xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 
20 #include <asm/e820/api.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <linux/uaccess.h>
26 #include <asm/pgalloc.h>
27 #include <asm/proto.h>
28 #include <asm/memtype.h>
29 #include <asm/set_memory.h>
30 
31 #include "../mm_internal.h"
32 
33 /*
34  * The current flushing context - we pass it instead of 5 arguments:
35  */
36 struct cpa_data {
37 	unsigned long	*vaddr;
38 	pgd_t		*pgd;
39 	pgprot_t	mask_set;
40 	pgprot_t	mask_clr;
41 	unsigned long	numpages;
42 	unsigned long	curpage;
43 	unsigned long	pfn;
44 	unsigned int	flags;
45 	unsigned int	force_split		: 1,
46 			force_static_prot	: 1;
47 	struct page	**pages;
48 };
49 
50 enum cpa_warn {
51 	CPA_CONFLICT,
52 	CPA_PROTECT,
53 	CPA_DETECT,
54 };
55 
56 static const int cpa_warn_level = CPA_PROTECT;
57 
58 /*
59  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
60  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
61  * entries change the page attribute in parallel to some other cpu
62  * splitting a large page entry along with changing the attribute.
63  */
64 static DEFINE_SPINLOCK(cpa_lock);
65 
66 #define CPA_FLUSHTLB 1
67 #define CPA_ARRAY 2
68 #define CPA_PAGES_ARRAY 4
69 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
70 
71 #ifdef CONFIG_PROC_FS
72 static unsigned long direct_pages_count[PG_LEVEL_NUM];
73 
74 void update_page_count(int level, unsigned long pages)
75 {
76 	/* Protect against CPA */
77 	spin_lock(&pgd_lock);
78 	direct_pages_count[level] += pages;
79 	spin_unlock(&pgd_lock);
80 }
81 
82 static void split_page_count(int level)
83 {
84 	if (direct_pages_count[level] == 0)
85 		return;
86 
87 	direct_pages_count[level]--;
88 	direct_pages_count[level - 1] += PTRS_PER_PTE;
89 }
90 
91 void arch_report_meminfo(struct seq_file *m)
92 {
93 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
94 			direct_pages_count[PG_LEVEL_4K] << 2);
95 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
96 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
97 			direct_pages_count[PG_LEVEL_2M] << 11);
98 #else
99 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
100 			direct_pages_count[PG_LEVEL_2M] << 12);
101 #endif
102 	if (direct_gbpages)
103 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
104 			direct_pages_count[PG_LEVEL_1G] << 20);
105 }
106 #else
107 static inline void split_page_count(int level) { }
108 #endif
109 
110 #ifdef CONFIG_X86_CPA_STATISTICS
111 
112 static unsigned long cpa_1g_checked;
113 static unsigned long cpa_1g_sameprot;
114 static unsigned long cpa_1g_preserved;
115 static unsigned long cpa_2m_checked;
116 static unsigned long cpa_2m_sameprot;
117 static unsigned long cpa_2m_preserved;
118 static unsigned long cpa_4k_install;
119 
120 static inline void cpa_inc_1g_checked(void)
121 {
122 	cpa_1g_checked++;
123 }
124 
125 static inline void cpa_inc_2m_checked(void)
126 {
127 	cpa_2m_checked++;
128 }
129 
130 static inline void cpa_inc_4k_install(void)
131 {
132 	cpa_4k_install++;
133 }
134 
135 static inline void cpa_inc_lp_sameprot(int level)
136 {
137 	if (level == PG_LEVEL_1G)
138 		cpa_1g_sameprot++;
139 	else
140 		cpa_2m_sameprot++;
141 }
142 
143 static inline void cpa_inc_lp_preserved(int level)
144 {
145 	if (level == PG_LEVEL_1G)
146 		cpa_1g_preserved++;
147 	else
148 		cpa_2m_preserved++;
149 }
150 
151 static int cpastats_show(struct seq_file *m, void *p)
152 {
153 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
154 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
155 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
156 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
157 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
158 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
159 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
160 	return 0;
161 }
162 
163 static int cpastats_open(struct inode *inode, struct file *file)
164 {
165 	return single_open(file, cpastats_show, NULL);
166 }
167 
168 static const struct file_operations cpastats_fops = {
169 	.open		= cpastats_open,
170 	.read		= seq_read,
171 	.llseek		= seq_lseek,
