xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision 49c23519)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25 
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37 
38 #include "../mm_internal.h"
39 
40 /*
41  * The current flushing context - we pass it instead of 5 arguments:
42  */
43 struct cpa_data {
44 	unsigned long	*vaddr;
45 	pgd_t		*pgd;
46 	pgprot_t	mask_set;
47 	pgprot_t	mask_clr;
48 	unsigned long	numpages;
49 	unsigned long	curpage;
50 	unsigned long	pfn;
51 	unsigned int	flags;
52 	unsigned int	force_split		: 1,
53 			force_static_prot	: 1,
54 			force_flush_all		: 1;
55 	struct page	**pages;
56 };
57 
58 enum cpa_warn {
59 	CPA_CONFLICT,
60 	CPA_PROTECT,
61 	CPA_DETECT,
62 };
63 
64 static const int cpa_warn_level = CPA_PROTECT;
65 
66 /*
67  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69  * entries change the page attribute in parallel to some other cpu
70  * splitting a large page entry along with changing the attribute.
71  */
72 static DEFINE_SPINLOCK(cpa_lock);
73 
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78 
79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 	return __pgprot(cachemode2protval(pcm));
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86 
87 void update_page_count(int level, unsigned long pages)
88 {
89 	/* Protect against CPA */
90 	spin_lock(&pgd_lock);
91 	direct_pages_count[level] += pages;
92 	spin_unlock(&pgd_lock);
93 }
94 
95 static void split_page_count(int level)
96 {
97 	if (direct_pages_count[level] == 0)
98 		return;
99 
100 	direct_pages_count[level]--;
101 	if (system_state == SYSTEM_RUNNING) {
102 		if (level == PG_LEVEL_2M)
103 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 		else if (level == PG_LEVEL_1G)
105 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 	}
107 	direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109 
110 void arch_report_meminfo(struct seq_file *m)
111 {
112 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
113 			direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
116 			direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
119 			direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 	if (direct_gbpages)
122 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
123 			direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
126 static inline void split_page_count(int level) { }
127 #endif
128 
129 #ifdef CONFIG_X86_CPA_STATISTICS
130 
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138 
139 static inline void cpa_inc_1g_checked(void)
140 {
141 	cpa_1g_checked++;
142 }
143 
144 static inline void cpa_inc_2m_checked(void)
145 {
146 	cpa_2m_checked++;
147 }
148 
149 static inline void cpa_inc_4k_install(void)
150 {
151 	data_race(cpa_4k_install++);
152 }
153 
154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 	if (level == PG_LEVEL_1G)
157 		cpa_1g_sameprot++;
158 	else
159 		cpa_2m_sameprot++;
160 }
161 
162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 	if (level == PG_LEVEL_1G)
165 		cpa_1g_preserved++;
166 	else
167 		cpa_2m_preserved++;
168 }
169 
170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 	return 0;
180 }
181 
182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 	return single_open(file, cpastats_show, NULL);
185 }
186 
187 static const struct file_operations cpastats_fops = {
188 	.open		= cpastats_open,
189 	.read		= seq_read,
190 	.llseek		= seq_lseek,
191 	.release	= single_release,
192 };
193 
194 static int __init cpa_stats_init(void)
195 {
196 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 			    &cpastats_fops);
198 	return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
202 static inline void cpa_inc_1g_checked(void) { }
203 static inline void cpa_inc_2m_checked(void) { }
204 static inline void cpa_inc_4k_install(void) { }
205 static inline void cpa_inc_lp_sameprot(int level) { }
206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208 
209 
210 static inline int
211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 	return addr >= start && addr < end;
214 }
215 
216 static inline int
217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 	return addr >= start && addr <= end;
220 }
221 
222 #ifdef CONFIG_X86_64
223 
224 /*
225  * The kernel image is mapped into two places in the virtual address space
226  * (addresses without KASLR, of course):
227  *
228  * 1. The kernel direct map (0xffff880000000000)
229  * 2. The "high kernel map" (0xffffffff81000000)
230  *
231  * We actually execute out of #2. If we get the address of a kernel symbol, it
232  * points to #2, but almost all physical-to-virtual translations point to #1.
233  *
234  * This is so that we can have both a directmap of all physical memory *and*
235  * take full advantage of the limited (s32) immediate addressing range (2G)
236  * of x86_64.
237  *
238  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239  */
240 
241 static inline unsigned long highmap_start_pfn(void)
242 {
243 	return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245 
246 static inline unsigned long highmap_end_pfn(void)
247 {
248 	/* Do not reference physical address outside the kernel. */
249 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251 
252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 	/*
255 	 * Kernel text has an alias mapping at a high address, known
256 	 * here as "highmap".
257 	 */
258 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260 
261 #else
262 
263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 	/* There is no highmap on 32-bit */
266 	return false;
267 }
268 
269 #endif
270 
271 /*
272  * See set_mce_nospec().
273  *
274  * Machine check recovery code needs to change cache mode of poisoned pages to
275  * UC to avoid speculative access logging another error. But passing the
276  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277  * speculative access. So we cheat and flip the top bit of the address. This
278  * works fine for the code that updates the page tables. But at the end of the
279  * process we need to flush the TLB and cache and the non-canonical address
280  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281  *
282  * But in the common case we already have a canonical address. This code
283  * will fix the top bit if needed and is a no-op otherwise.
284  */
285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 	return (long)(addr << 1) >> 1;
289 #else
290 	return addr;
291 #endif
292 }
293 
294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 	if (cpa->flags & CPA_PAGES_ARRAY) {
297 		struct page *page = cpa->pages[idx];
298 
299 		if (unlikely(PageHighMem(page)))
300 			return 0;
301 
302 		return (unsigned long)page_address(page);
303 	}
304 
305 	if (cpa->flags & CPA_ARRAY)
306 		return cpa->vaddr[idx];
307 
308 	return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310 
311 /*
312  * Flushing functions
313  */
314 
315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 	void *vend = vaddr + size;
320 
321 	if (p >= vend)
322 		return;
323 
324 	for (; p < vend; p += clflush_size)
325 		clflushopt(p);
326 }
327 
328 /**
329  * clflush_cache_range - flush a cache range with clflush
330  * @vaddr:	virtual start address
331  * @size:	number of bytes to flush
332  *
333  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334  * SFENCE to avoid ordering issues.
335  */
336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 	mb();
339 	clflush_cache_range_opt(vaddr, size);
340 	mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343 
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 	clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351 
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358 
359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 		return -ENXIO;
363 	wbinvd_on_all_cpus();
364 	return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368 
369 static void __cpa_flush_all(void *arg)
370 {
371 	unsigned long cache = (unsigned long)arg;
372 
373 	/*
374 	 * Flush all to work around Errata in early athlons regarding
375 	 * large page flushing.
376 	 */
377 	__flush_tlb_all();
378 
379 	if (cache && boot_cpu_data.x86 >= 4)
380 		wbinvd();
381 }
382 
383 static void cpa_flush_all(unsigned long cache)
384 {
385 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386 
387 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389 
390 static void __cpa_flush_tlb(void *data)
391 {
392 	struct cpa_data *cpa = data;
393 	unsigned int i;
394 
395 	for (i = 0; i < cpa->numpages; i++)
396 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398 
399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 	struct cpa_data *cpa = data;
402 	unsigned int i;
403 
404 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405 
406 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 		cpa_flush_all(cache);
408 		return;
409 	}
410 
411 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 		flush_tlb_all();
413 	else
414 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
415 
416 	if (!cache)
417 		return;
418 
419 	mb();
420 	for (i = 0; i < cpa->numpages; i++) {
421 		unsigned long addr = __cpa_addr(cpa, i);
422 		unsigned int level;
423 
424 		pte_t *pte = lookup_address(addr, &level);
425 
426 		/*
427 		 * Only flush present addresses:
428 		 */
429 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 	}
432 	mb();
433 }
434 
435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 		     unsigned long r2_start, unsigned long r2_end)
437 {
438 	return (r1_start <= r2_end && r1_end >= r2_start) ||
439 		(r2_start <= r1_end && r2_end >= r1_start);
440 }
441 
442 #ifdef CONFIG_PCI_BIOS
443 /*
444  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445  * based config access (CONFIG_PCI_GOBIOS) support.
446  */
447 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
449 
450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 		return _PAGE_NX;
454 	return 0;
455 }
456 #else
457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 	return 0;
460 }
461 #endif
462 
463 /*
464  * The .rodata section needs to be read-only. Using the pfn catches all
465  * aliases.  This also includes __ro_after_init, so do not enforce until
466  * kernel_set_to_readonly is true.
