1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/proc_fs.h> 13 #include <linux/debugfs.h> 14 #include <linux/pfn.h> 15 #include <linux/percpu.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/vmalloc.h> 19 #include <linux/libnvdimm.h> 20 #include <linux/vmstat.h> 21 #include <linux/kernel.h> 22 #include <linux/cc_platform.h> 23 #include <linux/set_memory.h> 24 #include <linux/memregion.h> 25 26 #include <asm/e820/api.h> 27 #include <asm/processor.h> 28 #include <asm/tlbflush.h> 29 #include <asm/sections.h> 30 #include <asm/setup.h> 31 #include <linux/uaccess.h> 32 #include <asm/pgalloc.h> 33 #include <asm/proto.h> 34 #include <asm/memtype.h> 35 #include <asm/hyperv-tlfs.h> 36 #include <asm/mshyperv.h> 37 38 #include "../mm_internal.h" 39 40 /* 41 * The current flushing context - we pass it instead of 5 arguments: 42 */ 43 struct cpa_data { 44 unsigned long *vaddr; 45 pgd_t *pgd; 46 pgprot_t mask_set; 47 pgprot_t mask_clr; 48 unsigned long numpages; 49 unsigned long curpage; 50 unsigned long pfn; 51 unsigned int flags; 52 unsigned int force_split : 1, 53 force_static_prot : 1, 54 force_flush_all : 1; 55 struct page **pages; 56 }; 57 58 enum cpa_warn { 59 CPA_CONFLICT, 60 CPA_PROTECT, 61 CPA_DETECT, 62 }; 63 64 static const int cpa_warn_level = CPA_PROTECT; 65 66 /* 67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 69 * entries change the page attribute in parallel to some other cpu 70 * splitting a large page entry along with changing the attribute. 71 */ 72 static DEFINE_SPINLOCK(cpa_lock); 73 74 #define CPA_FLUSHTLB 1 75 #define CPA_ARRAY 2 76 #define CPA_PAGES_ARRAY 4 77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 78 79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 80 { 81 return __pgprot(cachemode2protval(pcm)); 82 } 83 84 #ifdef CONFIG_PROC_FS 85 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 86 87 void update_page_count(int level, unsigned long pages) 88 { 89 /* Protect against CPA */ 90 spin_lock(&pgd_lock); 91 direct_pages_count[level] += pages; 92 spin_unlock(&pgd_lock); 93 } 94 95 static void split_page_count(int level) 96 { 97 if (direct_pages_count[level] == 0) 98 return; 99 100 direct_pages_count[level]--; 101 if (system_state == SYSTEM_RUNNING) { 102 if (level == PG_LEVEL_2M) 103 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 104 else if (level == PG_LEVEL_1G) 105 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 106 } 107 direct_pages_count[level - 1] += PTRS_PER_PTE; 108 } 109 110 void arch_report_meminfo(struct seq_file *m) 111 { 112 seq_printf(m, "DirectMap4k: %8lu kB\n", 113 direct_pages_count[PG_LEVEL_4K] << 2); 114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 115 seq_printf(m, "DirectMap2M: %8lu kB\n", 116 direct_pages_count[PG_LEVEL_2M] << 11); 117 #else 118 seq_printf(m, "DirectMap4M: %8lu kB\n", 119 direct_pages_count[PG_LEVEL_2M] << 12); 120 #endif 121 if (direct_gbpages) 122 seq_printf(m, "DirectMap1G: %8lu kB\n", 123 direct_pages_count[PG_LEVEL_1G] << 20); 124 } 125 #else 126 static inline void split_page_count(int level) { } 127 #endif 128 129 #ifdef CONFIG_X86_CPA_STATISTICS 130 131 static unsigned long cpa_1g_checked; 132 static unsigned long cpa_1g_sameprot; 133 static unsigned long cpa_1g_preserved; 134 static unsigned long cpa_2m_checked; 135 static unsigned long cpa_2m_sameprot; 136 static unsigned long cpa_2m_preserved; 137 static unsigned long cpa_4k_install; 138 139 static inline void cpa_inc_1g_checked(void) 140 { 141 cpa_1g_checked++; 142 } 143 144 static inline void cpa_inc_2m_checked(void) 145 { 146 cpa_2m_checked++; 147 } 148 149 static inline void cpa_inc_4k_install(void) 150 { 151 data_race(cpa_4k_install++); 152 } 153 154 static inline void cpa_inc_lp_sameprot(int level) 155 { 156 if (level == PG_LEVEL_1G) 157 cpa_1g_sameprot++; 158 else 159 cpa_2m_sameprot++; 160 } 161 162 static inline void cpa_inc_lp_preserved(int level) 163 { 164 if (level == PG_LEVEL_1G) 165 cpa_1g_preserved++; 166 else 167 cpa_2m_preserved++; 168 } 169 170 static int cpastats_show(struct seq_file *m, void *p) 171 { 172 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 173 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 174 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 175 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 176 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 177 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 178 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 179 return 0; 180 } 181 182 static int cpastats_open(struct inode *inode, struct file *file) 183 { 184 return single_open(file, cpastats_show, NULL); 185 } 186 187 static const struct file_operations cpastats_fops = { 188 .open = cpastats_open, 189 .read = seq_read, 190 .llseek = seq_lseek, 191 .release = single_release, 192 }; 193 194 static int __init cpa_stats_init(void) 195 { 196 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 197 &cpastats_fops); 198 return 0; 199 } 200 late_initcall(cpa_stats_init); 201 #else 202 static inline void cpa_inc_1g_checked(void) { } 203 static inline void cpa_inc_2m_checked(void) { } 204 static inline void cpa_inc_4k_install(void) { } 205 static inline void cpa_inc_lp_sameprot(int level) { } 206 static inline void cpa_inc_lp_preserved(int level) { } 207 #endif 208 209 210 static inline int 211 within(unsigned long addr, unsigned long start, unsigned long end) 212 { 213 return addr >= start && addr < end; 214 } 215 216 static inline int 217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 218 { 219 return addr >= start && addr <= end; 220 } 221 222 #ifdef CONFIG_X86_64 223 224 /* 225 * The kernel image is mapped into two places in the virtual address space 226 * (addresses without KASLR, of course): 227 * 228 * 1. The kernel direct map (0xffff880000000000) 229 * 2. The "high kernel map" (0xffffffff81000000) 230 * 231 * We actually execute out of #2. If we get the address of a kernel symbol, it 232 * points to #2, but almost all physical-to-virtual translations point to #1. 233 * 234 * This is so that we can have both a directmap of all physical memory *and* 235 * take full advantage of the limited (s32) immediate addressing range (2G) 236 * of x86_64. 237 * 238 * See Documentation/arch/x86/x86_64/mm.rst for more detail. 239 */ 240 241 static inline unsigned long highmap_start_pfn(void) 242 { 243 return __pa_symbol(_text) >> PAGE_SHIFT; 244 } 245 246 static inline unsigned long highmap_end_pfn(void) 247 { 248 /* Do not reference physical address outside the kernel. */ 249 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 250 } 251 252 static bool __cpa_pfn_in_highmap(unsigned long pfn) 253 { 254 /* 255 * Kernel text has an alias mapping at a high address, known 256 * here as "highmap". 257 */ 258 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 259 } 260 261 #else 262 263 static bool __cpa_pfn_in_highmap(unsigned long pfn) 264 { 265 /* There is no highmap on 32-bit */ 266 return false; 267 } 268 269 #endif 270 271 /* 272 * See set_mce_nospec(). 273 * 274 * Machine check recovery code needs to change cache mode of poisoned pages to 275 * UC to avoid speculative access logging another error. But passing the 276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 277 * speculative access. So we cheat and flip the top bit of the address. This 278 * works fine for the code that updates the page tables. But at the end of the 279 * process we need to flush the TLB and cache and the non-canonical address 280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 281 * 282 * But in the common case we already have a canonical address. This code 283 * will fix the top bit if needed and is a no-op otherwise. 284 */ 285 static inline unsigned long fix_addr(unsigned long addr) 286 { 287 #ifdef CONFIG_X86_64 288 return (long)(addr << 1) >> 1; 289 #else 290 return addr; 291 #endif 292 } 293 294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 295 { 296 if (cpa->flags & CPA_PAGES_ARRAY) { 297 struct page *page = cpa->pages[idx]; 298 299 if (unlikely(PageHighMem(page))) 300 return 0; 301 302 return (unsigned long)page_address(page); 303 } 304 305 if (cpa->flags & CPA_ARRAY) 306 return cpa->vaddr[idx]; 307 308 return *cpa->vaddr + idx * PAGE_SIZE; 309 } 310 311 /* 312 * Flushing functions 313 */ 314 315 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 316 { 317 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 318 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 319 void *vend = vaddr + size; 320 321 if (p >= vend) 322 return; 323 324 for (; p < vend; p += clflush_size) 325 clflushopt(p); 326 } 327 328 /** 329 * clflush_cache_range - flush a cache range with clflush 330 * @vaddr: virtual start address 331 * @size: number of bytes to flush 332 * 333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 334 * SFENCE to avoid ordering issues. 