1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 #include <linux/libnvdimm.h> 19 20 #include <asm/e820/api.h> 21 #include <asm/processor.h> 22 #include <asm/tlbflush.h> 23 #include <asm/sections.h> 24 #include <asm/setup.h> 25 #include <linux/uaccess.h> 26 #include <asm/pgalloc.h> 27 #include <asm/proto.h> 28 #include <asm/memtype.h> 29 #include <asm/set_memory.h> 30 31 #include "../mm_internal.h" 32 33 /* 34 * The current flushing context - we pass it instead of 5 arguments: 35 */ 36 struct cpa_data { 37 unsigned long *vaddr; 38 pgd_t *pgd; 39 pgprot_t mask_set; 40 pgprot_t mask_clr; 41 unsigned long numpages; 42 unsigned long curpage; 43 unsigned long pfn; 44 unsigned int flags; 45 unsigned int force_split : 1, 46 force_static_prot : 1; 47 struct page **pages; 48 }; 49 50 enum cpa_warn { 51 CPA_CONFLICT, 52 CPA_PROTECT, 53 CPA_DETECT, 54 }; 55 56 static const int cpa_warn_level = CPA_PROTECT; 57 58 /* 59 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 60 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 61 * entries change the page attribute in parallel to some other cpu 62 * splitting a large page entry along with changing the attribute. 63 */ 64 static DEFINE_SPINLOCK(cpa_lock); 65 66 #define CPA_FLUSHTLB 1 67 #define CPA_ARRAY 2 68 #define CPA_PAGES_ARRAY 4 69 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 70 71 #ifdef CONFIG_PROC_FS 72 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 73 74 void update_page_count(int level, unsigned long pages) 75 { 76 /* Protect against CPA */ 77 spin_lock(&pgd_lock); 78 direct_pages_count[level] += pages; 79 spin_unlock(&pgd_lock); 80 } 81 82 static void split_page_count(int level) 83 { 84 if (direct_pages_count[level] == 0) 85 return; 86 87 direct_pages_count[level]--; 88 direct_pages_count[level - 1] += PTRS_PER_PTE; 89 } 90 91 void arch_report_meminfo(struct seq_file *m) 92 { 93 seq_printf(m, "DirectMap4k: %8lu kB\n", 94 direct_pages_count[PG_LEVEL_4K] << 2); 95 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 96 seq_printf(m, "DirectMap2M: %8lu kB\n", 97 direct_pages_count[PG_LEVEL_2M] << 11); 98 #else 99 seq_printf(m, "DirectMap4M: %8lu kB\n", 100 direct_pages_count[PG_LEVEL_2M] << 12); 101 #endif 102 if (direct_gbpages) 103 seq_printf(m, "DirectMap1G: %8lu kB\n", 104 direct_pages_count[PG_LEVEL_1G] << 20); 105 } 106 #else 107 static inline void split_page_count(int level) { } 108 #endif 109 110 #ifdef CONFIG_X86_CPA_STATISTICS 111 112 static unsigned long cpa_1g_checked; 113 static unsigned long cpa_1g_sameprot; 114 static unsigned long cpa_1g_preserved; 115 static unsigned long cpa_2m_checked; 116 static unsigned long cpa_2m_sameprot; 117 static unsigned long cpa_2m_preserved; 118 static unsigned long cpa_4k_install; 119 120 static inline void cpa_inc_1g_checked(void) 121 { 122 cpa_1g_checked++; 123 } 124 125 static inline void cpa_inc_2m_checked(void) 126 { 127 cpa_2m_checked++; 128 } 129 130 static inline void cpa_inc_4k_install(void) 131 { 132 cpa_4k_install++; 133 } 134 135 static inline void cpa_inc_lp_sameprot(int level) 136 { 137 if (level == PG_LEVEL_1G) 138 cpa_1g_sameprot++; 139 else 140 cpa_2m_sameprot++; 141 } 142 143 static inline void cpa_inc_lp_preserved(int level) 144 { 145 if (level == PG_LEVEL_1G) 146 cpa_1g_preserved++; 147 else 148 cpa_2m_preserved++; 149 } 150 151 static int cpastats_show(struct seq_file *m, void *p) 152 { 153 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 154 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 155 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 156 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 157 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 158 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 159 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 160 return 0; 161 } 162 163 static int cpastats_open(struct inode *inode, struct file *file) 164 { 165 return single_open(file, cpastats_show, NULL); 166 } 167 168 static const struct file_operations cpastats_fops = { 169 .open = cpastats_open, 170 .read = seq_read, 171 .llseek = seq_lseek, 172 .release = single_release, 173 }; 174 175 static int __init cpa_stats_init(void) 176 { 177 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 178 &cpastats_fops); 179 return 0; 180 } 181 late_initcall(cpa_stats_init); 182 #else 183 static inline void cpa_inc_1g_checked(void) { } 184 static inline void cpa_inc_2m_checked(void) { } 185 static inline void cpa_inc_4k_install(void) { } 186 static inline void cpa_inc_lp_sameprot(int level) { } 187 static inline void cpa_inc_lp_preserved(int level) { } 188 #endif 189 190 191 static inline int 192 within(unsigned long addr, unsigned long start, unsigned long end) 193 { 194 return addr >= start && addr < end; 195 } 196 197 static inline int 198 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 199 { 200 return addr >= start && addr <= end; 201 } 202 203 #ifdef CONFIG_X86_64 204 205 static inline unsigned long highmap_start_pfn(void) 206 { 207 return __pa_symbol(_text) >> PAGE_SHIFT; 208 } 209 210 static inline unsigned long highmap_end_pfn(void) 211 { 212 /* Do not reference physical address outside the kernel. */ 213 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 214 } 215 216 static bool __cpa_pfn_in_highmap(unsigned long pfn) 217 { 218 /* 219 * Kernel text has an alias mapping at a high address, known 220 * here as "highmap". 221 */ 222 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 223 } 224 225 #else 226 227 static bool __cpa_pfn_in_highmap(unsigned long pfn) 228 { 229 /* There is no highmap on 32-bit */ 230 return false; 231 } 232 233 #endif 234 235 /* 236 * See set_mce_nospec(). 237 * 238 * Machine check recovery code needs to change cache mode of poisoned pages to 239 * UC to avoid speculative access logging another error. But passing the 240 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 241 * speculative access. So we cheat and flip the top bit of the address. This 242 * works fine for the code that updates the page tables. But at the end of the 243 * process we need to flush the TLB and cache and the non-canonical address 244 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 245 * 246 * But in the common case we already have a canonical address. This code 247 * will fix the top bit if needed and is a no-op otherwise. 248 */ 249 static inline unsigned long fix_addr(unsigned long addr) 250 { 251 #ifdef CONFIG_X86_64 252 return (long)(addr << 1) >> 1; 253 #else 254 return addr; 255 #endif 256 } 257 258 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 259 { 260 if (cpa->flags & CPA_PAGES_ARRAY) { 261 struct page *page = cpa->pages[idx]; 262 263 if (unlikely(PageHighMem(page))) 264 return 0; 265 266 return (unsigned long)page_address(page); 267 } 268 269 if (cpa->flags & CPA_ARRAY) 270 return cpa->vaddr[idx]; 271 272 return *cpa->vaddr + idx * PAGE_SIZE; 273 } 274 275 /* 276 * Flushing functions 277 */ 278 279 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 280 { 281 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 282 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 283 void *vend = vaddr + size; 284 285 if (p >= vend) 286 return; 287 288 for (; p < vend; p += clflush_size) 289 clflushopt(p); 290 } 291 292 /** 293 * clflush_cache_range - flush a cache range with clflush 294 * @vaddr: virtual start address 295 * @size: number of bytes to flush 296 * 297 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 298 * SFENCE to avoid ordering issues. 299 */ 300 void clflush_cache_range(void *vaddr, unsigned int size) 301 { 302 mb(); 303 clflush_cache_range_opt(vaddr, size); 304 mb(); 305 } 306 EXPORT_SYMBOL_GPL(clflush_cache_range); 307 308 #ifdef CONFIG_ARCH_HAS_PMEM_API 309 void arch_invalidate_pmem(void *addr, size_t size) 310 { 311 clflush_cache_range(addr, size); 312 } 313 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 314 #endif 315 316 static void __cpa_flush_all(void *arg) 317 { 318 unsigned long cache = (unsigned long)arg; 319 320 /* 321 * Flush all to work around Errata in early athlons regarding 322 * large page flushing. 