end = min_t(unsigned long, end, next_page); 1178 1179 unmap_pmd_range(pud, start, pre_end); 1180 1181 start = pre_end; 1182 pud++; 1183 } 1184 1185 /* 1186 * Try to unmap in 1G chunks? 1187 */ 1188 while (end - start >= PUD_SIZE) { 1189 1190 if (pud_large(*pud)) 1191 pud_clear(pud); 1192 else 1193 unmap_pmd_range(pud, start, start + PUD_SIZE); 1194 1195 start += PUD_SIZE; 1196 pud++; 1197 } 1198 1199 /* 1200 * 2M leftovers? 1201 */ 1202 if (start < end) 1203 unmap_pmd_range(pud, start, end); 1204 1205 /* 1206 * No need to try to free the PUD page because we'll free it in 1207 * populate_pgd's error path 1208 */ 1209 } 1210 1211 static int alloc_pte_page(pmd_t *pmd) 1212 { 1213 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1214 if (!pte) 1215 return -1; 1216 1217 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1218 return 0; 1219 } 1220 1221 static int alloc_pmd_page(pud_t *pud) 1222 { 1223 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1224 if (!pmd) 1225 return -1; 1226 1227 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1228 return 0; 1229 } 1230 1231 static void populate_pte(struct cpa_data *cpa, 1232 unsigned long start, unsigned long end, 1233 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1234 { 1235 pte_t *pte; 1236 1237 pte = pte_offset_kernel(pmd, start); 1238 1239 pgprot = pgprot_clear_protnone_bits(pgprot); 1240 1241 while (num_pages-- && start < end) { 1242 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1243 1244 start += PAGE_SIZE; 1245 cpa->pfn++; 1246 pte++; 1247 } 1248 } 1249 1250 static long populate_pmd(struct cpa_data *cpa, 1251 unsigned long start, unsigned long end, 1252 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1253 { 1254 long cur_pages = 0; 1255 pmd_t *pmd; 1256 pgprot_t pmd_pgprot; 1257 1258 /* 1259 * Not on a 2M boundary? 1260 */ 1261 if (start & (PMD_SIZE - 1)) { 1262 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1263 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1264 1265 pre_end = min_t(unsigned long, pre_end, next_page); 1266 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1267 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1268 1269 /* 1270 * Need a PTE page? 1271 */ 1272 pmd = pmd_offset(pud, start); 1273 if (pmd_none(*pmd)) 1274 if (alloc_pte_page(pmd)) 1275 return -1; 1276 1277 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1278 1279 start = pre_end; 1280 } 1281 1282 /* 1283 * We mapped them all? 1284 */ 1285 if (num_pages == cur_pages) 1286 return cur_pages; 1287 1288 pmd_pgprot = pgprot_4k_2_large(pgprot); 1289 1290 while (end - start >= PMD_SIZE) { 1291 1292 /* 1293 * We cannot use a 1G page so allocate a PMD page if needed. 1294 */ 1295 if (pud_none(*pud)) 1296 if (alloc_pmd_page(pud)) 1297 return -1; 1298 1299 pmd = pmd_offset(pud, start); 1300 1301 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1302 canon_pgprot(pmd_pgprot)))); 1303 1304 start += PMD_SIZE; 1305 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1306 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1307 } 1308 1309 /* 1310 * Map trailing 4K pages. 1311 */ 1312 if (start < end) { 1313 pmd = pmd_offset(pud, start); 1314 if (pmd_none(*pmd)) 1315 if (alloc_pte_page(pmd)) 1316 return -1; 1317 1318 populate_pte(cpa, start, end, num_pages - cur_pages, 1319 pmd, pgprot); 1320 } 1321 return num_pages; 1322 } 1323 1324 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1325 pgprot_t pgprot) 1326 { 1327 pud_t *pud; 1328 unsigned long end; 1329 long cur_pages = 0; 1330 pgprot_t pud_pgprot; 1331 1332 end = start + (cpa->numpages << PAGE_SHIFT); 1333 1334 /* 1335 * Not on a Gb page boundary? => map everything up to it with 1336 * smaller pages. 