335 */ 336 void clflush_cache_range(void *vaddr, unsigned int size) 337 { 338 mb(); 339 clflush_cache_range_opt(vaddr, size); 340 mb(); 341 } 342 EXPORT_SYMBOL_GPL(clflush_cache_range); 343 344 #ifdef CONFIG_ARCH_HAS_PMEM_API 345 void arch_invalidate_pmem(void *addr, size_t size) 346 { 347 clflush_cache_range(addr, size); 348 } 349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 350 #endif 351 352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 353 bool cpu_cache_has_invalidate_memregion(void) 354 { 355 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); 356 } 357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM); 358 359 int cpu_cache_invalidate_memregion(int res_desc) 360 { 361 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) 362 return -ENXIO; 363 wbinvd_on_all_cpus(); 364 return 0; 365 } 366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM); 367 #endif 368 369 static void __cpa_flush_all(void *arg) 370 { 371 unsigned long cache = (unsigned long)arg; 372 373 /* 374 * Flush all to work around Errata in early athlons regarding 375 * large page flushing. 376 */ 377 __flush_tlb_all(); 378 379 if (cache && boot_cpu_data.x86 >= 4) 380 wbinvd(); 381 } 382 383 static void cpa_flush_all(unsigned long cache) 384 { 385 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 386 387 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 388 } 389 390 static void __cpa_flush_tlb(void *data) 391 { 392 struct cpa_data *cpa = data; 393 unsigned int i; 394 395 for (i = 0; i < cpa->numpages; i++) 396 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 397 } 398 399 static void cpa_flush(struct cpa_data *data, int cache) 400 { 401 struct cpa_data *cpa = data; 402 unsigned int i; 403 404 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 405 406 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 407 cpa_flush_all(cache); 408 return; 409 } 410 411 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 412 flush_tlb_all(); 413 else 414 on_each_cpu(__cpa_flush_tlb, cpa, 1); 415 416 if (!cache) 417 return; 418 419 mb(); 420 for (i = 0; i < cpa->numpages; i++) { 421 unsigned long addr = __cpa_addr(cpa, i); 422 unsigned int level; 423 424 pte_t *pte = lookup_address(addr, &level); 425 426 /* 427 * Only flush present addresses: 428 */ 429 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 430 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 431 } 432 mb(); 433 } 434 435 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 436 unsigned long r2_start, unsigned long r2_end) 437 { 438 return (r1_start <= r2_end && r1_end >= r2_start) || 439 (r2_start <= r1_end && r2_end >= r1_start); 440 } 441 442 #ifdef CONFIG_PCI_BIOS 443 /* 444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 445 * based config access (CONFIG_PCI_GOBIOS) support. 446 */ 447 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 448 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 449 450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 451 { 452 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 453 return _PAGE_NX; 454 return 0; 455 } 456 #else 457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 458 { 459 return 0; 460 } 461 #endif 462 463 /* 464 * The .rodata section needs to be read-only. Using the pfn catches all 465 * aliases. This also includes __ro_after_init, so do not enforce until 466 * kernel_set_to_readonly is true. 467 */ 468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 469 { 470 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 471 472 /* 473 * Note: __end_rodata is at page aligned and not inclusive, so 474 * subtract 1 to get the last enforced PFN in the rodata area. 475 */ 476 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 477 478 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 479 return _PAGE_RW; 480 return 0; 481 } 482 483 /* 484 * Protect kernel text against becoming non executable by forbidding 485 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 486 * out of which the kernel actually executes. Do not protect the low 487 * mapping. 488 * 489 * This does not cover __inittext since that is gone after boot. 490 */ 491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 492 { 493 unsigned long t_end = (unsigned long)_etext - 1; 494 unsigned long t_start = (unsigned long)_text; 495 496 if (overlaps(start, end, t_start, t_end)) 497 return _PAGE_NX; 498 return 0; 499 } 500 501 #if defined(CONFIG_X86_64) 502 /* 503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 504 * kernel text mappings for the large page aligned text, rodata sections 505 * will be always read-only. For the kernel identity mappings covering the 506 * holes caused by this alignment can be anything that user asks. 507 * 508 * This will preserve the large page mappings for kernel text/data at no 509 * extra cost. 510 */ 511 static pgprotval_t protect_kernel_text_ro(unsigned long start, 512 unsigned long end) 513 { 514 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 515 unsigned long t_start = (unsigned long)_text; 516 unsigned int level; 517 518 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 519 return 0; 520 /* 521 * Don't enforce the !RW mapping for the kernel text mapping, if 522 * the current mapping is already using small page mapping. No 523 * need to work hard to preserve large page mappings in this case. 524 * 525 * This also fixes the Linux Xen paravirt guest boot failure caused 526 * by unexpected read-only mappings for kernel identity 527 * mappings. In this paravirt guest case, the kernel text mapping 528 * and the kernel identity mapping share the same page-table pages, 529 * so the protections for kernel text and identity mappings have to 530 * be the same. 531 */ 532 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 533 return _PAGE_RW; 534 return 0; 535 } 536 #else 537 static pgprotval_t protect_kernel_text_ro(unsigned long start, 538 unsigned long end) 539 { 540 return 0; 541 } 542 #endif 543 544 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 545 { 546 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 547 } 548 549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 550 unsigned long start, unsigned long end, 551 unsigned long pfn, const char *txt) 552 { 553 static const char *lvltxt[] = { 554 [CPA_CONFLICT] = "conflict", 555 [CPA_PROTECT] = "protect", 556 [CPA_DETECT] = "detect", 557 }; 558 559 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 560 return; 561 562 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 563 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 564 (unsigned long long)val); 565 } 566 567 /* 568 * Certain areas of memory on x86 require very specific protection flags, 569 * for example the BIOS area or kernel text. Callers don't always get this 570 * right (again, ioremap() on BIOS memory is not uncommon) so this function 571 * checks and fixes these known static required protection bits. 572 */ 573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 574 unsigned long pfn, unsigned long npg, 575 unsigned long lpsize, int warnlvl) 576 { 577 pgprotval_t forbidden, res; 578 unsigned long end; 579 580 /* 581 * There is no point in checking RW/NX conflicts when the requested 582 * mapping is setting the page !PRESENT. 583 */ 584 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 585 return prot; 586 587 /* Operate on the virtual address */ 588 end = start + npg * PAGE_SIZE - 1; 589 590 res = protect_kernel_text(start, end); 591 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 592 forbidden = res; 593 594 /* 595 * Special case to preserve a large page. If the change spawns the 596 * full large page mapping then there is no point to split it 597 * up. Happens with ftrace and is going to be removed once ftrace 598 * switched to text_poke(). 599 */ 600 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 601 res = protect_kernel_text_ro(start, end); 602 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 603 forbidden |= res; 604 } 605 606 /* Check the PFN directly */ 607 res = protect_pci_bios(pfn, pfn + npg - 1); 608 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 609 forbidden |= res; 610 611 res = protect_rodata(pfn, pfn + npg - 1); 612 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 613 forbidden |= res; 614 615 return __pgprot(pgprot_val(prot) & ~forbidden); 616 } 617 618 /* 619 * Validate strict W^X semantics. 620 */ 621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, 622 unsigned long pfn, unsigned long npg, 623 bool nx, bool rw) 624 { 625 unsigned long end; 626 627 /* 628 * 32-bit has some unfixable W+X issues, like EFI code 629 * and writeable data being in the same page. Disable 630 * detection and enforcement there. 