323 */ 324 __flush_tlb_all(); 325 326 if (cache && boot_cpu_data.x86 >= 4) 327 wbinvd(); 328 } 329 330 static void cpa_flush_all(unsigned long cache) 331 { 332 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 333 334 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 335 } 336 337 static void __cpa_flush_tlb(void *data) 338 { 339 struct cpa_data *cpa = data; 340 unsigned int i; 341 342 for (i = 0; i < cpa->numpages; i++) 343 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 344 } 345 346 static void cpa_flush(struct cpa_data *data, int cache) 347 { 348 struct cpa_data *cpa = data; 349 unsigned int i; 350 351 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 352 353 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 354 cpa_flush_all(cache); 355 return; 356 } 357 358 if (cpa->numpages <= tlb_single_page_flush_ceiling) 359 on_each_cpu(__cpa_flush_tlb, cpa, 1); 360 else 361 flush_tlb_all(); 362 363 if (!cache) 364 return; 365 366 mb(); 367 for (i = 0; i < cpa->numpages; i++) { 368 unsigned long addr = __cpa_addr(cpa, i); 369 unsigned int level; 370 371 pte_t *pte = lookup_address(addr, &level); 372 373 /* 374 * Only flush present addresses: 375 */ 376 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 377 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 378 } 379 mb(); 380 } 381 382 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 383 unsigned long r2_start, unsigned long r2_end) 384 { 385 return (r1_start <= r2_end && r1_end >= r2_start) || 386 (r2_start <= r1_end && r2_end >= r1_start); 387 } 388 389 #ifdef CONFIG_PCI_BIOS 390 /* 391 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 392 * based config access (CONFIG_PCI_GOBIOS) support. 393 */ 394 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 395 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 396 397 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 398 { 399 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 400 return _PAGE_NX; 401 return 0; 402 } 403 #else 404 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 405 { 406 return 0; 407 } 408 #endif 409 410 /* 411 * The .rodata section needs to be read-only. Using the pfn catches all 412 * aliases. This also includes __ro_after_init, so do not enforce until 413 * kernel_set_to_readonly is true. 414 */ 415 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 416 { 417 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 418 419 /* 420 * Note: __end_rodata is at page aligned and not inclusive, so 421 * subtract 1 to get the last enforced PFN in the rodata area. 422 */ 423 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 424 425 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 426 return _PAGE_RW; 427 return 0; 428 } 429 430 /* 431 * Protect kernel text against becoming non executable by forbidding 432 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 433 * out of which the kernel actually executes. Do not protect the low 434 * mapping. 435 * 436 * This does not cover __inittext since that is gone after boot. 437 */ 438 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 439 { 440 unsigned long t_end = (unsigned long)_etext - 1; 441 unsigned long t_start = (unsigned long)_text; 442 443 if (overlaps(start, end, t_start, t_end)) 444 return _PAGE_NX; 445 return 0; 446 } 447 448 #if defined(CONFIG_X86_64) 449 /* 450 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 451 * kernel text mappings for the large page aligned text, rodata sections 452 * will be always read-only. For the kernel identity mappings covering the 453 * holes caused by this alignment can be anything that user asks. 454 * 455 * This will preserve the large page mappings for kernel text/data at no 456 * extra cost. 457 */ 458 static pgprotval_t protect_kernel_text_ro(unsigned long start, 459 unsigned long end) 460 { 461 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 462 unsigned long t_start = (unsigned long)_text; 463 unsigned int level; 464 465 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 466 return 0; 467 /* 468 * Don't enforce the !RW mapping for the kernel text mapping, if 469 * the current mapping is already using small page mapping. No 470 * need to work hard to preserve large page mappings in this case. 471 * 472 * This also fixes the Linux Xen paravirt guest boot failure caused 473 * by unexpected read-only mappings for kernel identity 474 * mappings. In this paravirt guest case, the kernel text mapping 475 * and the kernel identity mapping share the same page-table pages, 476 * so the protections for kernel text and identity mappings have to 477 * be the same. 478 */ 479 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 480 return _PAGE_RW; 481 return 0; 482 } 483 #else 484 static pgprotval_t protect_kernel_text_ro(unsigned long start, 485 unsigned long end) 486 { 487 return 0; 488 } 489 #endif 490 491 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 492 { 493 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 494 } 495 496 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 497 unsigned long start, unsigned long end, 498 unsigned long pfn, const char *txt) 499 { 500 static const char *lvltxt[] = { 501 [CPA_CONFLICT] = "conflict", 502 [CPA_PROTECT] = "protect", 503 [CPA_DETECT] = "detect", 504 }; 505 506 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 507 return; 508 509 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 510 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 511 (unsigned long long)val); 512 } 513 514 /* 515 * Certain areas of memory on x86 require very specific protection flags, 516 * for example the BIOS area or kernel text. Callers don't always get this 517 * right (again, ioremap() on BIOS memory is not uncommon) so this function 518 * checks and fixes these known static required protection bits. 519 */ 520 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 521 unsigned long pfn, unsigned long npg, 522 unsigned long lpsize, int warnlvl) 523 { 524 pgprotval_t forbidden, res; 525 unsigned long end; 526 527 /* 528 * There is no point in checking RW/NX conflicts when the requested 529 * mapping is setting the page !PRESENT. 530 */ 531 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 532 return prot; 533 534 /* Operate on the virtual address */ 535 end = start + npg * PAGE_SIZE - 1; 536 537 res = protect_kernel_text(start, end); 538 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 539 forbidden = res; 540 541 /* 542 * Special case to preserve a large page. If the change spawns the 543 * full large page mapping then there is no point to split it 544 * up. Happens with ftrace and is going to be removed once ftrace 545 * switched to text_poke(). 546 */ 547 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 548 res = protect_kernel_text_ro(start, end); 549 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 550 forbidden |= res; 551 } 552 553 /* Check the PFN directly */ 554 res = protect_pci_bios(pfn, pfn + npg - 1); 555 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 556 forbidden |= res; 557 558 res = protect_rodata(pfn, pfn + npg - 1); 559 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 560 forbidden |= res; 561 562 return __pgprot(pgprot_val(prot) & ~forbidden); 563 } 564 565 /* 566 * Lookup the page table entry for a virtual address in a specific pgd. 567 * Return a pointer to the entry and the level of the mapping. 