467  */
468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471 
472 	/*
473 	 * Note: __end_rodata is at page aligned and not inclusive, so
474 	 * subtract 1 to get the last enforced PFN in the rodata area.
475 	 */
476 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477 
478 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 		return _PAGE_RW;
480 	return 0;
481 }
482 
483 /*
484  * Protect kernel text against becoming non executable by forbidding
485  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486  * out of which the kernel actually executes.  Do not protect the low
487  * mapping.
488  *
489  * This does not cover __inittext since that is gone after boot.
490  */
491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 	unsigned long t_end = (unsigned long)_etext - 1;
494 	unsigned long t_start = (unsigned long)_text;
495 
496 	if (overlaps(start, end, t_start, t_end))
497 		return _PAGE_NX;
498 	return 0;
499 }
500 
501 #if defined(CONFIG_X86_64)
502 /*
503  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504  * kernel text mappings for the large page aligned text, rodata sections
505  * will be always read-only. For the kernel identity mappings covering the
506  * holes caused by this alignment can be anything that user asks.
507  *
508  * This will preserve the large page mappings for kernel text/data at no
509  * extra cost.
510  */
511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 					  unsigned long end)
513 {
514 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 	unsigned long t_start = (unsigned long)_text;
516 	unsigned int level;
517 
518 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 		return 0;
520 	/*
521 	 * Don't enforce the !RW mapping for the kernel text mapping, if
522 	 * the current mapping is already using small page mapping.  No
523 	 * need to work hard to preserve large page mappings in this case.
524 	 *
525 	 * This also fixes the Linux Xen paravirt guest boot failure caused
526 	 * by unexpected read-only mappings for kernel identity
527 	 * mappings. In this paravirt guest case, the kernel text mapping
528 	 * and the kernel identity mapping share the same page-table pages,
529 	 * so the protections for kernel text and identity mappings have to
530 	 * be the same.
531 	 */
532 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 		return _PAGE_RW;
534 	return 0;
535 }
536 #else
537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 					  unsigned long end)
539 {
540 	return 0;
541 }
542 #endif
543 
544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548 
549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 				  unsigned long start, unsigned long end,
551 				  unsigned long pfn, const char *txt)
552 {
553 	static const char *lvltxt[] = {
554 		[CPA_CONFLICT]	= "conflict",
555 		[CPA_PROTECT]	= "protect",
556 		[CPA_DETECT]	= "detect",
557 	};
558 
559 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 		return;
561 
562 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 		(unsigned long long)val);
565 }
566 
567 /*
568  * Certain areas of memory on x86 require very specific protection flags,
569  * for example the BIOS area or kernel text. Callers don't always get this
570  * right (again, ioremap() on BIOS memory is not uncommon) so this function
571  * checks and fixes these known static required protection bits.
572  */
573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 					  unsigned long pfn, unsigned long npg,
575 					  unsigned long lpsize, int warnlvl)
576 {
577 	pgprotval_t forbidden, res;
578 	unsigned long end;
579 
580 	/*
581 	 * There is no point in checking RW/NX conflicts when the requested
582 	 * mapping is setting the page !PRESENT.
583 	 */
584 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 		return prot;
586 
587 	/* Operate on the virtual address */
588 	end = start + npg * PAGE_SIZE - 1;
589 
590 	res = protect_kernel_text(start, end);
591 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 	forbidden = res;
593 
594 	/*
595 	 * Special case to preserve a large page. If the change spawns the
596 	 * full large page mapping then there is no point to split it
597 	 * up. Happens with ftrace and is going to be removed once ftrace
598 	 * switched to text_poke().
599 	 */
600 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 		res = protect_kernel_text_ro(start, end);
602 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 		forbidden |= res;
604 	}
605 
606 	/* Check the PFN directly */
607 	res = protect_pci_bios(pfn, pfn + npg - 1);
608 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 	forbidden |= res;
610 
611 	res = protect_rodata(pfn, pfn + npg - 1);
612 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 	forbidden |= res;
614 
615 	return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617 
618 /*
619  * Validate strict W^X semantics.
620  */
621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 				  unsigned long pfn, unsigned long npg,
623 				  bool nx, bool rw)
624 {
625 	unsigned long end;
626 
627 	/*
628 	 * 32-bit has some unfixable W+X issues, like EFI code
629 	 * and writeable data being in the same page.  Disable
630 	 * detection and enforcement there.
631 	 */
632 	if (IS_ENABLED(CONFIG_X86_32))
633 		return new;
634 
635 	/* Only verify when NX is supported: */
636 	if (!(__supported_pte_mask & _PAGE_NX))
637 		return new;
638 
639 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640 		return new;
641 
642 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643 		return new;
644 
645 	/* Non-leaf translation entries can disable writing or execution. */
646 	if (!rw || nx)
647 		return new;
648 
649 	end = start + npg * PAGE_SIZE - 1;
650 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651 		  (unsigned long long)pgprot_val(old),
652 		  (unsigned long long)pgprot_val(new),
653 		  start, end, pfn);
654 
655 	/*
656 	 * For now, allow all permission change attempts by returning the
657 	 * attempted permissions.  This can 'return old' to actively
658 	 * refuse the permission change at a later time.
659 	 */
660 	return new;
661 }
662 
663 /*
664  * Lookup the page table entry for a virtual address in a specific pgd.
665  * Return a pointer to the entry, the level of the mapping, and the effective
666  * NX and RW bits of all page table levels.
667  */
668 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
669 				  unsigned int *level, bool *nx, bool *rw)
670 {
671 	p4d_t *p4d;
672 	pud_t *pud;
673 	pmd_t *pmd;
674 
675 	*level = PG_LEVEL_NONE;
676 	*nx = false;
677 	*rw = true;
678 
679 	if (pgd_none(*pgd))
680 		return NULL;
681 
682 	*nx |= pgd_flags(*pgd) & _PAGE_NX;
683 	*rw &= pgd_flags(*pgd) & _PAGE_RW;
684 
685 	p4d = p4d_offset(pgd, address);
686 	if (p4d_none(*p4d))
687 		return NULL;
688 
689 	*level = PG_LEVEL_512G;
690 	if (p4d_large(*p4d) || !p4d_present(*p4d))
691 		return (pte_t *)p4d;
692 
693 	*nx |= p4d_flags(*p4d) & _PAGE_NX;
694 	*rw &= p4d_flags(*p4d) & _PAGE_RW;
695 
696 	pud = pud_offset(p4d, address);
697 	if (pud_none(*pud))
698 		return NULL;
699 
700 	*level = PG_LEVEL_1G;
701 	if (pud_leaf(*pud) || !pud_present(*pud))
702 		return (pte_t *)pud;
703 
704 	*nx |= pud_flags(*pud) & _PAGE_NX;
705 	*rw &= pud_flags(*pud) & _PAGE_RW;
706 
707 	pmd = pmd_offset(pud, address);
708 	if (pmd_none(*pmd))
709 		return NULL;
710 
711 	*level = PG_LEVEL_2M;
712 	if (pmd_large(*pmd) || !pmd_present(*pmd))
713 		return (pte_t *)pmd;
714 
715 	*nx |= pmd_flags(*pmd) & _PAGE_NX;
716 	*rw &= pmd_flags(*pmd) & _PAGE_RW;
717 
718 	*level = PG_LEVEL_4K;
719 
720 	return pte_offset_kernel(pmd, address);
721 }
722 
723 /*
724  * Lookup the page table entry for a virtual address in a specific pgd.
725  * Return a pointer to the entry and the level of the mapping.
726  */
727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728 			     unsigned int *level)
729 {
730 	bool nx, rw;
731 
732 	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733 }
734 
735 /*
736  * Lookup the page table entry for a virtual address. Return a pointer
737  * to the entry and the level of the mapping.
738  *
739  * Note: We return pud and pmd either when the entry is marked large
740  * or when the present bit is not set. Otherwise we would return a
741  * pointer to a nonexisting mapping.
742  */
743 pte_t *lookup_address(unsigned long address, unsigned int *level)
744 {
745 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
746 }
747 EXPORT_SYMBOL_GPL(lookup_address);
748 
749 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
750 				  unsigned int *level, bool *nx, bool *rw)
751 {
752 	pgd_t *pgd;
753 
754 	if (!cpa->pgd)
755 		pgd = pgd_offset_k(address);
756 	else
757 		pgd = cpa->pgd + pgd_index(address);
758 
759 	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
760 }
761 
762 /*
763  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
764  * or NULL if not present.