631 */ 632 if (IS_ENABLED(CONFIG_X86_32)) 633 return new; 634 635 /* Only verify when NX is supported: */ 636 if (!(__supported_pte_mask & _PAGE_NX)) 637 return new; 638 639 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) 640 return new; 641 642 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) 643 return new; 644 645 /* Non-leaf translation entries can disable writing or execution. */ 646 if (!rw || nx) 647 return new; 648 649 end = start + npg * PAGE_SIZE - 1; 650 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", 651 (unsigned long long)pgprot_val(old), 652 (unsigned long long)pgprot_val(new), 653 start, end, pfn); 654 655 /* 656 * For now, allow all permission change attempts by returning the 657 * attempted permissions. This can 'return old' to actively 658 * refuse the permission change at a later time. 659 */ 660 return new; 661 } 662 663 /* 664 * Lookup the page table entry for a virtual address in a specific pgd. 665 * Return a pointer to the entry, the level of the mapping, and the effective 666 * NX and RW bits of all page table levels. 667 */ 668 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address, 669 unsigned int *level, bool *nx, bool *rw) 670 { 671 p4d_t *p4d; 672 pud_t *pud; 673 pmd_t *pmd; 674 675 *level = PG_LEVEL_NONE; 676 *nx = false; 677 *rw = true; 678 679 if (pgd_none(*pgd)) 680 return NULL; 681 682 *nx |= pgd_flags(*pgd) & _PAGE_NX; 683 *rw &= pgd_flags(*pgd) & _PAGE_RW; 684 685 p4d = p4d_offset(pgd, address); 686 if (p4d_none(*p4d)) 687 return NULL; 688 689 *level = PG_LEVEL_512G; 690 if (p4d_large(*p4d) || !p4d_present(*p4d)) 691 return (pte_t *)p4d; 692 693 *nx |= p4d_flags(*p4d) & _PAGE_NX; 694 *rw &= p4d_flags(*p4d) & _PAGE_RW; 695 696 pud = pud_offset(p4d, address); 697 if (pud_none(*pud)) 698 return NULL; 699 700 *level = PG_LEVEL_1G; 701 if (pud_leaf(*pud) || !pud_present(*pud)) 702 return (pte_t *)pud; 703 704 *nx |= pud_flags(*pud) & _PAGE_NX; 705 *rw &= pud_flags(*pud) & _PAGE_RW; 706 707 pmd = pmd_offset(pud, address); 708 if (pmd_none(*pmd)) 709 return NULL; 710 711 *level = PG_LEVEL_2M; 712 if (pmd_large(*pmd) || !pmd_present(*pmd)) 713 return (pte_t *)pmd; 714 715 *nx |= pmd_flags(*pmd) & _PAGE_NX; 716 *rw &= pmd_flags(*pmd) & _PAGE_RW; 717 718 *level = PG_LEVEL_4K; 719 720 return pte_offset_kernel(pmd, address); 721 } 722 723 /* 724 * Lookup the page table entry for a virtual address in a specific pgd. 725 * Return a pointer to the entry and the level of the mapping. 726 */ 727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 728 unsigned int *level) 729 { 730 bool nx, rw; 731 732 return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw); 733 } 734 735 /* 736 * Lookup the page table entry for a virtual address. Return a pointer 737 * to the entry and the level of the mapping. 738 * 739 * Note: We return pud and pmd either when the entry is marked large 740 * or when the present bit is not set. Otherwise we would return a 741 * pointer to a nonexisting mapping. 742 */ 743 pte_t *lookup_address(unsigned long address, unsigned int *level) 744 { 745 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 746 } 747 EXPORT_SYMBOL_GPL(lookup_address); 748 749 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 750 unsigned int *level, bool *nx, bool *rw) 751 { 752 pgd_t *pgd; 753 754 if (!cpa->pgd) 755 pgd = pgd_offset_k(address); 756 else 757 pgd = cpa->pgd + pgd_index(address); 758 759 return lookup_address_in_pgd_attr(pgd, address, level, nx, rw); 760 } 761 762 /* 763 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 764 * or NULL if not present. 765 */ 766 pmd_t *lookup_pmd_address(unsigned long address) 767 { 768 pgd_t *pgd; 769 p4d_t *p4d; 770 pud_t *pud; 771 772 pgd = pgd_offset_k(address); 773 if (pgd_none(*pgd)) 774 return NULL; 775 776 p4d = p4d_offset(pgd, address); 777 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 778 return NULL; 779 780 pud = pud_offset(p4d, address); 781 if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud)) 782 return NULL; 783 784 return pmd_offset(pud, address); 785 } 786 787 /* 788 * This is necessary because __pa() does not work on some 789 * kinds of memory, like vmalloc() or the alloc_remap() 790 * areas on 32-bit NUMA systems. The percpu areas can 791 * end up in this kind of memory, for instance. 792 * 793 * This could be optimized, but it is only intended to be 794 * used at initialization time, and keeping it 795 * unoptimized should increase the testing coverage for 796 * the more obscure platforms. 797 */ 798 phys_addr_t slow_virt_to_phys(void *__virt_addr) 799 { 800 unsigned long virt_addr = (unsigned long)__virt_addr; 801 phys_addr_t phys_addr; 802 unsigned long offset; 803 enum pg_level level; 804 pte_t *pte; 805 806 pte = lookup_address(virt_addr, &level); 807 BUG_ON(!pte); 808 809 /* 810 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 811 * before being left-shifted PAGE_SHIFT bits -- this trick is to 812 * make 32-PAE kernel work correctly. 813 */ 814 switch (level) { 815 case PG_LEVEL_1G: 816 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 817 offset = virt_addr & ~PUD_MASK; 818 break; 819 case PG_LEVEL_2M: 820 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 821 offset = virt_addr & ~PMD_MASK; 822 break; 823 default: 824 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 825 offset = virt_addr & ~PAGE_MASK; 826 } 827 828 return (phys_addr_t)(phys_addr | offset); 829 } 830 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 831 832 /* 833 * Set the new pmd in all the pgds we know about: 834 */ 835 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 836 { 837 /* change init_mm */ 838 set_pte_atomic(kpte, pte); 839 #ifdef CONFIG_X86_32 840 if (!SHARED_KERNEL_PMD) { 841 struct page *page; 842 843 list_for_each_entry(page, &pgd_list, lru) { 844 pgd_t *pgd; 845 p4d_t *p4d; 846 pud_t *pud; 847 pmd_t *pmd; 848 849 pgd = (pgd_t *)page_address(page) + pgd_index(address); 850 p4d = p4d_offset(pgd, address); 851 pud = pud_offset(p4d, address); 852 pmd = pmd_offset(pud, address); 853 set_pte_atomic((pte_t *)pmd, pte); 854 } 855 } 856 #endif 857 } 858 859 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 860 { 861 /* 862 * _PAGE_GLOBAL means "global page" for present PTEs. 863 * But, it is also used to indicate _PAGE_PROTNONE 864 * for non-present PTEs. 865 * 866 * This ensures that a _PAGE_GLOBAL PTE going from 867 * present to non-present is not confused as 868 * _PAGE_PROTNONE. 869 */ 870 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 871 pgprot_val(prot) &= ~_PAGE_GLOBAL; 872 873 return prot; 874 } 875 876 static int __should_split_large_page(pte_t *kpte, unsigned long address, 877 struct cpa_data *cpa) 878 { 879 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 880 pgprot_t old_prot, new_prot, req_prot, chk_prot; 881 pte_t new_pte, *tmp; 882 enum pg_level level; 883 bool nx, rw; 884 885 /* 886 * Check for races, another CPU might have split this page 887 * up already: 888 */ 889 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 890 if (tmp != kpte) 891 return 1; 892 893 switch (level) { 894 case PG_LEVEL_2M: 895 old_prot = pmd_pgprot(*(pmd_t *)kpte); 896 old_pfn = pmd_pfn(*(pmd_t *)kpte); 897 cpa_inc_2m_checked(); 898 break; 899 case PG_LEVEL_1G: 900 old_prot = pud_pgprot(*(pud_t *)kpte); 901 old_pfn = pud_pfn(*(pud_t *)kpte); 902 cpa_inc_1g_checked(); 903 break; 904 default: 905 return -EINVAL; 906 } 907 908 psize = page_level_size(level); 909 pmask = page_level_mask(level); 910 911 /* 912 * Calculate the number of pages, which fit into this large 913 * page starting at address: 914 */ 915 lpaddr = (address + psize) & pmask; 916 numpages = (lpaddr - address) >> PAGE_SHIFT; 917 if (numpages < cpa->numpages) 918 cpa->numpages = numpages; 919 920 /* 921 * We are safe now. Check whether the new pgprot is the same: 922 * Convert protection attributes to 4k-format, as cpa->mask* are set 923 * up accordingly. 924 */ 925 926 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 927 req_prot = pgprot_large_2_4k(old_prot); 928 929 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 930 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 931 932 /* 933 * req_prot is in format of 4k pages. It must be converted to large 934 * page format: the caching mode includes the PAT bit located at 935 * different bit positions in the two formats. 