172 	.release	= single_release,
173 };
174 
175 static int __init cpa_stats_init(void)
176 {
177 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
178 			    &cpastats_fops);
179 	return 0;
180 }
181 late_initcall(cpa_stats_init);
182 #else
183 static inline void cpa_inc_1g_checked(void) { }
184 static inline void cpa_inc_2m_checked(void) { }
185 static inline void cpa_inc_4k_install(void) { }
186 static inline void cpa_inc_lp_sameprot(int level) { }
187 static inline void cpa_inc_lp_preserved(int level) { }
188 #endif
189 
190 
191 static inline int
192 within(unsigned long addr, unsigned long start, unsigned long end)
193 {
194 	return addr >= start && addr < end;
195 }
196 
197 static inline int
198 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
199 {
200 	return addr >= start && addr <= end;
201 }
202 
203 #ifdef CONFIG_X86_64
204 
205 static inline unsigned long highmap_start_pfn(void)
206 {
207 	return __pa_symbol(_text) >> PAGE_SHIFT;
208 }
209 
210 static inline unsigned long highmap_end_pfn(void)
211 {
212 	/* Do not reference physical address outside the kernel. */
213 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
214 }
215 
216 static bool __cpa_pfn_in_highmap(unsigned long pfn)
217 {
218 	/*
219 	 * Kernel text has an alias mapping at a high address, known
220 	 * here as "highmap".
221 	 */
222 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
223 }
224 
225 #else
226 
227 static bool __cpa_pfn_in_highmap(unsigned long pfn)
228 {
229 	/* There is no highmap on 32-bit */
230 	return false;
231 }
232 
233 #endif
234 
235 /*
236  * See set_mce_nospec().
237  *
238  * Machine check recovery code needs to change cache mode of poisoned pages to
239  * UC to avoid speculative access logging another error. But passing the
240  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
241  * speculative access. So we cheat and flip the top bit of the address. This
242  * works fine for the code that updates the page tables. But at the end of the
243  * process we need to flush the TLB and cache and the non-canonical address
244  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
245  *
246  * But in the common case we already have a canonical address. This code
247  * will fix the top bit if needed and is a no-op otherwise.
248  */
249 static inline unsigned long fix_addr(unsigned long addr)
250 {
251 #ifdef CONFIG_X86_64
252 	return (long)(addr << 1) >> 1;
253 #else
254 	return addr;
255 #endif
256 }
257 
258 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
259 {
260 	if (cpa->flags & CPA_PAGES_ARRAY) {
261 		struct page *page = cpa->pages[idx];
262 
263 		if (unlikely(PageHighMem(page)))
264 			return 0;
265 
266 		return (unsigned long)page_address(page);
267 	}
268 
269 	if (cpa->flags & CPA_ARRAY)
270 		return cpa->vaddr[idx];
271 
272 	return *cpa->vaddr + idx * PAGE_SIZE;
273 }
274 
275 /*
276  * Flushing functions
277  */
278 
279 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
280 {
281 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
282 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
283 	void *vend = vaddr + size;
284 
285 	if (p >= vend)
286 		return;
287 
288 	for (; p < vend; p += clflush_size)
289 		clflushopt(p);
290 }
291 
292 /**
293  * clflush_cache_range - flush a cache range with clflush
294  * @vaddr:	virtual start address
295  * @size:	number of bytes to flush
296  *
297  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
298  * SFENCE to avoid ordering issues.
299  */
300 void clflush_cache_range(void *vaddr, unsigned int size)
301 {
302 	mb();
303 	clflush_cache_range_opt(vaddr, size);
304 	mb();
305 }
306 EXPORT_SYMBOL_GPL(clflush_cache_range);
307 
308 #ifdef CONFIG_ARCH_HAS_PMEM_API
309 void arch_invalidate_pmem(void *addr, size_t size)
310 {
311 	clflush_cache_range(addr, size);
312 }
313 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
314 #endif
315 
316 static void __cpa_flush_all(void *arg)
317 {
318 	unsigned long cache = (unsigned long)arg;
319 
320 	/*
321 	 * Flush all to work around Errata in early athlons regarding
322 	 * large page flushing.