568 */ 569 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 570 unsigned int *level) 571 { 572 p4d_t *p4d; 573 pud_t *pud; 574 pmd_t *pmd; 575 576 *level = PG_LEVEL_NONE; 577 578 if (pgd_none(*pgd)) 579 return NULL; 580 581 p4d = p4d_offset(pgd, address); 582 if (p4d_none(*p4d)) 583 return NULL; 584 585 *level = PG_LEVEL_512G; 586 if (p4d_large(*p4d) || !p4d_present(*p4d)) 587 return (pte_t *)p4d; 588 589 pud = pud_offset(p4d, address); 590 if (pud_none(*pud)) 591 return NULL; 592 593 *level = PG_LEVEL_1G; 594 if (pud_large(*pud) || !pud_present(*pud)) 595 return (pte_t *)pud; 596 597 pmd = pmd_offset(pud, address); 598 if (pmd_none(*pmd)) 599 return NULL; 600 601 *level = PG_LEVEL_2M; 602 if (pmd_large(*pmd) || !pmd_present(*pmd)) 603 return (pte_t *)pmd; 604 605 *level = PG_LEVEL_4K; 606 607 return pte_offset_kernel(pmd, address); 608 } 609 610 /* 611 * Lookup the page table entry for a virtual address. Return a pointer 612 * to the entry and the level of the mapping. 613 * 614 * Note: We return pud and pmd either when the entry is marked large 615 * or when the present bit is not set. Otherwise we would return a 616 * pointer to a nonexisting mapping. 617 */ 618 pte_t *lookup_address(unsigned long address, unsigned int *level) 619 { 620 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 621 } 622 EXPORT_SYMBOL_GPL(lookup_address); 623 624 /* 625 * Lookup the page table entry for a virtual address in a given mm. Return a 626 * pointer to the entry and the level of the mapping. 627 */ 628 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, 629 unsigned int *level) 630 { 631 return lookup_address_in_pgd(pgd_offset(mm, address), address, level); 632 } 633 EXPORT_SYMBOL_GPL(lookup_address_in_mm); 634 635 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 636 unsigned int *level) 637 { 638 if (cpa->pgd) 639 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 640 address, level); 641 642 return lookup_address(address, level); 643 } 644 645 /* 646 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 647 * or NULL if not present. 648 */ 649 pmd_t *lookup_pmd_address(unsigned long address) 650 { 651 pgd_t *pgd; 652 p4d_t *p4d; 653 pud_t *pud; 654 655 pgd = pgd_offset_k(address); 656 if (pgd_none(*pgd)) 657 return NULL; 658 659 p4d = p4d_offset(pgd, address); 660 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 661 return NULL; 662 663 pud = pud_offset(p4d, address); 664 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 665 return NULL; 666 667 return pmd_offset(pud, address); 668 } 669 670 /* 671 * This is necessary because __pa() does not work on some 672 * kinds of memory, like vmalloc() or the alloc_remap() 673 * areas on 32-bit NUMA systems. The percpu areas can 674 * end up in this kind of memory, for instance. 675 * 676 * This could be optimized, but it is only intended to be 677 * used at inititalization time, and keeping it 678 * unoptimized should increase the testing coverage for 679 * the more obscure platforms. 680 */ 681 phys_addr_t slow_virt_to_phys(void *__virt_addr) 682 { 683 unsigned long virt_addr = (unsigned long)__virt_addr; 684 phys_addr_t phys_addr; 685 unsigned long offset; 686 enum pg_level level; 687 pte_t *pte; 688 689 pte = lookup_address(virt_addr, &level); 690 BUG_ON(!pte); 691 692 /* 693 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 694 * before being left-shifted PAGE_SHIFT bits -- this trick is to 695 * make 32-PAE kernel work correctly. 696 */ 697 switch (level) { 698 case PG_LEVEL_1G: 699 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 700 offset = virt_addr & ~PUD_PAGE_MASK; 701 break; 702 case PG_LEVEL_2M: 703 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 704 offset = virt_addr & ~PMD_PAGE_MASK; 705 break; 706 default: 707 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 708 offset = virt_addr & ~PAGE_MASK; 709 } 710 711 return (phys_addr_t)(phys_addr | offset); 712 } 713 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 714 715 /* 716 * Set the new pmd in all the pgds we know about: 717 */ 718 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 719 { 720 /* change init_mm */ 721 set_pte_atomic(kpte, pte); 722 #ifdef CONFIG_X86_32 723 if (!SHARED_KERNEL_PMD) { 724 struct page *page; 725 726 list_for_each_entry(page, &pgd_list, lru) { 727 pgd_t *pgd; 728 p4d_t *p4d; 729 pud_t *pud; 730 pmd_t *pmd; 731 732 pgd = (pgd_t *)page_address(page) + pgd_index(address); 733 p4d = p4d_offset(pgd, address); 734 pud = pud_offset(p4d, address); 735 pmd = pmd_offset(pud, address); 736 set_pte_atomic((pte_t *)pmd, pte); 737 } 738 } 739 #endif 740 } 741 742 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 743 { 744 /* 745 * _PAGE_GLOBAL means "global page" for present PTEs. 746 * But, it is also used to indicate _PAGE_PROTNONE 747 * for non-present PTEs. 748 * 749 * This ensures that a _PAGE_GLOBAL PTE going from 750 * present to non-present is not confused as 751 * _PAGE_PROTNONE. 752 */ 753 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 754 pgprot_val(prot) &= ~_PAGE_GLOBAL; 755 756 return prot; 757 } 758 759 static int __should_split_large_page(pte_t *kpte, unsigned long address, 760 struct cpa_data *cpa) 761 { 762 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 763 pgprot_t old_prot, new_prot, req_prot, chk_prot; 764 pte_t new_pte, *tmp; 765 enum pg_level level; 766 767 /* 768 * Check for races, another CPU might have split this page 769 * up already: 770 */ 771 tmp = _lookup_address_cpa(cpa, address, &level); 772 if (tmp != kpte) 773 return 1; 774 775 switch (level) { 776 case PG_LEVEL_2M: 777 old_prot = pmd_pgprot(*(pmd_t *)kpte); 778 old_pfn = pmd_pfn(*(pmd_t *)kpte); 779 cpa_inc_2m_checked(); 780 break; 781 case PG_LEVEL_1G: 782 old_prot = pud_pgprot(*(pud_t *)kpte); 783 old_pfn = pud_pfn(*(pud_t *)kpte); 784 cpa_inc_1g_checked(); 785 break; 786 default: 787 return -EINVAL; 788 } 789 790 psize = page_level_size(level); 791 pmask = page_level_mask(level); 792 793 /* 794 * Calculate the number of pages, which fit into this large 795 * page starting at address: 796 */ 797 lpaddr = (address + psize) & pmask; 798 numpages = (lpaddr - address) >> PAGE_SHIFT; 799 if (numpages < cpa->numpages) 800 cpa->numpages = numpages; 801 802 /* 803 * We are safe now. Check whether the new pgprot is the same: 804 * Convert protection attributes to 4k-format, as cpa->mask* are set 805 * up accordingly. 806 */ 807 808 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 809 req_prot = pgprot_large_2_4k(old_prot); 810 811 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 812 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 813 814 /* 815 * req_prot is in format of 4k pages. It must be converted to large 816 * page format: the caching mode includes the PAT bit located at 817 * different bit positions in the two formats. 818 */ 819 req_prot = pgprot_4k_2_large(req_prot); 820 req_prot = pgprot_clear_protnone_bits(req_prot); 821 if (pgprot_val(req_prot) & _PAGE_PRESENT) 822 pgprot_val(req_prot) |= _PAGE_PSE; 823 824 /* 825 * old_pfn points to the large page base pfn. So we need to add the 826 * offset of the virtual address: 827 */ 828 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 829 cpa->pfn = pfn; 830 831 /* 832 * Calculate the large page base address and the number of 4K pages 833 * in the large page 834 */ 835 lpaddr = address & pmask; 836 numpages = psize >> PAGE_SHIFT; 837 838 /* 839 * Sanity check that the existing mapping is correct versus the static 840 * protections. static_protections() guards against !PRESENT, so no 841 * extra conditional required here. 842 */ 843 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 844 psize, CPA_CONFLICT); 845 846 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 847 /* 848 * Split the large page and tell the split code to 849 * enforce static protections. 