936 */ 937 req_prot = pgprot_4k_2_large(req_prot); 938 req_prot = pgprot_clear_protnone_bits(req_prot); 939 if (pgprot_val(req_prot) & _PAGE_PRESENT) 940 pgprot_val(req_prot) |= _PAGE_PSE; 941 942 /* 943 * old_pfn points to the large page base pfn. So we need to add the 944 * offset of the virtual address: 945 */ 946 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 947 cpa->pfn = pfn; 948 949 /* 950 * Calculate the large page base address and the number of 4K pages 951 * in the large page 952 */ 953 lpaddr = address & pmask; 954 numpages = psize >> PAGE_SHIFT; 955 956 /* 957 * Sanity check that the existing mapping is correct versus the static 958 * protections. static_protections() guards against !PRESENT, so no 959 * extra conditional required here. 960 */ 961 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 962 psize, CPA_CONFLICT); 963 964 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 965 /* 966 * Split the large page and tell the split code to 967 * enforce static protections. 968 */ 969 cpa->force_static_prot = 1; 970 return 1; 971 } 972 973 /* 974 * Optimization: If the requested pgprot is the same as the current 975 * pgprot, then the large page can be preserved and no updates are 976 * required independent of alignment and length of the requested 977 * range. The above already established that the current pgprot is 978 * correct, which in consequence makes the requested pgprot correct 979 * as well if it is the same. The static protection scan below will 980 * not come to a different conclusion. 981 */ 982 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 983 cpa_inc_lp_sameprot(level); 984 return 0; 985 } 986 987 /* 988 * If the requested range does not cover the full page, split it up 989 */ 990 if (address != lpaddr || cpa->numpages != numpages) 991 return 1; 992 993 /* 994 * Check whether the requested pgprot is conflicting with a static 995 * protection requirement in the large page. 996 */ 997 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 998 psize, CPA_DETECT); 999 1000 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages, 1001 nx, rw); 1002 1003 /* 1004 * If there is a conflict, split the large page. 1005 * 1006 * There used to be a 4k wise evaluation trying really hard to 1007 * preserve the large pages, but experimentation has shown, that this 1008 * does not help at all. There might be corner cases which would 1009 * preserve one large page occasionally, but it's really not worth the 1010 * extra code and cycles for the common case. 1011 */ 1012 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 1013 return 1; 1014 1015 /* All checks passed. Update the large page mapping. */ 1016 new_pte = pfn_pte(old_pfn, new_prot); 1017 __set_pmd_pte(kpte, address, new_pte); 1018 cpa->flags |= CPA_FLUSHTLB; 1019 cpa_inc_lp_preserved(level); 1020 return 0; 1021 } 1022 1023 static int should_split_large_page(pte_t *kpte, unsigned long address, 1024 struct cpa_data *cpa) 1025 { 1026 int do_split; 1027 1028 if (cpa->force_split) 1029 return 1; 1030 1031 spin_lock(&pgd_lock); 1032 do_split = __should_split_large_page(kpte, address, cpa); 1033 spin_unlock(&pgd_lock); 1034 1035 return do_split; 1036 } 1037 1038 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 1039 pgprot_t ref_prot, unsigned long address, 1040 unsigned long size) 1041 { 1042 unsigned int npg = PFN_DOWN(size); 1043 pgprot_t prot; 1044 1045 /* 1046 * If should_split_large_page() discovered an inconsistent mapping, 1047 * remove the invalid protection in the split mapping. 1048 */ 1049 if (!cpa->force_static_prot) 1050 goto set; 1051 1052 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1053 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 1054 1055 if (pgprot_val(prot) == pgprot_val(ref_prot)) 1056 goto set; 1057 1058 /* 1059 * If this is splitting a PMD, fix it up. PUD splits cannot be 1060 * fixed trivially as that would require to rescan the newly 1061 * installed PMD mappings after returning from split_large_page() 1062 * so an eventual further split can allocate the necessary PTE 1063 * pages. Warn for now and revisit it in case this actually 1064 * happens. 1065 */ 1066 if (size == PAGE_SIZE) 1067 ref_prot = prot; 1068 else 1069 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 1070 set: 1071 set_pte(pte, pfn_pte(pfn, ref_prot)); 1072 } 1073 1074 static int 1075 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 1076 struct page *base) 1077 { 1078 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 1079 pte_t *pbase = (pte_t *)page_address(base); 1080 unsigned int i, level; 1081 pgprot_t ref_prot; 1082 bool nx, rw; 1083 pte_t *tmp; 1084 1085 spin_lock(&pgd_lock); 1086 /* 1087 * Check for races, another CPU might have split this page 1088 * up for us already: 1089 */ 1090 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 1091 if (tmp != kpte) { 1092 spin_unlock(&pgd_lock); 1093 return 1; 1094 } 1095 1096 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 1097 1098 switch (level) { 1099 case PG_LEVEL_2M: 1100 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 1101 /* 1102 * Clear PSE (aka _PAGE_PAT) and move 1103 * PAT bit to correct position. 1104 */ 1105 ref_prot = pgprot_large_2_4k(ref_prot); 1106 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 1107 lpaddr = address & PMD_MASK; 1108 lpinc = PAGE_SIZE; 1109 break; 1110 1111 case PG_LEVEL_1G: 1112 ref_prot = pud_pgprot(*(pud_t *)kpte); 1113 ref_pfn = pud_pfn(*(pud_t *)kpte); 1114 pfninc = PMD_SIZE >> PAGE_SHIFT; 1115 lpaddr = address & PUD_MASK; 1116 lpinc = PMD_SIZE; 1117 /* 1118 * Clear the PSE flags if the PRESENT flag is not set 1119 * otherwise pmd_present/pmd_huge will return true 1120 * even on a non present pmd. 1121 */ 1122 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1123 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1124 break; 1125 1126 default: 1127 spin_unlock(&pgd_lock); 1128 return 1; 1129 } 1130 1131 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1132 1133 /* 1134 * Get the target pfn from the original entry: 1135 */ 1136 pfn = ref_pfn; 1137 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1138 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1139 1140 if (virt_addr_valid(address)) { 1141 unsigned long pfn = PFN_DOWN(__pa(address)); 1142 1143 if (pfn_range_is_mapped(pfn, pfn + 1)) 1144 split_page_count(level); 1145 } 1146 1147 /* 1148 * Install the new, split up pagetable. 1149 * 1150 * We use the standard kernel pagetable protections for the new 1151 * pagetable protections, the actual ptes set above control the 1152 * primary protection behavior: 1153 */ 1154 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1155 1156 /* 1157 * Do a global flush tlb after splitting the large page 1158 * and before we do the actual change page attribute in the PTE. 1159 * 1160 * Without this, we violate the TLB application note, that says: 1161 * "The TLBs may contain both ordinary and large-page 1162 * translations for a 4-KByte range of linear addresses. This 1163 * may occur if software modifies the paging structures so that 1164 * the page size used for the address range changes. If the two 1165 * translations differ with respect to page frame or attributes 1166 * (e.g., permissions), processor behavior is undefined and may 1167 * be implementation-specific." 1168 * 1169 * We do this global tlb flush inside the cpa_lock, so that we 1170 * don't allow any other cpu, with stale tlb entries change the 1171 * page attribute in parallel, that also falls into the 1172 * just split large page entry. 1173 */ 1174 flush_tlb_all(); 1175 spin_unlock(&pgd_lock); 1176 1177 return 0; 1178 } 1179 1180 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1181 unsigned long address) 1182 { 1183 struct page *base; 1184 1185 if (!debug_pagealloc_enabled()) 1186 spin_unlock(&cpa_lock); 1187 base = alloc_pages(GFP_KERNEL, 0); 1188 if (!debug_pagealloc_enabled()) 1189 spin_lock(&cpa_lock); 1190 if (!base) 1191 return -ENOMEM; 1192 1193 if (__split_large_page(cpa, kpte, address, base)) 1194 __free_page(base); 1195 1196 return 0; 1197 } 1198 1199 static bool try_to_free_pte_page(pte_t *pte) 1200 { 1201 int i; 1202 1203 for (i = 0; i < PTRS_PER_PTE; i++) 1204 if (!pte_none(pte[i])) 1205 return false; 1206 1207 free_page((unsigned long)pte); 1208 return true; 1209 } 1210 1211 static bool try_to_free_pmd_page(pmd_t *pmd) 1212 { 1213 int i; 1214 1215 for (i = 0; i < PTRS_PER_PMD; i++) 1216 if (!pmd_none(pmd[i])) 1217 return false; 1218 1219 free_page((unsigned long)pmd); 1220 return true; 1221 } 1222 1223 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1224 { 1225 pte_t *pte = pte_offset_kernel(pmd, start); 1226 1227 while (start < end) { 1228 set_pte(pte, __pte(0)); 1229 1230 start += PAGE_SIZE; 1231 pte++; 1232 } 1233 1234 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1235 pmd_clear(pmd); 1236 return true; 1237 } 1238 return false; 1239 } 1240 1241 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1242 unsigned long start, unsigned long end) 1243 { 1244 if (unmap_pte_range(pmd, start, end)) 1245 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1246 pud_clear(pud); 1247 } 1248 1249 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1250 { 1251 pmd_t *pmd = pmd_offset(pud, start); 1252 1253 /* 1254 * Not on a 2MB page boundary? 