1337 */ 1338 if (start & (PUD_SIZE - 1)) { 1339 unsigned long pre_end; 1340 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1341 1342 pre_end = min_t(unsigned long, end, next_page); 1343 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1344 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1345 1346 pud = pud_offset(p4d, start); 1347 1348 /* 1349 * Need a PMD page? 1350 */ 1351 if (pud_none(*pud)) 1352 if (alloc_pmd_page(pud)) 1353 return -1; 1354 1355 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1356 pud, pgprot); 1357 if (cur_pages < 0) 1358 return cur_pages; 1359 1360 start = pre_end; 1361 } 1362 1363 /* We mapped them all? */ 1364 if (cpa->numpages == cur_pages) 1365 return cur_pages; 1366 1367 pud = pud_offset(p4d, start); 1368 pud_pgprot = pgprot_4k_2_large(pgprot); 1369 1370 /* 1371 * Map everything starting from the Gb boundary, possibly with 1G pages 1372 */ 1373 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1374 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1375 canon_pgprot(pud_pgprot)))); 1376 1377 start += PUD_SIZE; 1378 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1379 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1380 pud++; 1381 } 1382 1383 /* Map trailing leftover */ 1384 if (start < end) { 1385 long tmp; 1386 1387 pud = pud_offset(p4d, start); 1388 if (pud_none(*pud)) 1389 if (alloc_pmd_page(pud)) 1390 return -1; 1391 1392 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1393 pud, pgprot); 1394 if (tmp < 0) 1395 return cur_pages; 1396 1397 cur_pages += tmp; 1398 } 1399 return cur_pages; 1400 } 1401 1402 /* 1403 * Restrictions for kernel page table do not necessarily apply when mapping in 1404 * an alternate PGD. 1405 */ 1406 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1407 { 1408 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1409 pud_t *pud = NULL; /* shut up gcc */ 1410 p4d_t *p4d; 1411 pgd_t *pgd_entry; 1412 long ret; 1413 1414 pgd_entry = cpa->pgd + pgd_index(addr); 1415 1416 if (pgd_none(*pgd_entry)) { 1417 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1418 if (!p4d) 1419 return -1; 1420 1421 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1422 } 1423 1424 /* 1425 * Allocate a PUD page and hand it down for mapping. 1426 */ 1427 p4d = p4d_offset(pgd_entry, addr); 1428 if (p4d_none(*p4d)) { 1429 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1430 if (!pud) 1431 return -1; 1432 1433 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1434 } 1435 1436 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1437 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1438 1439 ret = populate_pud(cpa, addr, p4d, pgprot); 1440 if (ret < 0) { 1441 /* 1442 * Leave the PUD page in place in case some other CPU or thread 1443 * already found it, but remove any useless entries we just 1444 * added to it. 1445 */ 1446 unmap_pud_range(p4d, addr, 1447 addr + (cpa->numpages << PAGE_SHIFT)); 1448 return ret; 1449 } 1450 1451 cpa->numpages = ret; 1452 return 0; 1453 } 1454 1455 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1456 int primary) 1457 { 1458 if (cpa->pgd) { 1459 /* 1460 * Right now, we only execute this code path when mapping 1461 * the EFI virtual memory map regions, no other users 1462 * provide a ->pgd value. This may change in the future. 1463 */ 1464 return populate_pgd(cpa, vaddr); 1465 } 1466 1467 /* 1468 * Ignore all non primary paths. 1469 */ 1470 if (!primary) { 1471 cpa->numpages = 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1477 * to have holes. 1478 * Also set numpages to '1' indicating that we processed cpa req for 1479 * one virtual address page and its pfn. TBD: numpages can be set based 1480 * on the initial value and the level returned by lookup_address(). 