765  */
766 pmd_t *lookup_pmd_address(unsigned long address)
767 {
768 	pgd_t *pgd;
769 	p4d_t *p4d;
770 	pud_t *pud;
771 
772 	pgd = pgd_offset_k(address);
773 	if (pgd_none(*pgd))
774 		return NULL;
775 
776 	p4d = p4d_offset(pgd, address);
777 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
778 		return NULL;
779 
780 	pud = pud_offset(p4d, address);
781 	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
782 		return NULL;
783 
784 	return pmd_offset(pud, address);
785 }
786 
787 /*
788  * This is necessary because __pa() does not work on some
789  * kinds of memory, like vmalloc() or the alloc_remap()
790  * areas on 32-bit NUMA systems.  The percpu areas can
791  * end up in this kind of memory, for instance.
792  *
793  * This could be optimized, but it is only intended to be
794  * used at initialization time, and keeping it
795  * unoptimized should increase the testing coverage for
796  * the more obscure platforms.
797  */
798 phys_addr_t slow_virt_to_phys(void *__virt_addr)
799 {
800 	unsigned long virt_addr = (unsigned long)__virt_addr;
801 	phys_addr_t phys_addr;
802 	unsigned long offset;
803 	enum pg_level level;
804 	pte_t *pte;
805 
806 	pte = lookup_address(virt_addr, &level);
807 	BUG_ON(!pte);
808 
809 	/*
810 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
811 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
812 	 * make 32-PAE kernel work correctly.
813 	 */
814 	switch (level) {
815 	case PG_LEVEL_1G:
816 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
817 		offset = virt_addr & ~PUD_MASK;
818 		break;
819 	case PG_LEVEL_2M:
820 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
821 		offset = virt_addr & ~PMD_MASK;
822 		break;
823 	default:
824 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
825 		offset = virt_addr & ~PAGE_MASK;
826 	}
827 
828 	return (phys_addr_t)(phys_addr | offset);
829 }
830 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
831 
832 /*
833  * Set the new pmd in all the pgds we know about:
834  */
835 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
836 {
837 	/* change init_mm */
838 	set_pte_atomic(kpte, pte);
839 #ifdef CONFIG_X86_32
840 	if (!SHARED_KERNEL_PMD) {
841 		struct page *page;
842 
843 		list_for_each_entry(page, &pgd_list, lru) {
844 			pgd_t *pgd;
845 			p4d_t *p4d;
846 			pud_t *pud;
847 			pmd_t *pmd;
848 
849 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
850 			p4d = p4d_offset(pgd, address);
851 			pud = pud_offset(p4d, address);
852 			pmd = pmd_offset(pud, address);
853 			set_pte_atomic((pte_t *)pmd, pte);
854 		}
855 	}
856 #endif
857 }
858 
859 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
860 {
861 	/*
862 	 * _PAGE_GLOBAL means "global page" for present PTEs.
863 	 * But, it is also used to indicate _PAGE_PROTNONE
864 	 * for non-present PTEs.
865 	 *
866 	 * This ensures that a _PAGE_GLOBAL PTE going from
867 	 * present to non-present is not confused as
868 	 * _PAGE_PROTNONE.
869 	 */
870 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
871 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
872 
873 	return prot;
874 }
875 
876 static int __should_split_large_page(pte_t *kpte, unsigned long address,
877 				     struct cpa_data *cpa)
878 {
879 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
880 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
881 	pte_t new_pte, *tmp;
882 	enum pg_level level;
883 	bool nx, rw;
884 
885 	/*
886 	 * Check for races, another CPU might have split this page
887 	 * up already:
888 	 */
889 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
890 	if (tmp != kpte)
891 		return 1;
892 
893 	switch (level) {
894 	case PG_LEVEL_2M:
895 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
896 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
897 		cpa_inc_2m_checked();
898 		break;
899 	case PG_LEVEL_1G:
900 		old_prot = pud_pgprot(*(pud_t *)kpte);
901 		old_pfn = pud_pfn(*(pud_t *)kpte);
902 		cpa_inc_1g_checked();
903 		break;
904 	default:
905 		return -EINVAL;
906 	}
907 
908 	psize = page_level_size(level);
909 	pmask = page_level_mask(level);
910 
911 	/*
912 	 * Calculate the number of pages, which fit into this large
913 	 * page starting at address:
914 	 */
915 	lpaddr = (address + psize) & pmask;
916 	numpages = (lpaddr - address) >> PAGE_SHIFT;
917 	if (numpages < cpa->numpages)
918 		cpa->numpages = numpages;
919 
920 	/*
921 	 * We are safe now. Check whether the new pgprot is the same:
922 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
923 	 * up accordingly.
924 	 */
925 
926 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
927 	req_prot = pgprot_large_2_4k(old_prot);
928 
929 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
930 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
931 
932 	/*
933 	 * req_prot is in format of 4k pages. It must be converted to large
934 	 * page format: the caching mode includes the PAT bit located at
935 	 * different bit positions in the two formats.
936 	 */
937 	req_prot = pgprot_4k_2_large(req_prot);
938 	req_prot = pgprot_clear_protnone_bits(req_prot);
939 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
940 		pgprot_val(req_prot) |= _PAGE_PSE;
941 
942 	/*
943 	 * old_pfn points to the large page base pfn. So we need to add the
944 	 * offset of the virtual address:
945 	 */
946 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
947 	cpa->pfn = pfn;
948 
949 	/*
950 	 * Calculate the large page base address and the number of 4K pages
951 	 * in the large page
952 	 */
953 	lpaddr = address & pmask;
954 	numpages = psize >> PAGE_SHIFT;
955 
956 	/*
957 	 * Sanity check that the existing mapping is correct versus the static
958 	 * protections. static_protections() guards against !PRESENT, so no
959 	 * extra conditional required here.
960 	 */
961 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
962 				      psize, CPA_CONFLICT);
963 
964 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
965 		/*
966 		 * Split the large page and tell the split code to
967 		 * enforce static protections.
968 		 */
969 		cpa->force_static_prot = 1;
970 		return 1;
971 	}
972 
973 	/*
974 	 * Optimization: If the requested pgprot is the same as the current
975 	 * pgprot, then the large page can be preserved and no updates are
976 	 * required independent of alignment and length of the requested
977 	 * range. The above already established that the current pgprot is
978 	 * correct, which in consequence makes the requested pgprot correct
979 	 * as well if it is the same. The static protection scan below will
980 	 * not come to a different conclusion.
981 	 */
982 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
983 		cpa_inc_lp_sameprot(level);
984 		return 0;
985 	}
986 
987 	/*
988 	 * If the requested range does not cover the full page, split it up
989 	 */
990 	if (address != lpaddr || cpa->numpages != numpages)
991 		return 1;
992 
993 	/*
994 	 * Check whether the requested pgprot is conflicting with a static
995 	 * protection requirement in the large page.
996 	 */
997 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
998 				      psize, CPA_DETECT);
999 
1000 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1001 			      nx, rw);
1002 
1003 	/*
1004 	 * If there is a conflict, split the large page.
1005 	 *
1006 	 * There used to be a 4k wise evaluation trying really hard to
1007 	 * preserve the large pages, but experimentation has shown, that this
1008 	 * does not help at all. There might be corner cases which would
1009 	 * preserve one large page occasionally, but it's really not worth the
1010 	 * extra code and cycles for the common case.
1011 	 */
1012 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1013 		return 1;
1014 
1015 	/* All checks passed. Update the large page mapping. */
1016 	new_pte = pfn_pte(old_pfn, new_prot);
1017 	__set_pmd_pte(kpte, address, new_pte);
1018 	cpa->flags |= CPA_FLUSHTLB;
1019 	cpa_inc_lp_preserved(level);
1020 	return 0;
1021 }
1022 
1023 static int should_split_large_page(pte_t *kpte, unsigned long address,
1024 				   struct cpa_data *cpa)
1025 {
1026 	int do_split;
1027 
1028 	if (cpa->force_split)
1029 		return 1;
1030 
1031 	spin_lock(&pgd_lock);
1032 	do_split = __should_split_large_page(kpte, address, cpa);
1033 	spin_unlock(&pgd_lock);
1034 
1035 	return do_split;
1036 }
1037 
1038 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1039 			  pgprot_t ref_prot, unsigned long address,
1040 			  unsigned long size)
1041 {
1042 	unsigned int npg = PFN_DOWN(size);
1043 	pgprot_t prot;
1044 
1045 	/*
1046 	 * If should_split_large_page() discovered an inconsistent mapping,
1047 	 * remove the invalid protection in the split mapping.