1255 */ 1256 if (start & (PMD_SIZE - 1)) { 1257 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1258 unsigned long pre_end = min_t(unsigned long, end, next_page); 1259 1260 __unmap_pmd_range(pud, pmd, start, pre_end); 1261 1262 start = pre_end; 1263 pmd++; 1264 } 1265 1266 /* 1267 * Try to unmap in 2M chunks. 1268 */ 1269 while (end - start >= PMD_SIZE) { 1270 if (pmd_large(*pmd)) 1271 pmd_clear(pmd); 1272 else 1273 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1274 1275 start += PMD_SIZE; 1276 pmd++; 1277 } 1278 1279 /* 1280 * 4K leftovers? 1281 */ 1282 if (start < end) 1283 return __unmap_pmd_range(pud, pmd, start, end); 1284 1285 /* 1286 * Try again to free the PMD page if haven't succeeded above. 1287 */ 1288 if (!pud_none(*pud)) 1289 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1290 pud_clear(pud); 1291 } 1292 1293 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1294 { 1295 pud_t *pud = pud_offset(p4d, start); 1296 1297 /* 1298 * Not on a GB page boundary? 1299 */ 1300 if (start & (PUD_SIZE - 1)) { 1301 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1302 unsigned long pre_end = min_t(unsigned long, end, next_page); 1303 1304 unmap_pmd_range(pud, start, pre_end); 1305 1306 start = pre_end; 1307 pud++; 1308 } 1309 1310 /* 1311 * Try to unmap in 1G chunks? 1312 */ 1313 while (end - start >= PUD_SIZE) { 1314 1315 if (pud_leaf(*pud)) 1316 pud_clear(pud); 1317 else 1318 unmap_pmd_range(pud, start, start + PUD_SIZE); 1319 1320 start += PUD_SIZE; 1321 pud++; 1322 } 1323 1324 /* 1325 * 2M leftovers? 1326 */ 1327 if (start < end) 1328 unmap_pmd_range(pud, start, end); 1329 1330 /* 1331 * No need to try to free the PUD page because we'll free it in 1332 * populate_pgd's error path 1333 */ 1334 } 1335 1336 static int alloc_pte_page(pmd_t *pmd) 1337 { 1338 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1339 if (!pte) 1340 return -1; 1341 1342 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1343 return 0; 1344 } 1345 1346 static int alloc_pmd_page(pud_t *pud) 1347 { 1348 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1349 if (!pmd) 1350 return -1; 1351 1352 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1353 return 0; 1354 } 1355 1356 static void populate_pte(struct cpa_data *cpa, 1357 unsigned long start, unsigned long end, 1358 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1359 { 1360 pte_t *pte; 1361 1362 pte = pte_offset_kernel(pmd, start); 1363 1364 pgprot = pgprot_clear_protnone_bits(pgprot); 1365 1366 while (num_pages-- && start < end) { 1367 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1368 1369 start += PAGE_SIZE; 1370 cpa->pfn++; 1371 pte++; 1372 } 1373 } 1374 1375 static long populate_pmd(struct cpa_data *cpa, 1376 unsigned long start, unsigned long end, 1377 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1378 { 1379 long cur_pages = 0; 1380 pmd_t *pmd; 1381 pgprot_t pmd_pgprot; 1382 1383 /* 1384 * Not on a 2M boundary? 1385 */ 1386 if (start & (PMD_SIZE - 1)) { 1387 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1388 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1389 1390 pre_end = min_t(unsigned long, pre_end, next_page); 1391 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1392 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1393 1394 /* 1395 * Need a PTE page? 1396 */ 1397 pmd = pmd_offset(pud, start); 1398 if (pmd_none(*pmd)) 1399 if (alloc_pte_page(pmd)) 1400 return -1; 1401 1402 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1403 1404 start = pre_end; 1405 } 1406 1407 /* 1408 * We mapped them all? 1409 */ 1410 if (num_pages == cur_pages) 1411 return cur_pages; 1412 1413 pmd_pgprot = pgprot_4k_2_large(pgprot); 1414 1415 while (end - start >= PMD_SIZE) { 1416 1417 /* 1418 * We cannot use a 1G page so allocate a PMD page if needed. 1419 */ 1420 if (pud_none(*pud)) 1421 if (alloc_pmd_page(pud)) 1422 return -1; 1423 1424 pmd = pmd_offset(pud, start); 1425 1426 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1427 canon_pgprot(pmd_pgprot)))); 1428 1429 start += PMD_SIZE; 1430 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1431 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1432 } 1433 1434 /* 1435 * Map trailing 4K pages. 1436 */ 1437 if (start < end) { 1438 pmd = pmd_offset(pud, start); 1439 if (pmd_none(*pmd)) 1440 if (alloc_pte_page(pmd)) 1441 return -1; 1442 1443 populate_pte(cpa, start, end, num_pages - cur_pages, 1444 pmd, pgprot); 1445 } 1446 return num_pages; 1447 } 1448 1449 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1450 pgprot_t pgprot) 1451 { 1452 pud_t *pud; 1453 unsigned long end; 1454 long cur_pages = 0; 1455 pgprot_t pud_pgprot; 1456 1457 end = start + (cpa->numpages << PAGE_SHIFT); 1458 1459 /* 1460 * Not on a Gb page boundary? => map everything up to it with 1461 * smaller pages. 1462 */ 1463 if (start & (PUD_SIZE - 1)) { 1464 unsigned long pre_end; 1465 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1466 1467 pre_end = min_t(unsigned long, end, next_page); 1468 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1469 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1470 1471 pud = pud_offset(p4d, start); 1472 1473 /* 1474 * Need a PMD page? 1475 */ 1476 if (pud_none(*pud)) 1477 if (alloc_pmd_page(pud)) 1478 return -1; 1479 1480 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1481 pud, pgprot); 1482 if (cur_pages < 0) 1483 return cur_pages; 1484 1485 start = pre_end; 1486 } 1487 1488 /* We mapped them all? */ 1489 if (cpa->numpages == cur_pages) 1490 return cur_pages; 1491 1492 pud = pud_offset(p4d, start); 1493 pud_pgprot = pgprot_4k_2_large(pgprot); 1494 1495 /* 1496 * Map everything starting from the Gb boundary, possibly with 1G pages 1497 */ 1498 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1499 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1500 canon_pgprot(pud_pgprot)))); 1501 1502 start += PUD_SIZE; 1503 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1504 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1505 pud++; 1506 } 1507 1508 /* Map trailing leftover */ 1509 if (start < end) { 1510 long tmp; 1511 1512 pud = pud_offset(p4d, start); 1513 if (pud_none(*pud)) 1514 if (alloc_pmd_page(pud)) 1515 return -1; 1516 1517 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1518 pud, pgprot); 1519 if (tmp < 0) 1520 return cur_pages; 1521 1522 cur_pages += tmp; 1523 } 1524 return cur_pages; 1525 } 1526 1527 /* 1528 * Restrictions for kernel page table do not necessarily apply when mapping in 1529 * an alternate PGD. 1530 */ 1531 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1532 { 1533 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1534 pud_t *pud = NULL; /* shut up gcc */ 1535 p4d_t *p4d; 1536 pgd_t *pgd_entry; 1537 long ret; 1538 1539 pgd_entry = cpa->pgd + pgd_index(addr); 1540 1541 if (pgd_none(*pgd_entry)) { 1542 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1543 if (!p4d) 1544 return -1; 1545 1546 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1547 } 1548 1549 /* 1550 * Allocate a PUD page and hand it down for mapping. 1551 */ 1552 p4d = p4d_offset(pgd_entry, addr); 1553 if (p4d_none(*p4d)) { 1554 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1555 if (!pud) 1556 return -1; 1557 1558 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1559 } 1560 1561 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1562 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1563 1564 ret = populate_pud(cpa, addr, p4d, pgprot); 1565 if (ret < 0) { 1566 /* 1567 * Leave the PUD page in place in case some other CPU or thread 1568 * already found it, but remove any useless entries we just 1569 * added to it. 1570 */ 1571 unmap_pud_range(p4d, addr, 1572 addr + (cpa->numpages << PAGE_SHIFT)); 1573 return ret; 1574 } 1575 1576 cpa->numpages = ret; 1577 return 0; 1578 } 1579 1580 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1581 int primary) 1582 { 1583 if (cpa->pgd) { 1584 /* 1585 * Right now, we only execute this code path when mapping 1586 * the EFI virtual memory map regions, no other users 1587 * provide a ->pgd value. This may change in the future. 1588 */ 1589 return populate_pgd(cpa, vaddr); 1590 } 1591 1592 /* 1593 * Ignore all non primary paths. 1594 */ 1595 if (!primary) { 1596 cpa->numpages = 1; 1597 return 0; 1598 } 1599 1600 /* 1601 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1602 * to have holes. 