1481 */ 1482 if (within(vaddr, PAGE_OFFSET, 1483 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1484 cpa->numpages = 1; 1485 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1486 return 0; 1487 1488 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1489 /* Faults in the highmap are OK, so do not warn: */ 1490 return -EFAULT; 1491 } else { 1492 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1493 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1494 *cpa->vaddr); 1495 1496 return -EFAULT; 1497 } 1498 } 1499 1500 static int __change_page_attr(struct cpa_data *cpa, int primary) 1501 { 1502 unsigned long address; 1503 int do_split, err; 1504 unsigned int level; 1505 pte_t *kpte, old_pte; 1506 1507 address = __cpa_addr(cpa, cpa->curpage); 1508 repeat: 1509 kpte = _lookup_address_cpa(cpa, address, &level); 1510 if (!kpte) 1511 return __cpa_process_fault(cpa, address, primary); 1512 1513 old_pte = *kpte; 1514 if (pte_none(old_pte)) 1515 return __cpa_process_fault(cpa, address, primary); 1516 1517 if (level == PG_LEVEL_4K) { 1518 pte_t new_pte; 1519 pgprot_t new_prot = pte_pgprot(old_pte); 1520 unsigned long pfn = pte_pfn(old_pte); 1521 1522 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1523 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1524 1525 cpa_inc_4k_install(); 1526 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1527 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1528 CPA_PROTECT); 1529 1530 new_prot = pgprot_clear_protnone_bits(new_prot); 1531 1532 /* 1533 * We need to keep the pfn from the existing PTE, 1534 * after all we're only going to change it's attributes 1535 * not the memory it points to 1536 */ 1537 new_pte = pfn_pte(pfn, new_prot); 1538 cpa->pfn = pfn; 1539 /* 1540 * Do we really change anything ? 1541 */ 1542 if (pte_val(old_pte) != pte_val(new_pte)) { 1543 set_pte_atomic(kpte, new_pte); 1544 cpa->flags |= CPA_FLUSHTLB; 1545 } 1546 cpa->numpages = 1; 1547 return 0; 1548 } 1549 1550 /* 1551 * Check, whether we can keep the large page intact 1552 * and just change the pte: 1553 */ 1554 do_split = should_split_large_page(kpte, address, cpa); 1555 /* 1556 * When the range fits into the existing large page, 1557 * return. cp->numpages and cpa->tlbflush have been updated in 1558 * try_large_page: 1559 */ 1560 if (do_split <= 0) 1561 return do_split; 1562 1563 /* 1564 * We have to split the large page: 1565 */ 1566 err = split_large_page(cpa, kpte, address); 1567 if (!err) 1568 goto repeat; 1569 1570 return err; 1571 } 1572 1573 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); 1574 1575 static int cpa_process_alias(struct cpa_data *cpa) 1576 { 1577 struct cpa_data alias_cpa; 1578 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1579 unsigned long vaddr; 1580 int ret; 1581 1582 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1583 return 0; 1584 1585 /* 1586 * No need to redo, when the primary call touched the direct 1587 * mapping already: 1588 */ 1589 vaddr = __cpa_addr(cpa, cpa->curpage); 1590 if (!(within(vaddr, PAGE_OFFSET, 1591 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1592 1593 alias_cpa = *cpa; 1594 alias_cpa.vaddr = &laddr; 1595 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1596 alias_cpa.curpage = 0; 1597 1598 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1599 if (ret) 1600 return ret; 1601 } 1602 1603 #ifdef CONFIG_X86_64 1604 /* 1605 * If the primary call didn't touch the high mapping already 1606 * and the physical address is inside the kernel map, we need 1607 * to touch the high mapped kernel as well: 1608 */ 1609 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1610 __cpa_pfn_in_highmap(cpa->pfn)) { 1611 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1612 __START_KERNEL_map - phys_base; 1613 alias_cpa = *cpa; 1614 alias_cpa.vaddr = &temp_cpa_vaddr; 1615 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1616 alias_cpa.curpage = 0; 1617 1618 /* 1619 * The high mapping range is imprecise, so ignore the 1620 * return value. 