1048 	 */
1049 	if (!cpa->force_static_prot)
1050 		goto set;
1051 
1052 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1053 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1054 
1055 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1056 		goto set;
1057 
1058 	/*
1059 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1060 	 * fixed trivially as that would require to rescan the newly
1061 	 * installed PMD mappings after returning from split_large_page()
1062 	 * so an eventual further split can allocate the necessary PTE
1063 	 * pages. Warn for now and revisit it in case this actually
1064 	 * happens.
1065 	 */
1066 	if (size == PAGE_SIZE)
1067 		ref_prot = prot;
1068 	else
1069 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1070 set:
1071 	set_pte(pte, pfn_pte(pfn, ref_prot));
1072 }
1073 
1074 static int
1075 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1076 		   struct page *base)
1077 {
1078 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1079 	pte_t *pbase = (pte_t *)page_address(base);
1080 	unsigned int i, level;
1081 	pgprot_t ref_prot;
1082 	bool nx, rw;
1083 	pte_t *tmp;
1084 
1085 	spin_lock(&pgd_lock);
1086 	/*
1087 	 * Check for races, another CPU might have split this page
1088 	 * up for us already:
1089 	 */
1090 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1091 	if (tmp != kpte) {
1092 		spin_unlock(&pgd_lock);
1093 		return 1;
1094 	}
1095 
1096 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1097 
1098 	switch (level) {
1099 	case PG_LEVEL_2M:
1100 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1101 		/*
1102 		 * Clear PSE (aka _PAGE_PAT) and move
1103 		 * PAT bit to correct position.
1104 		 */
1105 		ref_prot = pgprot_large_2_4k(ref_prot);
1106 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1107 		lpaddr = address & PMD_MASK;
1108 		lpinc = PAGE_SIZE;
1109 		break;
1110 
1111 	case PG_LEVEL_1G:
1112 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1113 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1114 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1115 		lpaddr = address & PUD_MASK;
1116 		lpinc = PMD_SIZE;
1117 		/*
1118 		 * Clear the PSE flags if the PRESENT flag is not set
1119 		 * otherwise pmd_present/pmd_huge will return true
1120 		 * even on a non present pmd.
1121 		 */
1122 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1123 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1124 		break;
1125 
1126 	default:
1127 		spin_unlock(&pgd_lock);
1128 		return 1;
1129 	}
1130 
1131 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1132 
1133 	/*
1134 	 * Get the target pfn from the original entry:
1135 	 */
1136 	pfn = ref_pfn;
1137 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1138 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1139 
1140 	if (virt_addr_valid(address)) {
1141 		unsigned long pfn = PFN_DOWN(__pa(address));
1142 
1143 		if (pfn_range_is_mapped(pfn, pfn + 1))
1144 			split_page_count(level);
1145 	}
1146 
1147 	/*
1148 	 * Install the new, split up pagetable.
1149 	 *
1150 	 * We use the standard kernel pagetable protections for the new
1151 	 * pagetable protections, the actual ptes set above control the
1152 	 * primary protection behavior:
1153 	 */
1154 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1155 
1156 	/*
1157 	 * Do a global flush tlb after splitting the large page
1158 	 * and before we do the actual change page attribute in the PTE.
1159 	 *
1160 	 * Without this, we violate the TLB application note, that says:
1161 	 * "The TLBs may contain both ordinary and large-page
1162 	 *  translations for a 4-KByte range of linear addresses. This
1163 	 *  may occur if software modifies the paging structures so that
1164 	 *  the page size used for the address range changes. If the two
1165 	 *  translations differ with respect to page frame or attributes
1166 	 *  (e.g., permissions), processor behavior is undefined and may
1167 	 *  be implementation-specific."
1168 	 *
1169 	 * We do this global tlb flush inside the cpa_lock, so that we
1170 	 * don't allow any other cpu, with stale tlb entries change the
1171 	 * page attribute in parallel, that also falls into the
1172 	 * just split large page entry.
1173 	 */
1174 	flush_tlb_all();
1175 	spin_unlock(&pgd_lock);
1176 
1177 	return 0;
1178 }
1179 
1180 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1181 			    unsigned long address)
1182 {
1183 	struct page *base;
1184 
1185 	if (!debug_pagealloc_enabled())
1186 		spin_unlock(&cpa_lock);
1187 	base = alloc_pages(GFP_KERNEL, 0);
1188 	if (!debug_pagealloc_enabled())
1189 		spin_lock(&cpa_lock);
1190 	if (!base)
1191 		return -ENOMEM;
1192 
1193 	if (__split_large_page(cpa, kpte, address, base))
1194 		__free_page(base);
1195 
1196 	return 0;
1197 }
1198 
1199 static bool try_to_free_pte_page(pte_t *pte)
1200 {
1201 	int i;
1202 
1203 	for (i = 0; i < PTRS_PER_PTE; i++)
1204 		if (!pte_none(pte[i]))
1205 			return false;
1206 
1207 	free_page((unsigned long)pte);
1208 	return true;
1209 }
1210 
1211 static bool try_to_free_pmd_page(pmd_t *pmd)
1212 {
1213 	int i;
1214 
1215 	for (i = 0; i < PTRS_PER_PMD; i++)
1216 		if (!pmd_none(pmd[i]))
1217 			return false;
1218 
1219 	free_page((unsigned long)pmd);
1220 	return true;
1221 }
1222 
1223 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1224 {
1225 	pte_t *pte = pte_offset_kernel(pmd, start);
1226 
1227 	while (start < end) {
1228 		set_pte(pte, __pte(0));
1229 
1230 		start += PAGE_SIZE;
1231 		pte++;
1232 	}
1233 
1234 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1235 		pmd_clear(pmd);
1236 		return true;
1237 	}
1238 	return false;
1239 }
1240 
1241 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1242 			      unsigned long start, unsigned long end)
1243 {
1244 	if (unmap_pte_range(pmd, start, end))
1245 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1246 			pud_clear(pud);
1247 }
1248 
1249 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1250 {
1251 	pmd_t *pmd = pmd_offset(pud, start);
1252 
1253 	/*
1254 	 * Not on a 2MB page boundary?
1255 	 */
1256 	if (start & (PMD_SIZE - 1)) {
1257 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1258 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1259 
1260 		__unmap_pmd_range(pud, pmd, start, pre_end);
1261 
1262 		start = pre_end;
1263 		pmd++;
1264 	}
1265 
1266 	/*
1267 	 * Try to unmap in 2M chunks.
1268 	 */
1269 	while (end - start >= PMD_SIZE) {
1270 		if (pmd_large(*pmd))
1271 			pmd_clear(pmd);
1272 		else
1273 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1274 
1275 		start += PMD_SIZE;
1276 		pmd++;
1277 	}
1278 
1279 	/*
1280 	 * 4K leftovers?
1281 	 */
1282 	if (start < end)
1283 		return __unmap_pmd_range(pud, pmd, start, end);
1284 
1285 	/*
1286 	 * Try again to free the PMD page if haven't succeeded above.
1287 	 */
1288 	if (!pud_none(*pud))
1289 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1290 			pud_clear(pud);
1291 }
1292 
1293 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1294 {
1295 	pud_t *pud = pud_offset(p4d, start);
1296 
1297 	/*
1298 	 * Not on a GB page boundary?
1299 	 */
1300 	if (start & (PUD_SIZE - 1)) {
1301 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1302 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1303 
1304 		unmap_pmd_range(pud, start, pre_end);
1305 
1306 		start = pre_end;
1307 		pud++;
1308 	}
1309 
1310 	/*
1311 	 * Try to unmap in 1G chunks?
1312 	 */
1313 	while (end - start >= PUD_SIZE) {
1314 
1315 		if (pud_leaf(*pud))
1316 			pud_clear(pud);
1317 		else
1318 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1319 
1320 		start += PUD_SIZE;
1321 		pud++;
1322 	}
1323 
1324 	/*
1325 	 * 2M leftovers?
1326 	 */
1327 	if (start < end)
1328 		unmap_pmd_range(pud, start, end);
1329 
1330 	/*
1331 	 * No need to try to free the PUD page because we'll free it in
1332 	 * populate_pgd's error path
1333 	 */
1334 }
1335 
1336 static int alloc_pte_page(pmd_t *pmd)
1337 {
1338 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1339 	if (!pte)
1340 		return -1;
1341 
1342 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1343 	return 0;
1344 }
1345 
1346 static int alloc_pmd_page(pud_t *pud)
1347 {
1348 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1349 	if (!pmd)
1350 		return -1;
1351 
1352 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1353 	return 0;
1354 }
1355 
1356 static void populate_pte(struct cpa_data *cpa,
1357 			 unsigned long start, unsigned long end,
1358 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1359 {
1360 	pte_t *pte;
1361 
1362 	pte = pte_offset_kernel(pmd, start);
1363 
1364 	pgprot = pgprot_clear_protnone_bits(pgprot);
1365 
1366 	while (num_pages-- && start < end) {
1367 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1368 
1369 		start	 += PAGE_SIZE;
1370 		cpa->pfn++;
1371 		pte++;
1372 	}
1373 }
1374 
1375 static long populate_pmd(struct cpa_data *cpa,
1376 			 unsigned long start, unsigned long end,
1377 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1378 {
1379 	long cur_pages = 0;
1380 	pmd_t *pmd;
1381 	pgprot_t pmd_pgprot;
1382 
1383 	/*
1384 	 * Not on a 2M boundary?