850 */ 851 cpa->force_static_prot = 1; 852 return 1; 853 } 854 855 /* 856 * Optimization: If the requested pgprot is the same as the current 857 * pgprot, then the large page can be preserved and no updates are 858 * required independent of alignment and length of the requested 859 * range. The above already established that the current pgprot is 860 * correct, which in consequence makes the requested pgprot correct 861 * as well if it is the same. The static protection scan below will 862 * not come to a different conclusion. 863 */ 864 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 865 cpa_inc_lp_sameprot(level); 866 return 0; 867 } 868 869 /* 870 * If the requested range does not cover the full page, split it up 871 */ 872 if (address != lpaddr || cpa->numpages != numpages) 873 return 1; 874 875 /* 876 * Check whether the requested pgprot is conflicting with a static 877 * protection requirement in the large page. 878 */ 879 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 880 psize, CPA_DETECT); 881 882 /* 883 * If there is a conflict, split the large page. 884 * 885 * There used to be a 4k wise evaluation trying really hard to 886 * preserve the large pages, but experimentation has shown, that this 887 * does not help at all. There might be corner cases which would 888 * preserve one large page occasionally, but it's really not worth the 889 * extra code and cycles for the common case. 890 */ 891 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 892 return 1; 893 894 /* All checks passed. Update the large page mapping. */ 895 new_pte = pfn_pte(old_pfn, new_prot); 896 __set_pmd_pte(kpte, address, new_pte); 897 cpa->flags |= CPA_FLUSHTLB; 898 cpa_inc_lp_preserved(level); 899 return 0; 900 } 901 902 static int should_split_large_page(pte_t *kpte, unsigned long address, 903 struct cpa_data *cpa) 904 { 905 int do_split; 906 907 if (cpa->force_split) 908 return 1; 909 910 spin_lock(&pgd_lock); 911 do_split = __should_split_large_page(kpte, address, cpa); 912 spin_unlock(&pgd_lock); 913 914 return do_split; 915 } 916 917 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 918 pgprot_t ref_prot, unsigned long address, 919 unsigned long size) 920 { 921 unsigned int npg = PFN_DOWN(size); 922 pgprot_t prot; 923 924 /* 925 * If should_split_large_page() discovered an inconsistent mapping, 926 * remove the invalid protection in the split mapping. 927 */ 928 if (!cpa->force_static_prot) 929 goto set; 930 931 /* Hand in lpsize = 0 to enforce the protection mechanism */ 932 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 933 934 if (pgprot_val(prot) == pgprot_val(ref_prot)) 935 goto set; 936 937 /* 938 * If this is splitting a PMD, fix it up. PUD splits cannot be 939 * fixed trivially as that would require to rescan the newly 940 * installed PMD mappings after returning from split_large_page() 941 * so an eventual further split can allocate the necessary PTE 942 * pages. Warn for now and revisit it in case this actually 943 * happens. 944 */ 945 if (size == PAGE_SIZE) 946 ref_prot = prot; 947 else 948 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 949 set: 950 set_pte(pte, pfn_pte(pfn, ref_prot)); 951 } 952 953 static int 954 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 955 struct page *base) 956 { 957 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 958 pte_t *pbase = (pte_t *)page_address(base); 959 unsigned int i, level; 960 pgprot_t ref_prot; 961 pte_t *tmp; 962 963 spin_lock(&pgd_lock); 964 /* 965 * Check for races, another CPU might have split this page 966 * up for us already: 967 */ 968 tmp = _lookup_address_cpa(cpa, address, &level); 969 if (tmp != kpte) { 970 spin_unlock(&pgd_lock); 971 return 1; 972 } 973 974 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 975 976 switch (level) { 977 case PG_LEVEL_2M: 978 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 979 /* 980 * Clear PSE (aka _PAGE_PAT) and move 981 * PAT bit to correct position. 982 */ 983 ref_prot = pgprot_large_2_4k(ref_prot); 984 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 985 lpaddr = address & PMD_MASK; 986 lpinc = PAGE_SIZE; 987 break; 988 989 case PG_LEVEL_1G: 990 ref_prot = pud_pgprot(*(pud_t *)kpte); 991 ref_pfn = pud_pfn(*(pud_t *)kpte); 992 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; 993 lpaddr = address & PUD_MASK; 994 lpinc = PMD_SIZE; 995 /* 996 * Clear the PSE flags if the PRESENT flag is not set 997 * otherwise pmd_present/pmd_huge will return true 998 * even on a non present pmd. 999 */ 1000 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1001 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1002 break; 1003 1004 default: 1005 spin_unlock(&pgd_lock); 1006 return 1; 1007 } 1008 1009 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1010 1011 /* 1012 * Get the target pfn from the original entry: 1013 */ 1014 pfn = ref_pfn; 1015 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1016 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1017 1018 if (virt_addr_valid(address)) { 1019 unsigned long pfn = PFN_DOWN(__pa(address)); 1020 1021 if (pfn_range_is_mapped(pfn, pfn + 1)) 1022 split_page_count(level); 1023 } 1024 1025 /* 1026 * Install the new, split up pagetable. 1027 * 1028 * We use the standard kernel pagetable protections for the new 1029 * pagetable protections, the actual ptes set above control the 1030 * primary protection behavior: 1031 */ 1032 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1033 1034 /* 1035 * Do a global flush tlb after splitting the large page 1036 * and before we do the actual change page attribute in the PTE. 1037 * 1038 * Without this, we violate the TLB application note, that says: 1039 * "The TLBs may contain both ordinary and large-page 1040 * translations for a 4-KByte range of linear addresses. This 1041 * may occur if software modifies the paging structures so that 1042 * the page size used for the address range changes. If the two 1043 * translations differ with respect to page frame or attributes 1044 * (e.g., permissions), processor behavior is undefined and may 1045 * be implementation-specific." 1046 * 1047 * We do this global tlb flush inside the cpa_lock, so that we 1048 * don't allow any other cpu, with stale tlb entries change the 1049 * page attribute in parallel, that also falls into the 1050 * just split large page entry. 1051 */ 1052 flush_tlb_all(); 1053 spin_unlock(&pgd_lock); 1054 1055 return 0; 1056 } 1057 1058 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1059 unsigned long address) 1060 { 1061 struct page *base; 1062 1063 if (!debug_pagealloc_enabled()) 1064 spin_unlock(&cpa_lock); 1065 base = alloc_pages(GFP_KERNEL, 0); 1066 if (!debug_pagealloc_enabled()) 1067 spin_lock(&cpa_lock); 1068 if (!base) 1069 return -ENOMEM; 1070 1071 if (__split_large_page(cpa, kpte, address, base)) 1072 __free_page(base); 1073 1074 return 0; 1075 } 1076 1077 static bool try_to_free_pte_page(pte_t *pte) 1078 { 1079 int i; 1080 1081 for (i = 0; i < PTRS_PER_PTE; i++) 1082 if (!pte_none(pte[i])) 1083 return false; 1084 1085 free_page((unsigned long)pte); 1086 return true; 1087 } 1088 1089 static bool try_to_free_pmd_page(pmd_t *pmd) 1090 { 1091 int i; 1092 1093 for (i = 0; i < PTRS_PER_PMD; i++) 1094 if (!pmd_none(pmd[i])) 1095 return false; 1096 1097 free_page((unsigned long)pmd); 1098 return true; 1099 } 1100 1101 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1102 { 1103 pte_t *pte = pte_offset_kernel(pmd, start); 1104 1105 while (start < end) { 1106 set_pte(pte, __pte(0)); 1107 1108 start += PAGE_SIZE; 1109 pte++; 1110 } 1111 1112 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1113 pmd_clear(pmd); 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1120 unsigned long start, unsigned long end) 1121 { 1122 if (unmap_pte_range(pmd, start, end)) 1123 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1124 pud_clear(pud); 1125 } 1126 1127 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1128 { 1129 pmd_t *pmd = pmd_offset(pud, start); 1130 1131 /* 1132 * Not on a 2MB page boundary? 