1621 */ 1622 __change_page_attr_set_clr(&alias_cpa, 0); 1623 } 1624 #endif 1625 1626 return 0; 1627 } 1628 1629 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) 1630 { 1631 unsigned long numpages = cpa->numpages; 1632 unsigned long rempages = numpages; 1633 int ret = 0; 1634 1635 while (rempages) { 1636 /* 1637 * Store the remaining nr of pages for the large page 1638 * preservation check. 1639 */ 1640 cpa->numpages = rempages; 1641 /* for array changes, we can't use large page */ 1642 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1643 cpa->numpages = 1; 1644 1645 if (!debug_pagealloc_enabled()) 1646 spin_lock(&cpa_lock); 1647 ret = __change_page_attr(cpa, checkalias); 1648 if (!debug_pagealloc_enabled()) 1649 spin_unlock(&cpa_lock); 1650 if (ret) 1651 goto out; 1652 1653 if (checkalias) { 1654 ret = cpa_process_alias(cpa); 1655 if (ret) 1656 goto out; 1657 } 1658 1659 /* 1660 * Adjust the number of pages with the result of the 1661 * CPA operation. Either a large page has been 1662 * preserved or a single page update happened. 1663 */ 1664 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1665 rempages -= cpa->numpages; 1666 cpa->curpage += cpa->numpages; 1667 } 1668 1669 out: 1670 /* Restore the original numpages */ 1671 cpa->numpages = numpages; 1672 return ret; 1673 } 1674 1675 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1676 pgprot_t mask_set, pgprot_t mask_clr, 1677 int force_split, int in_flag, 1678 struct page **pages) 1679 { 1680 struct cpa_data cpa; 1681 int ret, cache, checkalias; 1682 1683 memset(&cpa, 0, sizeof(cpa)); 1684 1685 /* 1686 * Check, if we are requested to set a not supported 1687 * feature. Clearing non-supported features is OK. 1688 */ 1689 mask_set = canon_pgprot(mask_set); 1690 1691 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1692 return 0; 1693 1694 /* Ensure we are PAGE_SIZE aligned */ 1695 if (in_flag & CPA_ARRAY) { 1696 int i; 1697 for (i = 0; i < numpages; i++) { 1698 if (addr[i] & ~PAGE_MASK) { 1699 addr[i] &= PAGE_MASK; 1700 WARN_ON_ONCE(1); 1701 } 1702 } 1703 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1704 /* 1705 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1706 * No need to check in that case 1707 */ 1708 if (*addr & ~PAGE_MASK) { 1709 *addr &= PAGE_MASK; 1710 /* 1711 * People should not be passing in unaligned addresses: 1712 */ 1713 WARN_ON_ONCE(1); 1714 } 1715 } 1716 1717 /* Must avoid aliasing mappings in the highmem code */ 1718 kmap_flush_unused(); 1719 1720 vm_unmap_aliases(); 1721 1722 cpa.vaddr = addr; 1723 cpa.pages = pages; 1724 cpa.numpages = numpages; 1725 cpa.mask_set = mask_set; 1726 cpa.mask_clr = mask_clr; 1727 cpa.flags = 0; 1728 cpa.curpage = 0; 1729 cpa.force_split = force_split; 1730 1731 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1732 cpa.flags |= in_flag; 1733 1734 /* No alias checking for _NX bit modifications */ 1735 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; 1736 /* Has caller explicitly disabled alias checking? */ 1737 if (in_flag & CPA_NO_CHECK_ALIAS) 1738 checkalias = 0; 1739 1740 ret = __change_page_attr_set_clr(&cpa, checkalias); 1741 1742 /* 1743 * Check whether we really changed something: 1744 */ 1745 if (!