1385 	 */
1386 	if (start & (PMD_SIZE - 1)) {
1387 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1388 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1389 
1390 		pre_end   = min_t(unsigned long, pre_end, next_page);
1391 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1392 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1393 
1394 		/*
1395 		 * Need a PTE page?
1396 		 */
1397 		pmd = pmd_offset(pud, start);
1398 		if (pmd_none(*pmd))
1399 			if (alloc_pte_page(pmd))
1400 				return -1;
1401 
1402 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1403 
1404 		start = pre_end;
1405 	}
1406 
1407 	/*
1408 	 * We mapped them all?
1409 	 */
1410 	if (num_pages == cur_pages)
1411 		return cur_pages;
1412 
1413 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1414 
1415 	while (end - start >= PMD_SIZE) {
1416 
1417 		/*
1418 		 * We cannot use a 1G page so allocate a PMD page if needed.
1419 		 */
1420 		if (pud_none(*pud))
1421 			if (alloc_pmd_page(pud))
1422 				return -1;
1423 
1424 		pmd = pmd_offset(pud, start);
1425 
1426 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1427 					canon_pgprot(pmd_pgprot))));
1428 
1429 		start	  += PMD_SIZE;
1430 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1431 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1432 	}
1433 
1434 	/*
1435 	 * Map trailing 4K pages.
1436 	 */
1437 	if (start < end) {
1438 		pmd = pmd_offset(pud, start);
1439 		if (pmd_none(*pmd))
1440 			if (alloc_pte_page(pmd))
1441 				return -1;
1442 
1443 		populate_pte(cpa, start, end, num_pages - cur_pages,
1444 			     pmd, pgprot);
1445 	}
1446 	return num_pages;
1447 }
1448 
1449 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1450 			pgprot_t pgprot)
1451 {
1452 	pud_t *pud;
1453 	unsigned long end;
1454 	long cur_pages = 0;
1455 	pgprot_t pud_pgprot;
1456 
1457 	end = start + (cpa->numpages << PAGE_SHIFT);
1458 
1459 	/*
1460 	 * Not on a Gb page boundary? => map everything up to it with
1461 	 * smaller pages.
1462 	 */
1463 	if (start & (PUD_SIZE - 1)) {
1464 		unsigned long pre_end;
1465 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1466 
1467 		pre_end   = min_t(unsigned long, end, next_page);
1468 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1469 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1470 
1471 		pud = pud_offset(p4d, start);
1472 
1473 		/*
1474 		 * Need a PMD page?
1475 		 */
1476 		if (pud_none(*pud))
1477 			if (alloc_pmd_page(pud))
1478 				return -1;
1479 
1480 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1481 					 pud, pgprot);
1482 		if (cur_pages < 0)
1483 			return cur_pages;
1484 
1485 		start = pre_end;
1486 	}
1487 
1488 	/* We mapped them all? */
1489 	if (cpa->numpages == cur_pages)
1490 		return cur_pages;
1491 
1492 	pud = pud_offset(p4d, start);
1493 	pud_pgprot = pgprot_4k_2_large(pgprot);
1494 
1495 	/*
1496 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1497 	 */
1498 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1499 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1500 				   canon_pgprot(pud_pgprot))));
1501 
1502 		start	  += PUD_SIZE;
1503 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1504 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1505 		pud++;
1506 	}
1507 
1508 	/* Map trailing leftover */
1509 	if (start < end) {
1510 		long tmp;
1511 
1512 		pud = pud_offset(p4d, start);
1513 		if (pud_none(*pud))
1514 			if (alloc_pmd_page(pud))
1515 				return -1;
1516 
1517 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1518 				   pud, pgprot);
1519 		if (tmp < 0)
1520 			return cur_pages;
1521 
1522 		cur_pages += tmp;
1523 	}
1524 	return cur_pages;
1525 }
1526 
1527 /*
1528  * Restrictions for kernel page table do not necessarily apply when mapping in
1529  * an alternate PGD.
1530  */
1531 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1532 {
1533 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1534 	pud_t *pud = NULL;	/* shut up gcc */
1535 	p4d_t *p4d;
1536 	pgd_t *pgd_entry;
1537 	long ret;
1538 
1539 	pgd_entry = cpa->pgd + pgd_index(addr);
1540 
1541 	if (pgd_none(*pgd_entry)) {
1542 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1543 		if (!p4d)
1544 			return -1;
1545 
1546 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1547 	}
1548 
1549 	/*
1550 	 * Allocate a PUD page and hand it down for mapping.
1551 	 */
1552 	p4d = p4d_offset(pgd_entry, addr);
1553 	if (p4d_none(*p4d)) {
1554 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1555 		if (!pud)
1556 			return -1;
1557 
1558 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1559 	}
1560 
1561 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1562 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1563 
1564 	ret = populate_pud(cpa, addr, p4d, pgprot);
1565 	if (ret < 0) {
1566 		/*
1567 		 * Leave the PUD page in place in case some other CPU or thread
1568 		 * already found it, but remove any useless entries we just
1569 		 * added to it.
1570 		 */
1571 		unmap_pud_range(p4d, addr,
1572 				addr + (cpa->numpages << PAGE_SHIFT));
1573 		return ret;
1574 	}
1575 
1576 	cpa->numpages = ret;
1577 	return 0;
1578 }
1579 
1580 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1581 			       int primary)
1582 {
1583 	if (cpa->pgd) {
1584 		/*
1585 		 * Right now, we only execute this code path when mapping
1586 		 * the EFI virtual memory map regions, no other users
1587 		 * provide a ->pgd value. This may change in the future.
1588 		 */
1589 		return populate_pgd(cpa, vaddr);
1590 	}
1591 
1592 	/*
1593 	 * Ignore all non primary paths.
1594 	 */
1595 	if (!primary) {
1596 		cpa->numpages = 1;
1597 		return 0;
1598 	}
1599 
1600 	/*
1601 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1602 	 * to have holes.
1603 	 * Also set numpages to '1' indicating that we processed cpa req for
1604 	 * one virtual address page and its pfn. TBD: numpages can be set based
1605 	 * on the initial value and the level returned by lookup_address().
1606 	 */
1607 	if (within(vaddr, PAGE_OFFSET,
1608 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1609 		cpa->numpages = 1;
1610 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1611 		return 0;
1612 
1613 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1614 		/* Faults in the highmap are OK, so do not warn: */
1615 		return -EFAULT;
1616 	} else {
1617 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1618 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1619 			*cpa->vaddr);
1620 
1621 		return -EFAULT;
1622 	}
1623 }
1624 
1625 static int __change_page_attr(struct cpa_data *cpa, int primary)
1626 {
1627 	unsigned long address;
1628 	int do_split, err;
1629 	unsigned int level;
1630 	pte_t *kpte, old_pte;
1631 	bool nx, rw;
1632 
1633 	address = __cpa_addr(cpa, cpa->curpage);
1634 repeat:
1635 	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1636 	if (!kpte)
1637 		return __cpa_process_fault(cpa, address, primary);
1638 
1639 	old_pte = *kpte;
1640 	if (pte_none(old_pte))
1641 		return __cpa_process_fault(cpa, address, primary);
1642 
1643 	if (level == PG_LEVEL_4K) {
1644 		pte_t new_pte;
1645 		pgprot_t old_prot = pte_pgprot(old_pte);
1646 		pgprot_t new_prot = pte_pgprot(old_pte);
1647 		unsigned long pfn = pte_pfn(old_pte);
1648 
1649 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1650 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1651 
1652 		cpa_inc_4k_install();
1653 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1654 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1655 					      CPA_PROTECT);
1656 
1657 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1658 				      nx, rw);
1659 
1660 		new_prot = pgprot_clear_protnone_bits(new_prot);
1661 
1662 		/*
1663 		 * We need to keep the pfn from the existing PTE,
1664 		 * after all we're only going to change it's attributes
1665 		 * not the memory it points to
1666 		 */
1667 		new_pte = pfn_pte(pfn, new_prot);
1668 		cpa->pfn = pfn;
1669 		/*
1670 		 * Do we really change anything ?