1603 * Also set numpages to '1' indicating that we processed cpa req for 1604 * one virtual address page and its pfn. TBD: numpages can be set based 1605 * on the initial value and the level returned by lookup_address(). 1606 */ 1607 if (within(vaddr, PAGE_OFFSET, 1608 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1609 cpa->numpages = 1; 1610 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1611 return 0; 1612 1613 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1614 /* Faults in the highmap are OK, so do not warn: */ 1615 return -EFAULT; 1616 } else { 1617 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1618 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1619 *cpa->vaddr); 1620 1621 return -EFAULT; 1622 } 1623 } 1624 1625 static int __change_page_attr(struct cpa_data *cpa, int primary) 1626 { 1627 unsigned long address; 1628 int do_split, err; 1629 unsigned int level; 1630 pte_t *kpte, old_pte; 1631 bool nx, rw; 1632 1633 address = __cpa_addr(cpa, cpa->curpage); 1634 repeat: 1635 kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 1636 if (!kpte) 1637 return __cpa_process_fault(cpa, address, primary); 1638 1639 old_pte = *kpte; 1640 if (pte_none(old_pte)) 1641 return __cpa_process_fault(cpa, address, primary); 1642 1643 if (level == PG_LEVEL_4K) { 1644 pte_t new_pte; 1645 pgprot_t old_prot = pte_pgprot(old_pte); 1646 pgprot_t new_prot = pte_pgprot(old_pte); 1647 unsigned long pfn = pte_pfn(old_pte); 1648 1649 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1650 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1651 1652 cpa_inc_4k_install(); 1653 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1654 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1655 CPA_PROTECT); 1656 1657 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1, 1658 nx, rw); 1659 1660 new_prot = pgprot_clear_protnone_bits(new_prot); 1661 1662 /* 1663 * We need to keep the pfn from the existing PTE, 1664 * after all we're only going to change it's attributes 1665 * not the memory it points to 1666 */ 1667 new_pte = pfn_pte(pfn, new_prot); 1668 cpa->pfn = pfn; 1669 /* 1670 * Do we really change anything ? 1671 */ 1672 if (pte_val(old_pte) != pte_val(new_pte)) { 1673 set_pte_atomic(kpte, new_pte); 1674 cpa->flags |= CPA_FLUSHTLB; 1675 } 1676 cpa->numpages = 1; 1677 return 0; 1678 } 1679 1680 /* 1681 * Check, whether we can keep the large page intact 1682 * and just change the pte: 1683 */ 1684 do_split = should_split_large_page(kpte, address, cpa); 1685 /* 1686 * When the range fits into the existing large page, 1687 * return. cp->numpages and cpa->tlbflush have been updated in 1688 * try_large_page: 1689 */ 1690 if (do_split <= 0) 1691 return do_split; 1692 1693 /* 1694 * We have to split the large page: 1695 */ 1696 err = split_large_page(cpa, kpte, address); 1697 if (!err) 1698 goto repeat; 1699 1700 return err; 1701 } 1702 1703 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); 1704 1705 /* 1706 * Check the directmap and "high kernel map" 'aliases'. 1707 */ 1708 static int cpa_process_alias(struct cpa_data *cpa) 1709 { 1710 struct cpa_data alias_cpa; 1711 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1712 unsigned long vaddr; 1713 int ret; 1714 1715 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1716 return 0; 1717 1718 /* 1719 * No need to redo, when the primary call touched the direct 1720 * mapping already: 1721 */ 1722 vaddr = __cpa_addr(cpa, cpa->curpage); 1723 if (!(within(vaddr, PAGE_OFFSET, 1724 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1725 1726 alias_cpa = *cpa; 1727 alias_cpa.vaddr = &laddr; 1728 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1729 alias_cpa.curpage = 0; 1730 1731 /* Directmap always has NX set, do not modify. */ 1732 if (__supported_pte_mask & _PAGE_NX) { 1733 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1734 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1735 } 1736 1737 cpa->force_flush_all = 1; 1738 1739 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1740 if (ret) 1741 return ret; 1742 } 1743 1744 #ifdef CONFIG_X86_64 1745 /* 1746 * If the primary call didn't touch the high mapping already 1747 * and the physical address is inside the kernel map, we need 1748 * to touch the high mapped kernel as well: 1749 */ 1750 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1751 __cpa_pfn_in_highmap(cpa->pfn)) { 1752 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1753 __START_KERNEL_map - phys_base; 1754 alias_cpa = *cpa; 1755 alias_cpa.vaddr = &temp_cpa_vaddr; 1756 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1757 alias_cpa.curpage = 0; 1758 1759 /* 1760 * [_text, _brk_end) also covers data, do not modify NX except 1761 * in cases where the highmap is the primary target. 1762 */ 1763 if (__supported_pte_mask & _PAGE_NX) { 1764 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1765 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1766 } 1767 1768 cpa->force_flush_all = 1; 1769 /* 1770 * The high mapping range is imprecise, so ignore the 1771 * return value. 1772 */ 1773 __change_page_attr_set_clr(&alias_cpa, 0); 1774 } 1775 #endif 1776 1777 return 0; 1778 } 1779 1780 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) 1781 { 1782 unsigned long numpages = cpa->numpages; 1783 unsigned long rempages = numpages; 1784 int ret = 0; 1785 1786 /* 1787 * No changes, easy! 1788 */ 1789 if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && 1790 !cpa->force_split) 1791 return ret; 1792 1793 while (rempages) { 1794 /* 1795 * Store the remaining nr of pages for the large page 1796 * preservation check. 1797 */ 1798 cpa->numpages = rempages; 1799 /* for array changes, we can't use large page */ 1800 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1801 cpa->numpages = 1; 1802 1803 if (!debug_pagealloc_enabled()) 1804 spin_lock(&cpa_lock); 1805 ret = __change_page_attr(cpa, primary); 1806 if (!debug_pagealloc_enabled()) 1807 spin_unlock(&cpa_lock); 1808 if (ret) 1809 goto out; 1810 1811 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { 1812 ret = cpa_process_alias(cpa); 1813 if (ret) 1814 goto out; 1815 } 1816 1817 /* 1818 * Adjust the number of pages with the result of the 1819 * CPA operation. Either a large page has been 1820 * preserved or a single page update happened. 1821 */ 1822 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1823 rempages -= cpa->numpages; 1824 cpa->curpage += cpa->numpages; 1825 } 1826 1827 out: 1828 /* Restore the original numpages */ 1829 cpa->numpages = numpages; 1830 return ret; 1831 } 1832 1833 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1834 pgprot_t mask_set, pgprot_t mask_clr, 1835 int force_split, int in_flag, 1836 struct page **pages) 1837 { 1838 struct cpa_data cpa; 1839 int ret, cache; 1840 1841 memset(&cpa, 0, sizeof(cpa)); 1842 1843 /* 1844 * Check, if we are requested to set a not supported 1845 * feature. Clearing non-supported features is OK. 1846 */ 1847 mask_set = canon_pgprot(mask_set); 1848 1849 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1850 return 0; 1851 1852 /* Ensure we are PAGE_SIZE aligned */ 1853 if (in_flag & CPA_ARRAY) { 1854 int i; 1855 for (i = 0; i < numpages; i++) { 1856 if (addr[i] & ~PAGE_MASK) { 1857 addr[i] &= PAGE_MASK; 1858 WARN_ON_ONCE(1); 1859 } 1860 } 1861 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1862 /* 1863 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1864 * No need to check in that case 1865 */ 1866 if (*addr & ~PAGE_MASK) { 1867 *addr &= PAGE_MASK; 1868 /* 1869 * People should not be passing in unaligned addresses: 1870 */ 1871 WARN_ON_ONCE(1); 1872 } 1873 } 1874 1875 /* Must avoid aliasing mappings in the highmem code */ 1876 kmap_flush_unused(); 1877 1878 vm_unmap_aliases(); 1879 1880 cpa.vaddr = addr; 1881 cpa.pages = pages; 1882 cpa.numpages = numpages; 1883 cpa.mask_set = mask_set; 1884 cpa.mask_clr = mask_clr; 1885 cpa.flags = in_flag; 1886 cpa.curpage = 0; 1887 cpa.force_split = force_split; 1888 1889 ret = __change_page_attr_set_clr(&cpa, 1); 1890 1891 /* 1892 * Check whether we really changed something: 1893 */ 1894 if (!