(cpa.flags & CPA_FLUSHTLB)) 1746 goto out; 1747 1748 /* 1749 * No need to flush, when we did not set any of the caching 1750 * attributes: 1751 */ 1752 cache = !!pgprot2cachemode(mask_set); 1753 1754 /* 1755 * On error; flush everything to be sure. 1756 */ 1757 if (ret) { 1758 cpa_flush_all(cache); 1759 goto out; 1760 } 1761 1762 cpa_flush(&cpa, cache); 1763 out: 1764 return ret; 1765 } 1766 1767 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1768 pgprot_t mask, int array) 1769 { 1770 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1771 (array ? CPA_ARRAY : 0), NULL); 1772 } 1773 1774 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1775 pgprot_t mask, int array) 1776 { 1777 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1778 (array ? CPA_ARRAY : 0), NULL); 1779 } 1780 1781 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1782 pgprot_t mask) 1783 { 1784 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1785 CPA_PAGES_ARRAY, pages); 1786 } 1787 1788 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1789 pgprot_t mask) 1790 { 1791 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1792 CPA_PAGES_ARRAY, pages); 1793 } 1794 1795 int _set_memory_uc(unsigned long addr, int numpages) 1796 { 1797 /* 1798 * for now UC MINUS. see comments in ioremap() 1799 * If you really need strong UC use ioremap_uc(), but note 1800 * that you cannot override IO areas with set_memory_*() as 1801 * these helpers cannot work with IO memory. 1802 */ 1803 return change_page_attr_set(&addr, numpages, 1804 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1805 0); 1806 } 1807 1808 int set_memory_uc(unsigned long addr, int numpages) 1809 { 1810 int ret; 1811 1812 /* 1813 * for now UC MINUS. see comments in ioremap() 1814 */ 1815 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1816 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1817 if (ret) 1818 goto out_err; 1819 1820 ret = _set_memory_uc(addr, numpages); 1821 if (ret) 1822 goto out_free; 1823 1824 return 0; 1825 1826 out_free: 1827 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1828 out_err: 1829 return ret; 1830 } 1831 EXPORT_SYMBOL(set_memory_uc); 1832 1833 int _set_memory_wc(unsigned long addr, int numpages) 1834 { 1835 int ret; 1836 1837 ret = change_page_attr_set(&addr, numpages, 1838 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1839 0); 1840 if (!ret) { 1841 ret = change_page_attr_set_clr(&addr, numpages, 1842 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1843 __pgprot(_PAGE_CACHE_MASK), 1844 0, 0, NULL); 1845 } 1846 return ret; 1847 } 1848 1849 int set_memory_wc(unsigned long addr, int numpages) 1850 { 1851 int ret; 1852 1853 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1854 _PAGE_CACHE_MODE_WC, NULL); 1855 if (ret) 1856 return ret; 1857 1858 ret = _set_memory_wc(addr, numpages); 1859 if (ret) 1860 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL(set_memory_wc); 1865 1866 int _set_memory_wt(unsigned long addr, int numpages) 1867 { 1868 return change_page_attr_set(&addr, numpages, 1869 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1870 } 1871 1872 int _set_memory_wb(unsigned long addr, int numpages) 1873 { 1874 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1875 return change_page_attr_clear(&addr, numpages, 1876 __pgprot(_PAGE_CACHE_MASK), 0); 1877 } 1878 1879 int set_memory_wb(unsigned long addr, int numpages) 1880 { 1881 int ret; 1882 1883 ret = _set_memory_wb(addr, numpages); 1884 if (ret) 1885 return ret; 1886 1887 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1888 return 0; 1889 } 1890 EXPORT_SYMBOL(set_memory_wb); 1891 1892 int set_memory_x(unsigned long addr, int numpages) 1893 { 1894 if (!(__supported_pte_mask & _PAGE_NX)) 1895 return 0; 1896 1897 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 1898 } 1899 1900 int set_memory_nx(unsigned long addr, int numpages) 1901 { 1902 if (!