1671 		 */
1672 		if (pte_val(old_pte) != pte_val(new_pte)) {
1673 			set_pte_atomic(kpte, new_pte);
1674 			cpa->flags |= CPA_FLUSHTLB;
1675 		}
1676 		cpa->numpages = 1;
1677 		return 0;
1678 	}
1679 
1680 	/*
1681 	 * Check, whether we can keep the large page intact
1682 	 * and just change the pte:
1683 	 */
1684 	do_split = should_split_large_page(kpte, address, cpa);
1685 	/*
1686 	 * When the range fits into the existing large page,
1687 	 * return. cp->numpages and cpa->tlbflush have been updated in
1688 	 * try_large_page:
1689 	 */
1690 	if (do_split <= 0)
1691 		return do_split;
1692 
1693 	/*
1694 	 * We have to split the large page:
1695 	 */
1696 	err = split_large_page(cpa, kpte, address);
1697 	if (!err)
1698 		goto repeat;
1699 
1700 	return err;
1701 }
1702 
1703 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1704 
1705 /*
1706  * Check the directmap and "high kernel map" 'aliases'.
1707  */
1708 static int cpa_process_alias(struct cpa_data *cpa)
1709 {
1710 	struct cpa_data alias_cpa;
1711 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1712 	unsigned long vaddr;
1713 	int ret;
1714 
1715 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1716 		return 0;
1717 
1718 	/*
1719 	 * No need to redo, when the primary call touched the direct
1720 	 * mapping already:
1721 	 */
1722 	vaddr = __cpa_addr(cpa, cpa->curpage);
1723 	if (!(within(vaddr, PAGE_OFFSET,
1724 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1725 
1726 		alias_cpa = *cpa;
1727 		alias_cpa.vaddr = &laddr;
1728 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1729 		alias_cpa.curpage = 0;
1730 
1731 		/* Directmap always has NX set, do not modify. */
1732 		if (__supported_pte_mask & _PAGE_NX) {
1733 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1734 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1735 		}
1736 
1737 		cpa->force_flush_all = 1;
1738 
1739 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1740 		if (ret)
1741 			return ret;
1742 	}
1743 
1744 #ifdef CONFIG_X86_64
1745 	/*
1746 	 * If the primary call didn't touch the high mapping already
1747 	 * and the physical address is inside the kernel map, we need
1748 	 * to touch the high mapped kernel as well:
1749 	 */
1750 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1751 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1752 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1753 					       __START_KERNEL_map - phys_base;
1754 		alias_cpa = *cpa;
1755 		alias_cpa.vaddr = &temp_cpa_vaddr;
1756 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1757 		alias_cpa.curpage = 0;
1758 
1759 		/*
1760 		 * [_text, _brk_end) also covers data, do not modify NX except
1761 		 * in cases where the highmap is the primary target.
1762 		 */
1763 		if (__supported_pte_mask & _PAGE_NX) {
1764 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1765 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1766 		}
1767 
1768 		cpa->force_flush_all = 1;
1769 		/*
1770 		 * The high mapping range is imprecise, so ignore the
1771 		 * return value.
1772 		 */
1773 		__change_page_attr_set_clr(&alias_cpa, 0);
1774 	}
1775 #endif
1776 
1777 	return 0;
1778 }
1779 
1780 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1781 {
1782 	unsigned long numpages = cpa->numpages;
1783 	unsigned long rempages = numpages;
1784 	int ret = 0;
1785 
1786 	/*
1787 	 * No changes, easy!
1788 	 */
1789 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1790 	    !cpa->force_split)
1791 		return ret;
1792 
1793 	while (rempages) {
1794 		/*
1795 		 * Store the remaining nr of pages for the large page
1796 		 * preservation check.
1797 		 */
1798 		cpa->numpages = rempages;
1799 		/* for array changes, we can't use large page */
1800 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1801 			cpa->numpages = 1;
1802 
1803 		if (!debug_pagealloc_enabled())
1804 			spin_lock(&cpa_lock);
1805 		ret = __change_page_attr(cpa, primary);
1806 		if (!debug_pagealloc_enabled())
1807 			spin_unlock(&cpa_lock);
1808 		if (ret)
1809 			goto out;
1810 
1811 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1812 			ret = cpa_process_alias(cpa);
1813 			if (ret)
1814 				goto out;
1815 		}
1816 
1817 		/*
1818 		 * Adjust the number of pages with the result of the
1819 		 * CPA operation. Either a large page has been
1820 		 * preserved or a single page update happened.
1821 		 */
1822 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1823 		rempages -= cpa->numpages;
1824 		cpa->curpage += cpa->numpages;
1825 	}
1826 
1827 out:
1828 	/* Restore the original numpages */
1829 	cpa->numpages = numpages;
1830 	return ret;
1831 }
1832 
1833 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1834 				    pgprot_t mask_set, pgprot_t mask_clr,
1835 				    int force_split, int in_flag,
1836 				    struct page **pages)
1837 {
1838 	struct cpa_data cpa;
1839 	int ret, cache;
1840 
1841 	memset(&cpa, 0, sizeof(cpa));
1842 
1843 	/*
1844 	 * Check, if we are requested to set a not supported
1845 	 * feature.  Clearing non-supported features is OK.
1846 	 */
1847 	mask_set = canon_pgprot(mask_set);
1848 
1849 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1850 		return 0;
1851 
1852 	/* Ensure we are PAGE_SIZE aligned */
1853 	if (in_flag & CPA_ARRAY) {
1854 		int i;
1855 		for (i = 0; i < numpages; i++) {
1856 			if (addr[i] & ~PAGE_MASK) {
1857 				addr[i] &= PAGE_MASK;
1858 				WARN_ON_ONCE(1);
1859 			}
1860 		}
1861 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1862 		/*
1863 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1864 		 * No need to check in that case
1865 		 */
1866 		if (*addr & ~PAGE_MASK) {
1867 			*addr &= PAGE_MASK;
1868 			/*
1869 			 * People should not be passing in unaligned addresses:
1870 			 */
1871 			WARN_ON_ONCE(1);
1872 		}
1873 	}
1874 
1875 	/* Must avoid aliasing mappings in the highmem code */
1876 	kmap_flush_unused();
1877 
1878 	vm_unmap_aliases();
1879 
1880 	cpa.vaddr = addr;
1881 	cpa.pages = pages;
1882 	cpa.numpages = numpages;
1883 	cpa.mask_set = mask_set;
1884 	cpa.mask_clr = mask_clr;
1885 	cpa.flags = in_flag;
1886 	cpa.curpage = 0;
1887 	cpa.force_split = force_split;
1888 
1889 	ret = __change_page_attr_set_clr(&cpa, 1);
1890 
1891 	/*
1892 	 * Check whether we really changed something:
1893 	 */
1894 	if (!(cpa.flags & CPA_FLUSHTLB))
1895 		goto out;
1896 
1897 	/*
1898 	 * No need to flush, when we did not set any of the caching
1899 	 * attributes:
1900 	 */
1901 	cache = !!pgprot2cachemode(mask_set);
1902 
1903 	/*
1904 	 * On error; flush everything to be sure.
1905 	 */
1906 	if (ret) {
1907 		cpa_flush_all(cache);
1908 		goto out;
1909 	}
1910 
1911 	cpa_flush(&cpa, cache);
1912 out:
1913 	return ret;
1914 }
1915 
1916 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1917 				       pgprot_t mask, int array)
1918 {
1919 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1920 		(array ? CPA_ARRAY : 0), NULL);
1921 }
1922 
1923 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1924 					 pgprot_t mask, int array)
1925 {
1926 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1927 		(array ? CPA_ARRAY : 0), NULL);
1928 }
1929 
1930 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1931 				       pgprot_t mask)
1932 {
1933 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1934 		CPA_PAGES_ARRAY, pages);
1935 }
1936 
1937 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1938 					 pgprot_t mask)
1939 {
1940 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1941 		CPA_PAGES_ARRAY, pages);
1942 }
1943 
1944 /*
1945  * __set_memory_prot is an internal helper for callers that have been passed
1946  * a pgprot_t value from upper layers and a reservation has already been taken.
1947  * If you want to set the pgprot to a specific page protocol, use the
1948  * set_memory_xx() functions.