1133 */ 1134 if (start & (PMD_SIZE - 1)) { 1135 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1136 unsigned long pre_end = min_t(unsigned long, end, next_page); 1137 1138 __unmap_pmd_range(pud, pmd, start, pre_end); 1139 1140 start = pre_end; 1141 pmd++; 1142 } 1143 1144 /* 1145 * Try to unmap in 2M chunks. 1146 */ 1147 while (end - start >= PMD_SIZE) { 1148 if (pmd_large(*pmd)) 1149 pmd_clear(pmd); 1150 else 1151 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1152 1153 start += PMD_SIZE; 1154 pmd++; 1155 } 1156 1157 /* 1158 * 4K leftovers? 1159 */ 1160 if (start < end) 1161 return __unmap_pmd_range(pud, pmd, start, end); 1162 1163 /* 1164 * Try again to free the PMD page if haven't succeeded above. 1165 */ 1166 if (!pud_none(*pud)) 1167 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) 1168 pud_clear(pud); 1169 } 1170 1171 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1172 { 1173 pud_t *pud = pud_offset(p4d, start); 1174 1175 /* 1176 * Not on a GB page boundary? 1177 */ 1178 if (start & (PUD_SIZE - 1)) { 1179 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1180 unsigned long pre_end = min_t(unsigned long, end, next_page); 1181 1182 unmap_pmd_range(pud, start, pre_end); 1183 1184 start = pre_end; 1185 pud++; 1186 } 1187 1188 /* 1189 * Try to unmap in 1G chunks? 1190 */ 1191 while (end - start >= PUD_SIZE) { 1192 1193 if (pud_large(*pud)) 1194 pud_clear(pud); 1195 else 1196 unmap_pmd_range(pud, start, start + PUD_SIZE); 1197 1198 start += PUD_SIZE; 1199 pud++; 1200 } 1201 1202 /* 1203 * 2M leftovers? 1204 */ 1205 if (start < end) 1206 unmap_pmd_range(pud, start, end); 1207 1208 /* 1209 * No need to try to free the PUD page because we'll free it in 1210 * populate_pgd's error path 1211 */ 1212 } 1213 1214 static int alloc_pte_page(pmd_t *pmd) 1215 { 1216 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1217 if (!pte) 1218 return -1; 1219 1220 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1221 return 0; 1222 } 1223 1224 static int alloc_pmd_page(pud_t *pud) 1225 { 1226 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1227 if (!pmd) 1228 return -1; 1229 1230 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1231 return 0; 1232 } 1233 1234 static void populate_pte(struct cpa_data *cpa, 1235 unsigned long start, unsigned long end, 1236 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1237 { 1238 pte_t *pte; 1239 1240 pte = pte_offset_kernel(pmd, start); 1241 1242 pgprot = pgprot_clear_protnone_bits(pgprot); 1243 1244 while (num_pages-- && start < end) { 1245 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1246 1247 start += PAGE_SIZE; 1248 cpa->pfn++; 1249 pte++; 1250 } 1251 } 1252 1253 static long populate_pmd(struct cpa_data *cpa, 1254 unsigned long start, unsigned long end, 1255 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1256 { 1257 long cur_pages = 0; 1258 pmd_t *pmd; 1259 pgprot_t pmd_pgprot; 1260 1261 /* 1262 * Not on a 2M boundary? 1263 */ 1264 if (start & (PMD_SIZE - 1)) { 1265 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1266 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1267 1268 pre_end = min_t(unsigned long, pre_end, next_page); 1269 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1270 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1271 1272 /* 1273 * Need a PTE page? 1274 */ 1275 pmd = pmd_offset(pud, start); 1276 if (pmd_none(*pmd)) 1277 if (alloc_pte_page(pmd)) 1278 return -1; 1279 1280 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1281 1282 start = pre_end; 1283 } 1284 1285 /* 1286 * We mapped them all? 1287 */ 1288 if (num_pages == cur_pages) 1289 return cur_pages; 1290 1291 pmd_pgprot = pgprot_4k_2_large(pgprot); 1292 1293 while (end - start >= PMD_SIZE) { 1294 1295 /* 1296 * We cannot use a 1G page so allocate a PMD page if needed. 1297 */ 1298 if (pud_none(*pud)) 1299 if (alloc_pmd_page(pud)) 1300 return -1; 1301 1302 pmd = pmd_offset(pud, start); 1303 1304 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1305 canon_pgprot(pmd_pgprot)))); 1306 1307 start += PMD_SIZE; 1308 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1309 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1310 } 1311 1312 /* 1313 * Map trailing 4K pages. 1314 */ 1315 if (start < end) { 1316 pmd = pmd_offset(pud, start); 1317 if (pmd_none(*pmd)) 1318 if (alloc_pte_page(pmd)) 1319 return -1; 1320 1321 populate_pte(cpa, start, end, num_pages - cur_pages, 1322 pmd, pgprot); 1323 } 1324 return num_pages; 1325 } 1326 1327 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1328 pgprot_t pgprot) 1329 { 1330 pud_t *pud; 1331 unsigned long end; 1332 long cur_pages = 0; 1333 pgprot_t pud_pgprot; 1334 1335 end = start + (cpa->numpages << PAGE_SHIFT); 1336 1337 /* 1338 * Not on a Gb page boundary? => map everything up to it with 1339 * smaller pages. 1340 */ 1341 if (start & (PUD_SIZE - 1)) { 1342 unsigned long pre_end; 1343 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1344 1345 pre_end = min_t(unsigned long, end, next_page); 1346 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1347 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1348 1349 pud = pud_offset(p4d, start); 1350 1351 /* 1352 * Need a PMD page? 1353 */ 1354 if (pud_none(*pud)) 1355 if (alloc_pmd_page(pud)) 1356 return -1; 1357 1358 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1359 pud, pgprot); 1360 if (cur_pages < 0) 1361 return cur_pages; 1362 1363 start = pre_end; 1364 } 1365 1366 /* We mapped them all? */ 1367 if (cpa->numpages == cur_pages) 1368 return cur_pages; 1369 1370 pud = pud_offset(p4d, start); 1371 pud_pgprot = pgprot_4k_2_large(pgprot); 1372 1373 /* 1374 * Map everything starting from the Gb boundary, possibly with 1G pages 1375 */ 1376 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1377 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1378 canon_pgprot(pud_pgprot)))); 1379 1380 start += PUD_SIZE; 1381 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1382 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1383 pud++; 1384 } 1385 1386 /* Map trailing leftover */ 1387 if (start < end) { 1388 long tmp; 1389 1390 pud = pud_offset(p4d, start); 1391 if (pud_none(*pud)) 1392 if (alloc_pmd_page(pud)) 1393 return -1; 1394 1395 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1396 pud, pgprot); 1397 if (tmp < 0) 1398 return cur_pages; 1399 1400 cur_pages += tmp; 1401 } 1402 return cur_pages; 1403 } 1404 1405 /* 1406 * Restrictions for kernel page table do not necessarily apply when mapping in 1407 * an alternate PGD. 1408 */ 1409 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1410 { 1411 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1412 pud_t *pud = NULL; /* shut up gcc */ 1413 p4d_t *p4d; 1414 pgd_t *pgd_entry; 1415 long ret; 1416 1417 pgd_entry = cpa->pgd + pgd_index(addr); 1418 1419 if (pgd_none(*pgd_entry)) { 1420 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1421 if (!p4d) 1422 return -1; 1423 1424 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1425 } 1426 1427 /* 1428 * Allocate a PUD page and hand it down for mapping. 1429 */ 1430 p4d = p4d_offset(pgd_entry, addr); 1431 if (p4d_none(*p4d)) { 1432 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1433 if (!pud) 1434 return -1; 1435 1436 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1437 } 1438 1439 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1440 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1441 1442 ret = populate_pud(cpa, addr, p4d, pgprot); 1443 if (ret < 0) { 1444 /* 1445 * Leave the PUD page in place in case some other CPU or thread 1446 * already found it, but remove any useless entries we just 1447 * added to it. 1448 */ 1449 unmap_pud_range(p4d, addr, 1450 addr + (cpa->numpages << PAGE_SHIFT)); 1451 return ret; 1452 } 1453 1454 cpa->numpages = ret; 1455 return 0; 1456 } 1457 1458 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1459 int primary) 1460 { 1461 if (cpa->pgd) { 1462 /* 1463 * Right now, we only execute this code path when mapping 1464 * the EFI virtual memory map regions, no other users 1465 * provide a ->pgd value. This may change in the future. 