(__supported_pte_mask & _PAGE_NX)) 1903 return 0; 1904 1905 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 1906 } 1907 1908 int set_memory_ro(unsigned long addr, int numpages) 1909 { 1910 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 1911 } 1912 1913 int set_memory_rw(unsigned long addr, int numpages) 1914 { 1915 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 1916 } 1917 1918 int set_memory_np(unsigned long addr, int numpages) 1919 { 1920 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 1921 } 1922 1923 int set_memory_np_noalias(unsigned long addr, int numpages) 1924 { 1925 int cpa_flags = CPA_NO_CHECK_ALIAS; 1926 1927 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1928 __pgprot(_PAGE_PRESENT), 0, 1929 cpa_flags, NULL); 1930 } 1931 1932 int set_memory_4k(unsigned long addr, int numpages) 1933 { 1934 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1935 __pgprot(0), 1, 0, NULL); 1936 } 1937 1938 int set_memory_nonglobal(unsigned long addr, int numpages) 1939 { 1940 return change_page_attr_clear(&addr, numpages, 1941 __pgprot(_PAGE_GLOBAL), 0); 1942 } 1943 1944 int set_memory_global(unsigned long addr, int numpages) 1945 { 1946 return change_page_attr_set(&addr, numpages, 1947 __pgprot(_PAGE_GLOBAL), 0); 1948 } 1949 1950 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 1951 { 1952 struct cpa_data cpa; 1953 int ret; 1954 1955 /* Nothing to do if memory encryption is not active */ 1956 if (!mem_encrypt_active()) 1957 return 0; 1958 1959 /* Should not be working on unaligned addresses */ 1960 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 1961 addr &= PAGE_MASK; 1962 1963 memset(&cpa, 0, sizeof(cpa)); 1964 cpa.vaddr = &addr; 1965 cpa.numpages = numpages; 1966 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0); 1967 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC); 1968 cpa.pgd = init_mm.pgd; 1969 1970 /* Must avoid aliasing mappings in the highmem code */ 1971 kmap_flush_unused(); 1972 vm_unmap_aliases(); 1973 1974 /* 1975 * Before changing the encryption attribute, we need to flush caches. 1976 */ 1977 cpa_flush(&cpa, 1); 1978 1979 ret = __change_page_attr_set_clr(&cpa, 1); 1980 1981 /* 1982 * After changing the encryption attribute, we need to flush TLBs again 1983 * in case any speculative TLB caching occurred (but no need to flush 1984 * caches again). We could just use cpa_flush_all(), but in case TLB 1985 * flushing gets optimized in the cpa_flush() path use the same logic 1986 * as above. 1987 */ 1988 cpa_flush(&cpa, 0); 1989 1990 return ret; 1991 } 1992 1993 int set_memory_encrypted(unsigned long addr, int numpages) 1994 { 1995 return __set_memory_enc_dec(addr, numpages, true); 1996 } 1997 EXPORT_SYMBOL_GPL(set_memory_encrypted); 1998 1999 int set_memory_decrypted(unsigned long addr, int numpages) 2000 { 2001 return __set_memory_enc_dec(addr, numpages, false); 2002 } 2003 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2004 2005 int set_pages_uc(struct page *page, int numpages) 2006 { 2007 unsigned long addr = (unsigned long)page_address(page); 2008 2009 return set_memory_uc(addr, numpages); 2010 } 2011 EXPORT_SYMBOL(set_pages_uc); 2012 2013 static int _set_pages_array(struct page **pages, int numpages, 2014 enum page_cache_mode new_type) 2015 { 2016 unsigned long start; 2017 unsigned long end; 2018 enum page_cache_mode set_type; 2019 int i; 2020 int free_idx; 2021 int ret; 2022 2023 for (i = 0; i < numpages; i++) { 2024 if (PageHighMem(pages[i])) 2025 continue; 2026 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2027 end = start + PAGE_SIZE; 2028 if (memtype_reserve(start, end, new_type, NULL)) 2029 goto err_out; 2030 } 2031 2032 /* If WC, set to UC- first and then WC */ 2033 