1949  */
1950 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1951 {
1952 	return change_page_attr_set_clr(&addr, numpages, prot,
1953 					__pgprot(~pgprot_val(prot)), 0, 0,
1954 					NULL);
1955 }
1956 
1957 int _set_memory_uc(unsigned long addr, int numpages)
1958 {
1959 	/*
1960 	 * for now UC MINUS. see comments in ioremap()
1961 	 * If you really need strong UC use ioremap_uc(), but note
1962 	 * that you cannot override IO areas with set_memory_*() as
1963 	 * these helpers cannot work with IO memory.
1964 	 */
1965 	return change_page_attr_set(&addr, numpages,
1966 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1967 				    0);
1968 }
1969 
1970 int set_memory_uc(unsigned long addr, int numpages)
1971 {
1972 	int ret;
1973 
1974 	/*
1975 	 * for now UC MINUS. see comments in ioremap()
1976 	 */
1977 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1978 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1979 	if (ret)
1980 		goto out_err;
1981 
1982 	ret = _set_memory_uc(addr, numpages);
1983 	if (ret)
1984 		goto out_free;
1985 
1986 	return 0;
1987 
1988 out_free:
1989 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1990 out_err:
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL(set_memory_uc);
1994 
1995 int _set_memory_wc(unsigned long addr, int numpages)
1996 {
1997 	int ret;
1998 
1999 	ret = change_page_attr_set(&addr, numpages,
2000 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2001 				   0);
2002 	if (!ret) {
2003 		ret = change_page_attr_set_clr(&addr, numpages,
2004 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2005 					       __pgprot(_PAGE_CACHE_MASK),
2006 					       0, 0, NULL);
2007 	}
2008 	return ret;
2009 }
2010 
2011 int set_memory_wc(unsigned long addr, int numpages)
2012 {
2013 	int ret;
2014 
2015 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2016 		_PAGE_CACHE_MODE_WC, NULL);
2017 	if (ret)
2018 		return ret;
2019 
2020 	ret = _set_memory_wc(addr, numpages);
2021 	if (ret)
2022 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL(set_memory_wc);
2027 
2028 int _set_memory_wt(unsigned long addr, int numpages)
2029 {
2030 	return change_page_attr_set(&addr, numpages,
2031 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2032 }
2033 
2034 int _set_memory_wb(unsigned long addr, int numpages)
2035 {
2036 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2037 	return change_page_attr_clear(&addr, numpages,
2038 				      __pgprot(_PAGE_CACHE_MASK), 0);
2039 }
2040 
2041 int set_memory_wb(unsigned long addr, int numpages)
2042 {
2043 	int ret;
2044 
2045 	ret = _set_memory_wb(addr, numpages);
2046 	if (ret)
2047 		return ret;
2048 
2049 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2050 	return 0;
2051 }
2052 EXPORT_SYMBOL(set_memory_wb);
2053 
2054 /* Prevent speculative access to a page by marking it not-present */
2055 #ifdef CONFIG_X86_64
2056 int set_mce_nospec(unsigned long pfn)
2057 {
2058 	unsigned long decoy_addr;
2059 	int rc;
2060 
2061 	/* SGX pages are not in the 1:1 map */
2062 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2063 		return 0;
2064 	/*
2065 	 * We would like to just call:
2066 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2067 	 * but doing that would radically increase the odds of a
2068 	 * speculative access to the poison page because we'd have
2069 	 * the virtual address of the kernel 1:1 mapping sitting
2070 	 * around in registers.
2071 	 * Instead we get tricky.  We create a non-canonical address
2072 	 * that looks just like the one we want, but has bit 63 flipped.
2073 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2074 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2075 	 */
2076 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2077 
2078 	rc = set_memory_np(decoy_addr, 1);
2079 	if (rc)
2080 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2081 	return rc;
2082 }
2083 
2084 static int set_memory_p(unsigned long *addr, int numpages)
2085 {
2086 	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2087 }
2088 
2089 /* Restore full speculative operation to the pfn. */
2090 int clear_mce_nospec(unsigned long pfn)
2091 {
2092 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2093 
2094 	return set_memory_p(&addr, 1);
2095 }
2096 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2097 #endif /* CONFIG_X86_64 */
2098 
2099 int set_memory_x(unsigned long addr, int numpages)
2100 {
2101 	if (!(__supported_pte_mask & _PAGE_NX))
2102 		return 0;
2103 
2104 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2105 }
2106 
2107 int set_memory_nx(unsigned long addr, int numpages)
2108 {
2109 	if (!(__supported_pte_mask & _PAGE_NX))
2110 		return 0;
2111 
2112 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2113 }
2114 
2115 int set_memory_ro(unsigned long addr, int numpages)
2116 {
2117 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2118 }
2119 
2120 int set_memory_rox(unsigned long addr, int numpages)
2121 {
2122 	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2123 
2124 	if (__supported_pte_mask & _PAGE_NX)
2125 		clr.pgprot |= _PAGE_NX;
2126 
2127 	return change_page_attr_clear(&addr, numpages, clr, 0);
2128 }
2129 
2130 int set_memory_rw(unsigned long addr, int numpages)
2131 {
2132 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2133 }
2134 
2135 int set_memory_np(unsigned long addr, int numpages)
2136 {
2137 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2138 }
2139 
2140 int set_memory_np_noalias(unsigned long addr, int numpages)
2141 {
2142 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2143 					__pgprot(_PAGE_PRESENT), 0,
2144 					CPA_NO_CHECK_ALIAS, NULL);
2145 }
2146 
2147 int set_memory_4k(unsigned long addr, int numpages)
2148 {
2149 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2150 					__pgprot(0), 1, 0, NULL);
2151 }
2152 
2153 int set_memory_nonglobal(unsigned long addr, int numpages)
2154 {
2155 	return change_page_attr_clear(&addr, numpages,
2156 				      __pgprot(_PAGE_GLOBAL), 0);
2157 }
2158 
2159 int set_memory_global(unsigned long addr, int numpages)
2160 {
2161 	return change_page_attr_set(&addr, numpages,
2162 				    __pgprot(_PAGE_GLOBAL), 0);
2163 }
2164 
2165 /*
2166  * __set_memory_enc_pgtable() is used for the hypervisors that get
2167  * informed about "encryption" status via page tables.
2168  */
2169 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2170 {
2171 	pgprot_t empty = __pgprot(0);
2172 	struct cpa_data cpa;
2173 	int ret;
2174 
2175 	/* Should not be working on unaligned addresses */
2176 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2177 		addr &= PAGE_MASK;
2178 
2179 	memset(&cpa, 0, sizeof(cpa));
2180 	cpa.vaddr = &addr;
2181 	cpa.numpages = numpages;
2182 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2183 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2184 	cpa.pgd = init_mm.pgd;
2185 
2186 	/* Must avoid aliasing mappings in the highmem code */
2187 	kmap_flush_unused();
2188 	vm_unmap_aliases();
2189 
2190 	/* Flush the caches as needed before changing the encryption attribute. */
2191 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2192 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2193 
2194 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2195 	if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2196 		return -EIO;
2197 
2198 	ret = __change_page_attr_set_clr(&cpa, 1);
2199 
2200 	/*
2201 	 * After changing the encryption attribute, we need to flush TLBs again
2202 	 * in case any speculative TLB caching occurred (but no need to flush
2203 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2204 	 * flushing gets optimized in the cpa_flush() path use the same logic
2205 	 * as above.