(cpa.flags & CPA_FLUSHTLB)) 1895 goto out; 1896 1897 /* 1898 * No need to flush, when we did not set any of the caching 1899 * attributes: 1900 */ 1901 cache = !!pgprot2cachemode(mask_set); 1902 1903 /* 1904 * On error; flush everything to be sure. 1905 */ 1906 if (ret) { 1907 cpa_flush_all(cache); 1908 goto out; 1909 } 1910 1911 cpa_flush(&cpa, cache); 1912 out: 1913 return ret; 1914 } 1915 1916 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1917 pgprot_t mask, int array) 1918 { 1919 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1920 (array ? CPA_ARRAY : 0), NULL); 1921 } 1922 1923 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1924 pgprot_t mask, int array) 1925 { 1926 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1927 (array ? CPA_ARRAY : 0), NULL); 1928 } 1929 1930 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1931 pgprot_t mask) 1932 { 1933 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1934 CPA_PAGES_ARRAY, pages); 1935 } 1936 1937 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1938 pgprot_t mask) 1939 { 1940 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1941 CPA_PAGES_ARRAY, pages); 1942 } 1943 1944 /* 1945 * __set_memory_prot is an internal helper for callers that have been passed 1946 * a pgprot_t value from upper layers and a reservation has already been taken. 1947 * If you want to set the pgprot to a specific page protocol, use the 1948 * set_memory_xx() functions. 1949 */ 1950 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1951 { 1952 return change_page_attr_set_clr(&addr, numpages, prot, 1953 __pgprot(~pgprot_val(prot)), 0, 0, 1954 NULL); 1955 } 1956 1957 int _set_memory_uc(unsigned long addr, int numpages) 1958 { 1959 /* 1960 * for now UC MINUS. see comments in ioremap() 1961 * If you really need strong UC use ioremap_uc(), but note 1962 * that you cannot override IO areas with set_memory_*() as 1963 * these helpers cannot work with IO memory. 1964 */ 1965 return change_page_attr_set(&addr, numpages, 1966 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1967 0); 1968 } 1969 1970 int set_memory_uc(unsigned long addr, int numpages) 1971 { 1972 int ret; 1973 1974 /* 1975 * for now UC MINUS. see comments in ioremap() 1976 */ 1977 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1978 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1979 if (ret) 1980 goto out_err; 1981 1982 ret = _set_memory_uc(addr, numpages); 1983 if (ret) 1984 goto out_free; 1985 1986 return 0; 1987 1988 out_free: 1989 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1990 out_err: 1991 return ret; 1992 } 1993 EXPORT_SYMBOL(set_memory_uc); 1994 1995 int _set_memory_wc(unsigned long addr, int numpages) 1996 { 1997 int ret; 1998 1999 ret = change_page_attr_set(&addr, numpages, 2000 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 2001 0); 2002 if (!ret) { 2003 ret = change_page_attr_set_clr(&addr, numpages, 2004 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 2005 __pgprot(_PAGE_CACHE_MASK), 2006 0, 0, NULL); 2007 } 2008 return ret; 2009 } 2010 2011 int set_memory_wc(unsigned long addr, int numpages) 2012 { 2013 int ret; 2014 2015 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 2016 _PAGE_CACHE_MODE_WC, NULL); 2017 if (ret) 2018 return ret; 2019 2020 ret = _set_memory_wc(addr, numpages); 2021 if (ret) 2022 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL(set_memory_wc); 2027 2028 int _set_memory_wt(unsigned long addr, int numpages) 2029 { 2030 return change_page_attr_set(&addr, numpages, 2031 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 2032 } 2033 2034 int _set_memory_wb(unsigned long addr, int numpages) 2035 { 2036 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2037 return change_page_attr_clear(&addr, numpages, 2038 __pgprot(_PAGE_CACHE_MASK), 0); 2039 } 2040 2041 int set_memory_wb(unsigned long addr, int numpages) 2042 { 2043 int ret; 2044 2045 ret = _set_memory_wb(addr, numpages); 2046 if (ret) 2047 return ret; 2048 2049 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 2050 return 0; 2051 } 2052 EXPORT_SYMBOL(set_memory_wb); 2053 2054 /* Prevent speculative access to a page by marking it not-present */ 2055 #ifdef CONFIG_X86_64 2056 int set_mce_nospec(unsigned long pfn) 2057 { 2058 unsigned long decoy_addr; 2059 int rc; 2060 2061 /* SGX pages are not in the 1:1 map */ 2062 if (arch_is_platform_page(pfn << PAGE_SHIFT)) 2063 return 0; 2064 /* 2065 * We would like to just call: 2066 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); 2067 * but doing that would radically increase the odds of a 2068 * speculative access to the poison page because we'd have 2069 * the virtual address of the kernel 1:1 mapping sitting 2070 * around in registers. 2071 * Instead we get tricky. We create a non-canonical address 2072 * that looks just like the one we want, but has bit 63 flipped. 2073 * This relies on set_memory_XX() properly sanitizing any __pa() 2074 * results with __PHYSICAL_MASK or PTE_PFN_MASK. 2075 */ 2076 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); 2077 2078 rc = set_memory_np(decoy_addr, 1); 2079 if (rc) 2080 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); 2081 return rc; 2082 } 2083 2084 static int set_memory_p(unsigned long *addr, int numpages) 2085 { 2086 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2087 } 2088 2089 /* Restore full speculative operation to the pfn. */ 2090 int clear_mce_nospec(unsigned long pfn) 2091 { 2092 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); 2093 2094 return set_memory_p(&addr, 1); 2095 } 2096 EXPORT_SYMBOL_GPL(clear_mce_nospec); 2097 #endif /* CONFIG_X86_64 */ 2098 2099 int set_memory_x(unsigned long addr, int numpages) 2100 { 2101 if (!(__supported_pte_mask & _PAGE_NX)) 2102 return 0; 2103 2104 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 2105 } 2106 2107 int set_memory_nx(unsigned long addr, int numpages) 2108 { 2109 if (!(__supported_pte_mask & _PAGE_NX)) 2110 return 0; 2111 2112 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 2113 } 2114 2115 int set_memory_ro(unsigned long addr, int numpages) 2116 { 2117 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0); 2118 } 2119 2120 int set_memory_rox(unsigned long addr, int numpages) 2121 { 2122 pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY); 2123 2124 if (__supported_pte_mask & _PAGE_NX) 2125 clr.pgprot |= _PAGE_NX; 2126 2127 return change_page_attr_clear(&addr, numpages, clr, 0); 2128 } 2129 2130 int set_memory_rw(unsigned long addr, int numpages) 2131 { 2132 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 2133 } 2134 2135 int set_memory_np(unsigned long addr, int numpages) 2136 { 2137 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2138 } 2139 2140 int set_memory_np_noalias(unsigned long addr, int numpages) 2141 { 2142 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2143 __pgprot(_PAGE_PRESENT), 0, 2144 CPA_NO_CHECK_ALIAS, NULL); 2145 } 2146 2147 int set_memory_4k(unsigned long addr, int numpages) 2148 { 2149 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2150 __pgprot(0), 1, 0, NULL); 2151 } 2152 2153 int set_memory_nonglobal(unsigned long addr, int numpages) 2154 { 2155 return change_page_attr_clear(&addr, numpages, 2156 __pgprot(_PAGE_GLOBAL), 0); 2157 } 2158 2159 int set_memory_global(unsigned long addr, int numpages) 2160 { 2161 return change_page_attr_set(&addr, numpages, 2162 __pgprot(_PAGE_GLOBAL), 0); 2163 } 2164 2165 /* 2166 * __set_memory_enc_pgtable() is used for the hypervisors that get 2167 * informed about "encryption" status via page tables. 2168 */ 2169 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) 2170 { 2171 pgprot_t empty = __pgprot(0); 2172 struct cpa_data cpa; 2173 int ret; 2174 2175 /* Should not be working on unaligned addresses */ 2176 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 2177 addr &= PAGE_MASK; 2178 2179 memset(&cpa, 0, sizeof(cpa)); 2180 cpa.vaddr = &addr; 2181 cpa.numpages = numpages; 2182 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); 2183 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); 2184 cpa.pgd = init_mm.pgd; 2185 2186 /* Must avoid aliasing mappings in the highmem code */ 2187 kmap_flush_unused(); 2188 vm_unmap_aliases(); 2189 2190 /* Flush the caches as needed before changing the encryption attribute. */ 2191 if (x86_platform.guest.enc_tlb_flush_required(enc)) 2192 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); 2193 2194 /* Notify hypervisor that we are about to set/clr encryption attribute. */ 2195 if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc)) 2196 return -EIO; 2197 2198 ret = __change_page_attr_set_clr(&cpa, 1); 2199 2200 /* 2201 * After changing the encryption attribute, we need to flush TLBs again 2202 * in case any speculative TLB caching occurred (but no need to flush 2203 * caches again). We could just use cpa_flush_all(), but in case TLB 2204 * flushing gets optimized in the cpa_flush() path use the same logic 2205 * as above. 