1466 */ 1467 return populate_pgd(cpa, vaddr); 1468 } 1469 1470 /* 1471 * Ignore all non primary paths. 1472 */ 1473 if (!primary) { 1474 cpa->numpages = 1; 1475 return 0; 1476 } 1477 1478 /* 1479 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1480 * to have holes. 1481 * Also set numpages to '1' indicating that we processed cpa req for 1482 * one virtual address page and its pfn. TBD: numpages can be set based 1483 * on the initial value and the level returned by lookup_address(). 1484 */ 1485 if (within(vaddr, PAGE_OFFSET, 1486 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1487 cpa->numpages = 1; 1488 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1489 return 0; 1490 1491 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1492 /* Faults in the highmap are OK, so do not warn: */ 1493 return -EFAULT; 1494 } else { 1495 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1496 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1497 *cpa->vaddr); 1498 1499 return -EFAULT; 1500 } 1501 } 1502 1503 static int __change_page_attr(struct cpa_data *cpa, int primary) 1504 { 1505 unsigned long address; 1506 int do_split, err; 1507 unsigned int level; 1508 pte_t *kpte, old_pte; 1509 1510 address = __cpa_addr(cpa, cpa->curpage); 1511 repeat: 1512 kpte = _lookup_address_cpa(cpa, address, &level); 1513 if (!kpte) 1514 return __cpa_process_fault(cpa, address, primary); 1515 1516 old_pte = *kpte; 1517 if (pte_none(old_pte)) 1518 return __cpa_process_fault(cpa, address, primary); 1519 1520 if (level == PG_LEVEL_4K) { 1521 pte_t new_pte; 1522 pgprot_t new_prot = pte_pgprot(old_pte); 1523 unsigned long pfn = pte_pfn(old_pte); 1524 1525 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1526 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1527 1528 cpa_inc_4k_install(); 1529 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1530 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1531 CPA_PROTECT); 1532 1533 new_prot = pgprot_clear_protnone_bits(new_prot); 1534 1535 /* 1536 * We need to keep the pfn from the existing PTE, 1537 * after all we're only going to change it's attributes 1538 * not the memory it points to 1539 */ 1540 new_pte = pfn_pte(pfn, new_prot); 1541 cpa->pfn = pfn; 1542 /* 1543 * Do we really change anything ? 1544 */ 1545 if (pte_val(old_pte) != pte_val(new_pte)) { 1546 set_pte_atomic(kpte, new_pte); 1547 cpa->flags |= CPA_FLUSHTLB; 1548 } 1549 cpa->numpages = 1; 1550 return 0; 1551 } 1552 1553 /* 1554 * Check, whether we can keep the large page intact 1555 * and just change the pte: 1556 */ 1557 do_split = should_split_large_page(kpte, address, cpa); 1558 /* 1559 * When the range fits into the existing large page, 1560 * return. cp->numpages and cpa->tlbflush have been updated in 1561 * try_large_page: 1562 */ 1563 if (do_split <= 0) 1564 return do_split; 1565 1566 /* 1567 * We have to split the large page: 1568 */ 1569 err = split_large_page(cpa, kpte, address); 1570 if (!err) 1571 goto repeat; 1572 1573 return err; 1574 } 1575 1576 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); 1577 1578 static int cpa_process_alias(struct cpa_data *cpa) 1579 { 1580 struct cpa_data alias_cpa; 1581 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1582 unsigned long vaddr; 1583 int ret; 1584 1585 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1586 return 0; 1587 1588 /* 1589 * No need to redo, when the primary call touched the direct 1590 * mapping already: 1591 */ 1592 vaddr = __cpa_addr(cpa, cpa->curpage); 1593 if (!(within(vaddr, PAGE_OFFSET, 1594 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1595 1596 alias_cpa = *cpa; 1597 alias_cpa.vaddr = &laddr; 1598 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1599 alias_cpa.curpage = 0; 1600 1601 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1602 if (ret) 1603 return ret; 1604 } 1605 1606 #ifdef CONFIG_X86_64 1607 /* 1608 * If the primary call didn't touch the high mapping already 1609 * and the physical address is inside the kernel map, we need 1610 * to touch the high mapped kernel as well: 1611 */ 1612 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1613 __cpa_pfn_in_highmap(cpa->pfn)) { 1614 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1615 __START_KERNEL_map - phys_base; 1616 alias_cpa = *cpa; 1617 alias_cpa.vaddr = &temp_cpa_vaddr; 1618 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1619 alias_cpa.curpage = 0; 1620 1621 /* 1622 * The high mapping range is imprecise, so ignore the 1623 * return value. 1624 */ 1625 __change_page_attr_set_clr(&alias_cpa, 0); 1626 } 1627 #endif 1628 1629 return 0; 1630 } 1631 1632 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) 1633 { 1634 unsigned long numpages = cpa->numpages; 1635 unsigned long rempages = numpages; 1636 int ret = 0; 1637 1638 while (rempages) { 1639 /* 1640 * Store the remaining nr of pages for the large page 1641 * preservation check. 1642 */ 1643 cpa->numpages = rempages; 1644 /* for array changes, we can't use large page */ 1645 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1646 cpa->numpages = 1; 1647 1648 if (!debug_pagealloc_enabled()) 1649 spin_lock(&cpa_lock); 1650 ret = __change_page_attr(cpa, checkalias); 1651 if (!debug_pagealloc_enabled()) 1652 spin_unlock(&cpa_lock); 1653 if (ret) 1654 goto out; 1655 1656 if (checkalias) { 1657 ret = cpa_process_alias(cpa); 1658 if (ret) 1659 goto out; 1660 } 1661 1662 /* 1663 * Adjust the number of pages with the result of the 1664 * CPA operation. Either a large page has been 1665 * preserved or a single page update happened. 1666 */ 1667 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1668 rempages -= cpa->numpages; 1669 cpa->curpage += cpa->numpages; 1670 } 1671 1672 out: 1673 /* Restore the original numpages */ 1674 cpa->numpages = numpages; 1675 return ret; 1676 } 1677 1678 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1679 pgprot_t mask_set, pgprot_t mask_clr, 1680 int force_split, int in_flag, 1681 struct page **pages) 1682 { 1683 struct cpa_data cpa; 1684 int ret, cache, checkalias; 1685 1686 memset(&cpa, 0, sizeof(cpa)); 1687 1688 /* 1689 * Check, if we are requested to set a not supported 1690 * feature. Clearing non-supported features is OK. 1691 */ 1692 mask_set = canon_pgprot(mask_set); 1693 1694 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1695 return 0; 1696 1697 /* Ensure we are PAGE_SIZE aligned */ 1698 if (in_flag & CPA_ARRAY) { 1699 int i; 1700 for (i = 0; i < numpages; i++) { 1701 if (addr[i] & ~PAGE_MASK) { 1702 addr[i] &= PAGE_MASK; 1703 WARN_ON_ONCE(1); 1704 } 1705 } 1706 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1707 /* 1708 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1709 * No need to check in that case 1710 */ 1711 if (*addr & ~PAGE_MASK) { 1712 *addr &= PAGE_MASK; 1713 /* 1714 * People should not be passing in unaligned addresses: 1715 */ 1716 WARN_ON_ONCE(1); 1717 } 1718 } 1719 1720 /* Must avoid aliasing mappings in the highmem code */ 1721 kmap_flush_unused(); 1722 1723 vm_unmap_aliases(); 1724 1725 cpa.vaddr = addr; 1726 cpa.pages = pages; 1727 cpa.numpages = numpages; 1728 cpa.mask_set = mask_set; 1729 cpa.mask_clr = mask_clr; 1730 cpa.flags = 0; 1731 cpa.curpage = 0; 1732 cpa.force_split = force_split; 1733 1734 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1735 cpa.flags |= in_flag; 1736 1737 /* No alias checking for _NX bit modifications */ 1738 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; 1739 /* Has caller explicitly disabled alias checking? */ 1740 if (in_flag & CPA_NO_CHECK_ALIAS) 1741 checkalias = 0; 1742 1743 ret = __change_page_attr_set_clr(&cpa, checkalias); 1744 1745 /* 1746 * Check whether we really changed something: 1747 */ 1748 if (!