2206 	 */
2207 	cpa_flush(&cpa, 0);
2208 
2209 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2210 	if (!ret) {
2211 		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2212 			ret = -EIO;
2213 	}
2214 
2215 	return ret;
2216 }
2217 
2218 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2219 {
2220 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2221 		return __set_memory_enc_pgtable(addr, numpages, enc);
2222 
2223 	return 0;
2224 }
2225 
2226 int set_memory_encrypted(unsigned long addr, int numpages)
2227 {
2228 	return __set_memory_enc_dec(addr, numpages, true);
2229 }
2230 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2231 
2232 int set_memory_decrypted(unsigned long addr, int numpages)
2233 {
2234 	return __set_memory_enc_dec(addr, numpages, false);
2235 }
2236 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2237 
2238 int set_pages_uc(struct page *page, int numpages)
2239 {
2240 	unsigned long addr = (unsigned long)page_address(page);
2241 
2242 	return set_memory_uc(addr, numpages);
2243 }
2244 EXPORT_SYMBOL(set_pages_uc);
2245 
2246 static int _set_pages_array(struct page **pages, int numpages,
2247 		enum page_cache_mode new_type)
2248 {
2249 	unsigned long start;
2250 	unsigned long end;
2251 	enum page_cache_mode set_type;
2252 	int i;
2253 	int free_idx;
2254 	int ret;
2255 
2256 	for (i = 0; i < numpages; i++) {
2257 		if (PageHighMem(pages[i]))
2258 			continue;
2259 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2260 		end = start + PAGE_SIZE;
2261 		if (memtype_reserve(start, end, new_type, NULL))
2262 			goto err_out;
2263 	}
2264 
2265 	/* If WC, set to UC- first and then WC */
2266 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2267 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2268 
2269 	ret = cpa_set_pages_array(pages, numpages,
2270 				  cachemode2pgprot(set_type));
2271 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2272 		ret = change_page_attr_set_clr(NULL, numpages,
2273 					       cachemode2pgprot(
2274 						_PAGE_CACHE_MODE_WC),
2275 					       __pgprot(_PAGE_CACHE_MASK),
2276 					       0, CPA_PAGES_ARRAY, pages);
2277 	if (ret)
2278 		goto err_out;
2279 	return 0; /* Success */
2280 err_out:
2281 	free_idx = i;
2282 	for (i = 0; i < free_idx; i++) {
2283 		if (PageHighMem(pages[i]))
2284 			continue;
2285 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2286 		end = start + PAGE_SIZE;
2287 		memtype_free(start, end);
2288 	}
2289 	return -EINVAL;
2290 }
2291 
2292 int set_pages_array_uc(struct page **pages, int numpages)
2293 {
2294 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2295 }
2296 EXPORT_SYMBOL(set_pages_array_uc);
2297 
2298 int set_pages_array_wc(struct page **pages, int numpages)
2299 {
2300 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2301 }
2302 EXPORT_SYMBOL(set_pages_array_wc);
2303 
2304 int set_pages_wb(struct page *page, int numpages)
2305 {
2306 	unsigned long addr = (unsigned long)page_address(page);
2307 
2308 	return set_memory_wb(addr, numpages);
2309 }
2310 EXPORT_SYMBOL(set_pages_wb);
2311 
2312 int set_pages_array_wb(struct page **pages, int numpages)
2313 {
2314 	int retval;
2315 	unsigned long start;
2316 	unsigned long end;
2317 	int i;
2318 
2319 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2320 	retval = cpa_clear_pages_array(pages, numpages,
2321 			__pgprot(_PAGE_CACHE_MASK));
2322 	if (retval)
2323 		return retval;
2324 
2325 	for (i = 0; i < numpages; i++) {
2326 		if (PageHighMem(pages[i]))
2327 			continue;
2328 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2329 		end = start + PAGE_SIZE;
2330 		memtype_free(start, end);
2331 	}
2332 
2333 	return 0;
2334 }
2335 EXPORT_SYMBOL(set_pages_array_wb);
2336 
2337 int set_pages_ro(struct page *page, int numpages)
2338 {
2339 	unsigned long addr = (unsigned long)page_address(page);
2340 
2341 	return set_memory_ro(addr, numpages);
2342 }
2343 
2344 int set_pages_rw(struct page *page, int numpages)
2345 {
2346 	unsigned long addr = (unsigned long)page_address(page);
2347 
2348 	return set_memory_rw(addr, numpages);
2349 }
2350 
2351 static int __set_pages_p(struct page *page, int numpages)
2352 {
2353 	unsigned long tempaddr = (unsigned long) page_address(page);
2354 	struct cpa_data cpa = { .vaddr = &tempaddr,
2355 				.pgd = NULL,
2356 				.numpages = numpages,
2357 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2358 				.mask_clr = __pgprot(0),
2359 				.flags = CPA_NO_CHECK_ALIAS };
2360 
2361 	/*
2362 	 * No alias checking needed for setting present flag. otherwise,
2363 	 * we may need to break large pages for 64-bit kernel text
2364 	 * mappings (this adds to complexity if we want to do this from
2365 	 * atomic context especially). Let's keep it simple!
2366 	 */
2367 	return __change_page_attr_set_clr(&cpa, 1);
2368 }
2369 
2370 static int __set_pages_np(struct page *page, int numpages)
2371 {
2372 	unsigned long tempaddr = (unsigned long) page_address(page);
2373 	struct cpa_data cpa = { .vaddr = &tempaddr,
2374 				.pgd = NULL,
2375 				.numpages = numpages,
2376 				.mask_set = __pgprot(0),
2377 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2378 				.flags = CPA_NO_CHECK_ALIAS };
2379 
2380 	/*
2381 	 * No alias checking needed for setting not present flag. otherwise,
2382 	 * we may need to break large pages for 64-bit kernel text
2383 	 * mappings (this adds to complexity if we want to do this from
2384 	 * atomic context especially). Let's keep it simple!
2385 	 */
2386 	return __change_page_attr_set_clr(&cpa, 1);
2387 }
2388 
2389 int set_direct_map_invalid_noflush(struct page *page)
2390 {
2391 	return __set_pages_np(page, 1);
2392 }
2393 
2394 int set_direct_map_default_noflush(struct page *page)
2395 {
2396 	return __set_pages_p(page, 1);
2397 }
2398 
2399 #ifdef CONFIG_DEBUG_PAGEALLOC
2400 void __kernel_map_pages(struct page *page, int numpages, int enable)
2401 {
2402 	if (PageHighMem(page))
2403 		return;
2404 	if (!enable) {
2405 		debug_check_no_locks_freed(page_address(page),
2406 					   numpages * PAGE_SIZE);
2407 	}
2408 
2409 	/*
2410 	 * The return value is ignored as the calls cannot fail.
2411 	 * Large pages for identity mappings are not used at boot time
2412 	 * and hence no memory allocations during large page split.
2413 	 */
2414 	if (enable)
2415 		__set_pages_p(page, numpages);
2416 	else
2417 		__set_pages_np(page, numpages);
2418 
2419 	/*
2420 	 * We should perform an IPI and flush all tlbs,
2421 	 * but that can deadlock->flush only current cpu.
2422 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2423 	 * CR3 reload in __native_flush_tlb().
2424 	 */
2425 	preempt_disable();
2426 	__flush_tlb_all();
2427 	preempt_enable();
2428 
2429 	arch_flush_lazy_mmu_mode();
2430 }
2431 #endif /* CONFIG_DEBUG_PAGEALLOC */
2432 
2433 bool kernel_page_present(struct page *page)
2434 {
2435 	unsigned int level;
2436 	pte_t *pte;
2437 
2438 	if (PageHighMem(page))
2439 		return false;
2440 
2441 	pte = lookup_address((unsigned long)page_address(page), &level);
2442 	return (pte_val(*pte) & _PAGE_PRESENT);
2443 }
2444 
2445 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2446 				   unsigned numpages, unsigned long page_flags)
2447 {
2448 	int retval = -EINVAL;
2449 
2450 	struct cpa_data cpa = {
2451 		.vaddr = &address,
2452 		.pfn = pfn,
2453 		.pgd = pgd,
2454 		.numpages = numpages,
2455 		.mask_set = __pgprot(0),
2456 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2457 		.flags = CPA_NO_CHECK_ALIAS,
2458 	};
2459 
2460 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2461 
2462 	if (!(__supported_pte_mask & _PAGE_NX))
2463 		goto out;
2464 
2465 	if (!(page_flags & _PAGE_ENC))
2466 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2467 
2468 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2469 
2470 	retval = __change_page_attr_set_clr(&cpa, 1);
2471 	__flush_tlb_all();
2472 
2473 out:
2474 	return retval;
2475 }
2476 
2477 /*
2478  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2479  * function shouldn't be used in an SMP environment. Presently, it's used only
2480  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2481  */
2482 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2483 				     unsigned long numpages)
2484 {
2485 	int retval;
2486 
2487 	/*
2488 	 * The typical sequence for unmapping is to find a pte through
2489 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2490 	 * the address is already mapped) and change it's protections. As pfn is
2491 	 * the *target* of a mapping, it's not useful while unmapping.
2492 	 */
2493 	struct cpa_data cpa = {
2494 		.vaddr		= &address,
2495 		.pfn		= 0,
2496 		.pgd		= pgd,
2497 		.numpages	= numpages,
2498 		.mask_set	= __pgprot(0),
2499 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2500 		.flags		= CPA_NO_CHECK_ALIAS,
2501 	};
2502 
2503 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2504 
2505 	retval = __change_page_attr_set_clr(&cpa, 1);
2506 	__flush_tlb_all();
2507 
2508 	return retval;
2509 }
2510 
2511 /*
2512  * The testcases use internal knowledge of the implementation that shouldn't
2513  * be exposed to the rest of the kernel. Include these directly here.
2514  */
2515 #ifdef CONFIG_CPA_DEBUG
2516 #include "cpa-test.c"
2517 #endif
2518