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2034 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2035 2036 ret = cpa_set_pages_array(pages, numpages, 2037 cachemode2pgprot(set_type)); 2038 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2039 ret = change_page_attr_set_clr(NULL, numpages, 2040 cachemode2pgprot( 2041 _PAGE_CACHE_MODE_WC), 2042 __pgprot(_PAGE_CACHE_MASK), 2043 0, CPA_PAGES_ARRAY, pages); 2044 if (ret) 2045 goto err_out; 2046 return 0; /* Success */ 2047 err_out: 2048 free_idx = i; 2049 for (i = 0; i < free_idx; i++) { 2050 if (PageHighMem(pages[i])) 2051 continue; 2052 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2053 end = start + PAGE_SIZE; 2054 memtype_free(start, end); 2055 } 2056 return -EINVAL; 2057 } 2058 2059 int set_pages_array_uc(struct page **pages, int numpages) 2060 { 2061 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2062 } 2063 EXPORT_SYMBOL(set_pages_array_uc); 2064 2065 int set_pages_array_wc(struct page **pages, int numpages) 2066 { 2067 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2068 } 2069 EXPORT_SYMBOL(set_pages_array_wc); 2070 2071 int set_pages_array_wt(struct page **pages, int numpages) 2072 { 2073 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT); 2074 } 2075 EXPORT_SYMBOL_GPL(set_pages_array_wt); 2076 2077 int set_pages_wb(struct page *page, int numpages) 2078 { 2079 unsigned long addr = (unsigned long)page_address(page); 2080 2081 return set_memory_wb(addr, numpages); 2082 } 2083 EXPORT_SYMBOL(set_pages_wb); 2084 2085 int set_pages_array_wb(struct page **pages, int numpages) 2086 { 2087 int retval; 2088 unsigned long start; 2089 unsigned long end; 2090 int i; 2091 2092 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2093 retval = cpa_clear_pages_array(pages, numpages, 2094 __pgprot(_PAGE_CACHE_MASK)); 2095 if (retval) 2096 return retval; 2097 2098 for (i = 0; i < numpages; i++) { 2099 if (PageHighMem(pages[i])) 2100 continue; 2101 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2102 end = start + PAGE_SIZE; 2103 memtype_free(start, end); 2104 } 2105 2106 return 0; 2107 } 2108 EXPORT_SYMBOL(set_pages_array_wb); 2109 2110 int set_pages_ro(struct page *page, int numpages) 2111 { 2112 unsigned long addr = (unsigned long)page_address(page); 2113 2114 return set_memory_ro(addr, numpages); 2115 } 2116 2117 int set_pages_rw(struct page *page, int numpages) 2118 { 2119 unsigned long addr = (unsigned long)page_address(page); 2120 2121 return set_memory_rw(addr, numpages); 2122 } 2123 2124 static int __set_pages_p(struct page *page, int numpages) 2125 { 2126 unsigned long tempaddr = (unsigned long) page_address(page); 2127 struct cpa_data cpa = { .vaddr = &tempaddr, 2128 .pgd = NULL, 2129 .numpages = numpages, 2130 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2131 .mask_clr = __pgprot(0), 2132 .flags = 0}; 2133 2134 /* 2135 * No alias checking needed for setting present flag. otherwise, 2136 * we may need to break large pages for 64-bit kernel text 2137 * mappings (this adds to complexity if we want to do this from 2138 * atomic context especially). Let's keep it simple! 2139 */ 2140 return __change_page_attr_set_clr(&cpa, 0); 2141 } 2142 2143 static int __set_pages_np(struct page *page, int numpages) 2144 { 2145 unsigned long tempaddr = (unsigned long) page_address(page); 2146 struct cpa_data cpa = { .vaddr = &tempaddr, 2147 .pgd = NULL, 2148 .numpages = numpages, 2149 .mask_set = __pgprot(0), 2150 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2151 .flags = 0}; 2152 2153 /* 2154 * No alias checking needed for setting not present flag. otherwise, 2155 * we may need to break large pages for 64-bit kernel text 2156 * mappings (this adds to complexity if we want to do this from 2157 * atomic context especially). Let's keep it simple! 