(cpa.flags & CPA_FLUSHTLB)) 1749 goto out; 1750 1751 /* 1752 * No need to flush, when we did not set any of the caching 1753 * attributes: 1754 */ 1755 cache = !!pgprot2cachemode(mask_set); 1756 1757 /* 1758 * On error; flush everything to be sure. 1759 */ 1760 if (ret) { 1761 cpa_flush_all(cache); 1762 goto out; 1763 } 1764 1765 cpa_flush(&cpa, cache); 1766 out: 1767 return ret; 1768 } 1769 1770 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1771 pgprot_t mask, int array) 1772 { 1773 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1774 (array ? CPA_ARRAY : 0), NULL); 1775 } 1776 1777 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1778 pgprot_t mask, int array) 1779 { 1780 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1781 (array ? CPA_ARRAY : 0), NULL); 1782 } 1783 1784 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1785 pgprot_t mask) 1786 { 1787 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1788 CPA_PAGES_ARRAY, pages); 1789 } 1790 1791 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1792 pgprot_t mask) 1793 { 1794 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1795 CPA_PAGES_ARRAY, pages); 1796 } 1797 1798 /* 1799 * _set_memory_prot is an internal helper for callers that have been passed 1800 * a pgprot_t value from upper layers and a reservation has already been taken. 1801 * If you want to set the pgprot to a specific page protocol, use the 1802 * set_memory_xx() functions. 1803 */ 1804 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1805 { 1806 return change_page_attr_set_clr(&addr, numpages, prot, 1807 __pgprot(~pgprot_val(prot)), 0, 0, 1808 NULL); 1809 } 1810 1811 int _set_memory_uc(unsigned long addr, int numpages) 1812 { 1813 /* 1814 * for now UC MINUS. see comments in ioremap() 1815 * If you really need strong UC use ioremap_uc(), but note 1816 * that you cannot override IO areas with set_memory_*() as 1817 * these helpers cannot work with IO memory. 1818 */ 1819 return change_page_attr_set(&addr, numpages, 1820 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1821 0); 1822 } 1823 1824 int set_memory_uc(unsigned long addr, int numpages) 1825 { 1826 int ret; 1827 1828 /* 1829 * for now UC MINUS. see comments in ioremap() 1830 */ 1831 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1832 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1833 if (ret) 1834 goto out_err; 1835 1836 ret = _set_memory_uc(addr, numpages); 1837 if (ret) 1838 goto out_free; 1839 1840 return 0; 1841 1842 out_free: 1843 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1844 out_err: 1845 return ret; 1846 } 1847 EXPORT_SYMBOL(set_memory_uc); 1848 1849 int _set_memory_wc(unsigned long addr, int numpages) 1850 { 1851 int ret; 1852 1853 ret = change_page_attr_set(&addr, numpages, 1854 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1855 0); 1856 if (!ret) { 1857 ret = change_page_attr_set_clr(&addr, numpages, 1858 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1859 __pgprot(_PAGE_CACHE_MASK), 1860 0, 0, NULL); 1861 } 1862 return ret; 1863 } 1864 1865 int set_memory_wc(unsigned long addr, int numpages) 1866 { 1867 int ret; 1868 1869 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1870 _PAGE_CACHE_MODE_WC, NULL); 1871 if (ret) 1872 return ret; 1873 1874 ret = _set_memory_wc(addr, numpages); 1875 if (ret) 1876 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1877 1878 return ret; 1879 } 1880 EXPORT_SYMBOL(set_memory_wc); 1881 1882 int _set_memory_wt(unsigned long addr, int numpages) 1883 { 1884 return change_page_attr_set(&addr, numpages, 1885 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1886 } 1887 1888 int _set_memory_wb(unsigned long addr, int numpages) 1889 { 1890 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1891 return change_page_attr_clear(&addr, numpages, 1892 __pgprot(_PAGE_CACHE_MASK), 0); 1893 } 1894 1895 int set_memory_wb(unsigned long addr, int numpages) 1896 { 1897 int ret; 1898 1899 ret = _set_memory_wb(addr, numpages); 1900 if (ret) 1901 return ret; 1902 1903 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1904 return 0; 1905 } 1906 EXPORT_SYMBOL(set_memory_wb); 1907 1908 int set_memory_x(unsigned long addr, int numpages) 1909 { 1910 if (!(__supported_pte_mask & _PAGE_NX)) 1911 return 0; 1912 1913 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 1914 } 1915 1916 int set_memory_nx(unsigned long addr, int numpages) 1917 { 1918 if (!(__supported_pte_mask & _PAGE_NX)) 1919 return 0; 1920 1921 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 1922 } 1923 1924 int set_memory_ro(unsigned long addr, int numpages) 1925 { 1926 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 1927 } 1928 1929 int set_memory_rw(unsigned long addr, int numpages) 1930 { 1931 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 1932 } 1933 1934 int set_memory_np(unsigned long addr, int numpages) 1935 { 1936 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 1937 } 1938 1939 int set_memory_np_noalias(unsigned long addr, int numpages) 1940 { 1941 int cpa_flags = CPA_NO_CHECK_ALIAS; 1942 1943 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1944 __pgprot(_PAGE_PRESENT), 0, 1945 cpa_flags, NULL); 1946 } 1947 1948 int set_memory_4k(unsigned long addr, int numpages) 1949 { 1950 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 1951 __pgprot(0), 1, 0, NULL); 1952 } 1953 1954 int set_memory_nonglobal(unsigned long addr, int numpages) 1955 { 1956 return change_page_attr_clear(&addr, numpages, 1957 __pgprot(_PAGE_GLOBAL), 0); 1958 } 1959 1960 int set_memory_global(unsigned long addr, int numpages) 1961 { 1962 return change_page_attr_set(&addr, numpages, 1963 __pgprot(_PAGE_GLOBAL), 0); 1964 } 1965 1966 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 1967 { 1968 struct cpa_data cpa; 1969 int ret; 1970 1971 /* Nothing to do if memory encryption is not active */ 1972 if (!mem_encrypt_active()) 1973 return 0; 1974 1975 /* Should not be working on unaligned addresses */ 1976 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 1977 addr &= PAGE_MASK; 1978 1979 memset(&cpa, 0, sizeof(cpa)); 1980 cpa.vaddr = &addr; 1981 cpa.numpages = numpages; 1982 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0); 1983 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC); 1984 cpa.pgd = init_mm.pgd; 1985 1986 /* Must avoid aliasing mappings in the highmem code */ 1987 kmap_flush_unused(); 1988 vm_unmap_aliases(); 1989 1990 /* 1991 * Before changing the encryption attribute, we need to flush caches. 1992 */ 1993 cpa_flush(&cpa, 1); 1994 1995 ret = __change_page_attr_set_clr(&cpa, 1); 1996 1997 /* 1998 * After changing the encryption attribute, we need to flush TLBs again 1999 * in case any speculative TLB caching occurred (but no need to flush 2000 * caches again). We could just use cpa_flush_all(), but in case TLB 2001 * flushing gets optimized in the cpa_flush() path use the same logic 2002 * as above. 