2206 */ 2207 cpa_flush(&cpa, 0); 2208 2209 /* Notify hypervisor that we have successfully set/clr encryption attribute. */ 2210 if (!ret) { 2211 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc)) 2212 ret = -EIO; 2213 } 2214 2215 return ret; 2216 } 2217 2218 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 2219 { 2220 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 2221 return __set_memory_enc_pgtable(addr, numpages, enc); 2222 2223 return 0; 2224 } 2225 2226 int set_memory_encrypted(unsigned long addr, int numpages) 2227 { 2228 return __set_memory_enc_dec(addr, numpages, true); 2229 } 2230 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2231 2232 int set_memory_decrypted(unsigned long addr, int numpages) 2233 { 2234 return __set_memory_enc_dec(addr, numpages, false); 2235 } 2236 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2237 2238 int set_pages_uc(struct page *page, int numpages) 2239 { 2240 unsigned long addr = (unsigned long)page_address(page); 2241 2242 return set_memory_uc(addr, numpages); 2243 } 2244 EXPORT_SYMBOL(set_pages_uc); 2245 2246 static int _set_pages_array(struct page **pages, int numpages, 2247 enum page_cache_mode new_type) 2248 { 2249 unsigned long start; 2250 unsigned long end; 2251 enum page_cache_mode set_type; 2252 int i; 2253 int free_idx; 2254 int ret; 2255 2256 for (i = 0; i < numpages; i++) { 2257 if (PageHighMem(pages[i])) 2258 continue; 2259 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2260 end = start + PAGE_SIZE; 2261 if (memtype_reserve(start, end, new_type, NULL)) 2262 goto err_out; 2263 } 2264 2265 /* If WC, set to UC- first and then WC */ 2266 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2267 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2268 2269 ret = cpa_set_pages_array(pages, numpages, 2270 cachemode2pgprot(set_type)); 2271 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2272 ret = change_page_attr_set_clr(NULL, numpages, 2273 cachemode2pgprot( 2274 _PAGE_CACHE_MODE_WC), 2275 __pgprot(_PAGE_CACHE_MASK), 2276 0, CPA_PAGES_ARRAY, pages); 2277 if (ret) 2278 goto err_out; 2279 return 0; /* Success */ 2280 err_out: 2281 free_idx = i; 2282 for (i = 0; i < free_idx; i++) { 2283 if (PageHighMem(pages[i])) 2284 continue; 2285 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2286 end = start + PAGE_SIZE; 2287 memtype_free(start, end); 2288 } 2289 return -EINVAL; 2290 } 2291 2292 int set_pages_array_uc(struct page **pages, int numpages) 2293 { 2294 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2295 } 2296 EXPORT_SYMBOL(set_pages_array_uc); 2297 2298 int set_pages_array_wc(struct page **pages, int numpages) 2299 { 2300 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2301 } 2302 EXPORT_SYMBOL(set_pages_array_wc); 2303 2304 int set_pages_wb(struct page *page, int numpages) 2305 { 2306 unsigned long addr = (unsigned long)page_address(page); 2307 2308 return set_memory_wb(addr, numpages); 2309 } 2310 EXPORT_SYMBOL(set_pages_wb); 2311 2312 int set_pages_array_wb(struct page **pages, int numpages) 2313 { 2314 int retval; 2315 unsigned long start; 2316 unsigned long end; 2317 int i; 2318 2319 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2320 retval = cpa_clear_pages_array(pages, numpages, 2321 __pgprot(_PAGE_CACHE_MASK)); 2322 if (retval) 2323 return retval; 2324 2325 for (i = 0; i < numpages; i++) { 2326 if (PageHighMem(pages[i])) 2327 continue; 2328 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2329 end = start + PAGE_SIZE; 2330 memtype_free(start, end); 2331 } 2332 2333 return 0; 2334 } 2335 EXPORT_SYMBOL(set_pages_array_wb); 2336 2337 int set_pages_ro(struct page *page, int numpages) 2338 { 2339 unsigned long addr = (unsigned long)page_address(page); 2340 2341 return set_memory_ro(addr, numpages); 2342 } 2343 2344 int set_pages_rw(struct page *page, int numpages) 2345 { 2346 unsigned long addr = (unsigned long)page_address(page); 2347 2348 return set_memory_rw(addr, numpages); 2349 } 2350 2351 static int __set_pages_p(struct page *page, int numpages) 2352 { 2353 unsigned long tempaddr = (unsigned long) page_address(page); 2354 struct cpa_data cpa = { .vaddr = &tempaddr, 2355 .pgd = NULL, 2356 .numpages = numpages, 2357 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2358 .mask_clr = __pgprot(0), 2359 .flags = CPA_NO_CHECK_ALIAS }; 2360 2361 /* 2362 * No alias checking needed for setting present flag. otherwise, 2363 * we may need to break large pages for 64-bit kernel text 2364 * mappings (this adds to complexity if we want to do this from 2365 * atomic context especially). Let's keep it simple! 2366 */ 2367 return __change_page_attr_set_clr(&cpa, 1); 2368 } 2369 2370 static int __set_pages_np(struct page *page, int numpages) 2371 { 2372 unsigned long tempaddr = (unsigned long) page_address(page); 2373 struct cpa_data cpa = { .vaddr = &tempaddr, 2374 .pgd = NULL, 2375 .numpages = numpages, 2376 .mask_set = __pgprot(0), 2377 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2378 .flags = CPA_NO_CHECK_ALIAS }; 2379 2380 /* 2381 * No alias checking needed for setting not present flag. otherwise, 2382 * we may need to break large pages for 64-bit kernel text 2383 * mappings (this adds to complexity if we want to do this from 2384 * atomic context especially). Let's keep it simple! 2385 */ 2386 return __change_page_attr_set_clr(&cpa, 1); 2387 } 2388 2389 int set_direct_map_invalid_noflush(struct page *page) 2390 { 2391 return __set_pages_np(page, 1); 2392 } 2393 2394 int set_direct_map_default_noflush(struct page *page) 2395 { 2396 return __set_pages_p(page, 1); 2397 } 2398 2399 #ifdef CONFIG_DEBUG_PAGEALLOC 2400 void __kernel_map_pages(struct page *page, int numpages, int enable) 2401 { 2402 if (PageHighMem(page)) 2403 return; 2404 if (!enable) { 2405 debug_check_no_locks_freed(page_address(page), 2406 numpages * PAGE_SIZE); 2407 } 2408 2409 /* 2410 * The return value is ignored as the calls cannot fail. 2411 * Large pages for identity mappings are not used at boot time 2412 * and hence no memory allocations during large page split. 2413 */ 2414 if (enable) 2415 __set_pages_p(page, numpages); 2416 else 2417 __set_pages_np(page, numpages); 2418 2419 /* 2420 * We should perform an IPI and flush all tlbs, 2421 * but that can deadlock->flush only current cpu. 2422 * Preemption needs to be disabled around __flush_tlb_all() due to 2423 * CR3 reload in __native_flush_tlb(). 2424 */ 2425 preempt_disable(); 2426 __flush_tlb_all(); 2427 preempt_enable(); 2428 2429 arch_flush_lazy_mmu_mode(); 2430 } 2431 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2432 2433 bool kernel_page_present(struct page *page) 2434 { 2435 unsigned int level; 2436 pte_t *pte; 2437 2438 if (PageHighMem(page)) 2439 return false; 2440 2441 pte = lookup_address((unsigned long)page_address(page), &level); 2442 return (pte_val(*pte) & _PAGE_PRESENT); 2443 } 2444 2445 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2446 unsigned numpages, unsigned long page_flags) 2447 { 2448 int retval = -EINVAL; 2449 2450 struct cpa_data cpa = { 2451 .vaddr = &address, 2452 .pfn = pfn, 2453 .pgd = pgd, 2454 .numpages = numpages, 2455 .mask_set = __pgprot(0), 2456 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2457 .flags = CPA_NO_CHECK_ALIAS, 2458 }; 2459 2460 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2461 2462 if (!(__supported_pte_mask & _PAGE_NX)) 2463 goto out; 2464 2465 if (!(page_flags & _PAGE_ENC)) 2466 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2467 2468 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2469 2470 retval = __change_page_attr_set_clr(&cpa, 1); 2471 __flush_tlb_all(); 2472 2473 out: 2474 return retval; 2475 } 2476 2477 /* 2478 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2479 * function shouldn't be used in an SMP environment. Presently, it's used only 2480 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2481 */ 2482 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2483 unsigned long numpages) 2484 { 2485 int retval; 2486 2487 /* 2488 * The typical sequence for unmapping is to find a pte through 2489 * lookup_address_in_pgd() (ideally, it should never return NULL because 2490 * the address is already mapped) and change it's protections. As pfn is 2491 * the *target* of a mapping, it's not useful while unmapping. 2492 */ 2493 struct cpa_data cpa = { 2494 .vaddr = &address, 2495 .pfn = 0, 2496 .pgd = pgd, 2497 .numpages = numpages, 2498 .mask_set = __pgprot(0), 2499 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2500 .flags = CPA_NO_CHECK_ALIAS, 2501 }; 2502 2503 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2504 2505 retval = __change_page_attr_set_clr(&cpa, 1); 2506 __flush_tlb_all(); 2507 2508 return retval; 2509 } 2510 2511 /* 2512 * The testcases use internal knowledge of the implementation that shouldn't 2513 * be exposed to the rest of the kernel. Include these directly here. 2514 */ 2515 #ifdef CONFIG_CPA_DEBUG 2516 #include "cpa-test.c" 2517 #endif 2518