2158 */ 2159 return __change_page_attr_set_clr(&cpa, 0); 2160 } 2161 2162 int set_direct_map_invalid_noflush(struct page *page) 2163 { 2164 return __set_pages_np(page, 1); 2165 } 2166 2167 int set_direct_map_default_noflush(struct page *page) 2168 { 2169 return __set_pages_p(page, 1); 2170 } 2171 2172 void __kernel_map_pages(struct page *page, int numpages, int enable) 2173 { 2174 if (PageHighMem(page)) 2175 return; 2176 if (!enable) { 2177 debug_check_no_locks_freed(page_address(page), 2178 numpages * PAGE_SIZE); 2179 } 2180 2181 /* 2182 * The return value is ignored as the calls cannot fail. 2183 * Large pages for identity mappings are not used at boot time 2184 * and hence no memory allocations during large page split. 2185 */ 2186 if (enable) 2187 __set_pages_p(page, numpages); 2188 else 2189 __set_pages_np(page, numpages); 2190 2191 /* 2192 * We should perform an IPI and flush all tlbs, 2193 * but that can deadlock->flush only current cpu. 2194 * Preemption needs to be disabled around __flush_tlb_all() due to 2195 * CR3 reload in __native_flush_tlb(). 2196 */ 2197 preempt_disable(); 2198 __flush_tlb_all(); 2199 preempt_enable(); 2200 2201 arch_flush_lazy_mmu_mode(); 2202 } 2203 2204 #ifdef CONFIG_HIBERNATION 2205 bool kernel_page_present(struct page *page) 2206 { 2207 unsigned int level; 2208 pte_t *pte; 2209 2210 if (PageHighMem(page)) 2211 return false; 2212 2213 pte = lookup_address((unsigned long)page_address(page), &level); 2214 return (pte_val(*pte) & _PAGE_PRESENT); 2215 } 2216 #endif /* CONFIG_HIBERNATION */ 2217 2218 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2219 unsigned numpages, unsigned long page_flags) 2220 { 2221 int retval = -EINVAL; 2222 2223 struct cpa_data cpa = { 2224 .vaddr = &address, 2225 .pfn = pfn, 2226 .pgd = pgd, 2227 .numpages = numpages, 2228 .mask_set = __pgprot(0), 2229 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2230 .flags = 0, 2231 }; 2232 2233 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2234 2235 if (!(__supported_pte_mask & _PAGE_NX)) 2236 goto out; 2237 2238 if (!(page_flags & _PAGE_ENC)) 2239 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2240 2241 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2242 2243 retval = __change_page_attr_set_clr(&cpa, 0); 2244 __flush_tlb_all(); 2245 2246 out: 2247 return retval; 2248 } 2249 2250 /* 2251 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2252 * function shouldn't be used in an SMP environment. Presently, it's used only 2253 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2254 */ 2255 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2256 unsigned long numpages) 2257 { 2258 int retval; 2259 2260 /* 2261 * The typical sequence for unmapping is to find a pte through 2262 * lookup_address_in_pgd() (ideally, it should never return NULL because 2263 * the address is already mapped) and change it's protections. As pfn is 2264 * the *target* of a mapping, it's not useful while unmapping. 2265 */ 2266 struct cpa_data cpa = { 2267 .vaddr = &address, 2268 .pfn = 0, 2269 .pgd = pgd, 2270 .numpages = numpages, 2271 .mask_set = __pgprot(0), 2272 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2273 .flags = 0, 2274 }; 2275 2276 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2277 2278 retval = __change_page_attr_set_clr(&cpa, 0); 2279 __flush_tlb_all(); 2280 2281 return retval; 2282 } 2283 2284 /* 2285 * The testcases use internal knowledge of the implementation that shouldn't 2286 * be exposed to the rest of the kernel. Include these directly here. 2287 */ 2288 #ifdef CONFIG_CPA_DEBUG 2289 #include "cpa-test.c" 2290 #endif 2291