2003 */ 2004 cpa_flush(&cpa, 0); 2005 2006 return ret; 2007 } 2008 2009 int set_memory_encrypted(unsigned long addr, int numpages) 2010 { 2011 return __set_memory_enc_dec(addr, numpages, true); 2012 } 2013 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2014 2015 int set_memory_decrypted(unsigned long addr, int numpages) 2016 { 2017 return __set_memory_enc_dec(addr, numpages, false); 2018 } 2019 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2020 2021 int set_pages_uc(struct page *page, int numpages) 2022 { 2023 unsigned long addr = (unsigned long)page_address(page); 2024 2025 return set_memory_uc(addr, numpages); 2026 } 2027 EXPORT_SYMBOL(set_pages_uc); 2028 2029 static int _set_pages_array(struct page **pages, int numpages, 2030 enum page_cache_mode new_type) 2031 { 2032 unsigned long start; 2033 unsigned long end; 2034 enum page_cache_mode set_type; 2035 int i; 2036 int free_idx; 2037 int ret; 2038 2039 for (i = 0; i < numpages; i++) { 2040 if (PageHighMem(pages[i])) 2041 continue; 2042 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2043 end = start + PAGE_SIZE; 2044 if (memtype_reserve(start, end, new_type, NULL)) 2045 goto err_out; 2046 } 2047 2048 /* If WC, set to UC- first and then WC */ 2049 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2050 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2051 2052 ret = cpa_set_pages_array(pages, numpages, 2053 cachemode2pgprot(set_type)); 2054 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2055 ret = change_page_attr_set_clr(NULL, numpages, 2056 cachemode2pgprot( 2057 _PAGE_CACHE_MODE_WC), 2058 __pgprot(_PAGE_CACHE_MASK), 2059 0, CPA_PAGES_ARRAY, pages); 2060 if (ret) 2061 goto err_out; 2062 return 0; /* Success */ 2063 err_out: 2064 free_idx = i; 2065 for (i = 0; i < free_idx; i++) { 2066 if (PageHighMem(pages[i])) 2067 continue; 2068 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2069 end = start + PAGE_SIZE; 2070 memtype_free(start, end); 2071 } 2072 return -EINVAL; 2073 } 2074 2075 int set_pages_array_uc(struct page **pages, int numpages) 2076 { 2077 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2078 } 2079 EXPORT_SYMBOL(set_pages_array_uc); 2080 2081 int set_pages_array_wc(struct page **pages, int numpages) 2082 { 2083 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2084 } 2085 EXPORT_SYMBOL(set_pages_array_wc); 2086 2087 int set_pages_array_wt(struct page **pages, int numpages) 2088 { 2089 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT); 2090 } 2091 EXPORT_SYMBOL_GPL(set_pages_array_wt); 2092 2093 int set_pages_wb(struct page *page, int numpages) 2094 { 2095 unsigned long addr = (unsigned long)page_address(page); 2096 2097 return set_memory_wb(addr, numpages); 2098 } 2099 EXPORT_SYMBOL(set_pages_wb); 2100 2101 int set_pages_array_wb(struct page **pages, int numpages) 2102 { 2103 int retval; 2104 unsigned long start; 2105 unsigned long end; 2106 int i; 2107 2108 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2109 retval = cpa_clear_pages_array(pages, numpages, 2110 __pgprot(_PAGE_CACHE_MASK)); 2111 if (retval) 2112 return retval; 2113 2114 for (i = 0; i < numpages; i++) { 2115 if (PageHighMem(pages[i])) 2116 continue; 2117 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2118 end = start + PAGE_SIZE; 2119 memtype_free(start, end); 2120 } 2121 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(set_pages_array_wb); 2125 2126 int set_pages_ro(struct page *page, int numpages) 2127 { 2128 unsigned long addr = (unsigned long)page_address(page); 2129 2130 return set_memory_ro(addr, numpages); 2131 } 2132 2133 int set_pages_rw(struct page *page, int numpages) 2134 { 2135 unsigned long addr = (unsigned long)page_address(page); 2136 2137 return set_memory_rw(addr, numpages); 2138 } 2139 2140 static int __set_pages_p(struct page *page, int numpages) 2141 { 2142 unsigned long tempaddr = (unsigned long) page_address(page); 2143 struct cpa_data cpa = { .vaddr = &tempaddr, 2144 .pgd = NULL, 2145 .numpages = numpages, 2146 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2147 .mask_clr = __pgprot(0), 2148 .flags = 0}; 2149 2150 /* 2151 * No alias checking needed for setting present flag. otherwise, 2152 * we may need to break large pages for 64-bit kernel text 2153 * mappings (this adds to complexity if we want to do this from 2154 * atomic context especially). Let's keep it simple! 2155 */ 2156 return __change_page_attr_set_clr(&cpa, 0); 2157 } 2158 2159 static int __set_pages_np(struct page *page, int numpages) 2160 { 2161 unsigned long tempaddr = (unsigned long) page_address(page); 2162 struct cpa_data cpa = { .vaddr = &tempaddr, 2163 .pgd = NULL, 2164 .numpages = numpages, 2165 .mask_set = __pgprot(0), 2166 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2167 .flags = 0}; 2168 2169 /* 2170 * No alias checking needed for setting not present flag. otherwise, 2171 * we may need to break large pages for 64-bit kernel text 2172 * mappings (this adds to complexity if we want to do this from 2173 * atomic context especially). Let's keep it simple! 2174 */ 2175 return __change_page_attr_set_clr(&cpa, 0); 2176 } 2177 2178 int set_direct_map_invalid_noflush(struct page *page) 2179 { 2180 return __set_pages_np(page, 1); 2181 } 2182 2183 int set_direct_map_default_noflush(struct page *page) 2184 { 2185 return __set_pages_p(page, 1); 2186 } 2187 2188 void __kernel_map_pages(struct page *page, int numpages, int enable) 2189 { 2190 if (PageHighMem(page)) 2191 return; 2192 if (!enable) { 2193 debug_check_no_locks_freed(page_address(page), 2194 numpages * PAGE_SIZE); 2195 } 2196 2197 /* 2198 * The return value is ignored as the calls cannot fail. 2199 * Large pages for identity mappings are not used at boot time 2200 * and hence no memory allocations during large page split. 2201 */ 2202 if (enable) 2203 __set_pages_p(page, numpages); 2204 else 2205 __set_pages_np(page, numpages); 2206 2207 /* 2208 * We should perform an IPI and flush all tlbs, 2209 * but that can deadlock->flush only current cpu. 2210 * Preemption needs to be disabled around __flush_tlb_all() due to 2211 * CR3 reload in __native_flush_tlb(). 2212 */ 2213 preempt_disable(); 2214 __flush_tlb_all(); 2215 preempt_enable(); 2216 2217 arch_flush_lazy_mmu_mode(); 2218 } 2219 2220 #ifdef CONFIG_HIBERNATION 2221 bool kernel_page_present(struct page *page) 2222 { 2223 unsigned int level; 2224 pte_t *pte; 2225 2226 if (PageHighMem(page)) 2227 return false; 2228 2229 pte = lookup_address((unsigned long)page_address(page), &level); 2230 return (pte_val(*pte) & _PAGE_PRESENT); 2231 } 2232 #endif /* CONFIG_HIBERNATION */ 2233 2234 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2235 unsigned numpages, unsigned long page_flags) 2236 { 2237 int retval = -EINVAL; 2238 2239 struct cpa_data cpa = { 2240 .vaddr = &address, 2241 .pfn = pfn, 2242 .pgd = pgd, 2243 .numpages = numpages, 2244 .mask_set = __pgprot(0), 2245 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2246 .flags = 0, 2247 }; 2248 2249 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2250 2251 if (!(__supported_pte_mask & _PAGE_NX)) 2252 goto out; 2253 2254 if (!(page_flags & _PAGE_ENC)) 2255 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2256 2257 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2258 2259 retval = __change_page_attr_set_clr(&cpa, 0); 2260 __flush_tlb_all(); 2261 2262 out: 2263 return retval; 2264 } 2265 2266 /* 2267 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2268 * function shouldn't be used in an SMP environment. Presently, it's used only 2269 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2270 */ 2271 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2272 unsigned long numpages) 2273 { 2274 int retval; 2275 2276 /* 2277 * The typical sequence for unmapping is to find a pte through 2278 * lookup_address_in_pgd() (ideally, it should never return NULL because 2279 * the address is already mapped) and change it's protections. As pfn is 2280 * the *target* of a mapping, it's not useful while unmapping. 2281 */ 2282 struct cpa_data cpa = { 2283 .vaddr = &address, 2284 .pfn = 0, 2285 .pgd = pgd, 2286 .numpages = numpages, 2287 .mask_set = __pgprot(0), 2288 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2289 .flags = 0, 2290 }; 2291 2292 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2293 2294 retval = __change_page_attr_set_clr(&cpa, 0); 2295 __flush_tlb_all(); 2296 2297 return retval; 2298 } 2299 2300 /* 2301 * The testcases use internal knowledge of the implementation that shouldn't 2302 * be exposed to the rest of the kernel. Include these directly here. 2303 */ 2304 #ifdef CONFIG_CPA_DEBUG 2305 #include "cpa-test.c" 2306 #endif 2307