323 	 */
324 	__flush_tlb_all();
325 
326 	if (cache && boot_cpu_data.x86 >= 4)
327 		wbinvd();
328 }
329 
330 static void cpa_flush_all(unsigned long cache)
331 {
332 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
333 
334 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
335 }
336 
337 static void __cpa_flush_tlb(void *data)
338 {
339 	struct cpa_data *cpa = data;
340 	unsigned int i;
341 
342 	for (i = 0; i < cpa->numpages; i++)
343 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
344 }
345 
346 static void cpa_flush(struct cpa_data *data, int cache)
347 {
348 	struct cpa_data *cpa = data;
349 	unsigned int i;
350 
351 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
352 
353 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
354 		cpa_flush_all(cache);
355 		return;
356 	}
357 
358 	if (cpa->numpages <= tlb_single_page_flush_ceiling)
359 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
360 	else
361 		flush_tlb_all();
362 
363 	if (!cache)
364 		return;
365 
366 	mb();
367 	for (i = 0; i < cpa->numpages; i++) {
368 		unsigned long addr = __cpa_addr(cpa, i);
369 		unsigned int level;
370 
371 		pte_t *pte = lookup_address(addr, &level);
372 
373 		/*
374 		 * Only flush present addresses:
375 		 */
376 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
377 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
378 	}
379 	mb();
380 }
381 
382 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
383 		     unsigned long r2_start, unsigned long r2_end)
384 {
385 	return (r1_start <= r2_end && r1_end >= r2_start) ||
386 		(r2_start <= r1_end && r2_end >= r1_start);
387 }
388 
389 #ifdef CONFIG_PCI_BIOS
390 /*
391  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
392  * based config access (CONFIG_PCI_GOBIOS) support.
393  */
394 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
395 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
396 
397 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
398 {
399 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
400 		return _PAGE_NX;
401 	return 0;
402 }
403 #else
404 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
405 {
406 	return 0;
407 }
408 #endif
409 
410 /*
411  * The .rodata section needs to be read-only. Using the pfn catches all
412  * aliases.  This also includes __ro_after_init, so do not enforce until
413  * kernel_set_to_readonly is true.
414  */
415 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
416 {
417 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
418 
419 	/*
420 	 * Note: __end_rodata is at page aligned and not inclusive, so
421 	 * subtract 1 to get the last enforced PFN in the rodata area.
422 	 */
423 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
424 
425 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
426 		return _PAGE_RW;
427 	return 0;
428 }
429 
430 /*
431  * Protect kernel text against becoming non executable by forbidding
432  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
433  * out of which the kernel actually executes.  Do not protect the low
434  * mapping.
435  *
436  * This does not cover __inittext since that is gone after boot.
437  */
438 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
439 {
440 	unsigned long t_end = (unsigned long)_etext - 1;
441 	unsigned long t_start = (unsigned long)_text;
442 
443 	if (overlaps(start, end, t_start, t_end))
444 		return _PAGE_NX;
445 	return 0;
446 }
447 
448 #if defined(CONFIG_X86_64)
449 /*
450  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
451  * kernel text mappings for the large page aligned text, rodata sections
452  * will be always read-only. For the kernel identity mappings covering the
453  * holes caused by this alignment can be anything that user asks.
454  *
455  * This will preserve the large page mappings for kernel text/data at no
456  * extra cost.
457  */
458 static pgprotval_t protect_kernel_text_ro(unsigned long start,
459 					  unsigned long end)
460 {
461 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
462 	unsigned long t_start = (unsigned long)_text;
463 	unsigned int level;
464 
465 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
466 		return 0;
467 	/*
468 	 * Don't enforce the !RW mapping for the kernel text mapping, if
469 	 * the current mapping is already using small page mapping.  No
470 	 * need to work hard to preserve large page mappings in this case.
471 	 *
472 	 * This also fixes the Linux Xen paravirt guest boot failure caused
473 	 * by unexpected read-only mappings for kernel identity
474 	 * mappings. In this paravirt guest case, the kernel text mapping
475 	 * and the kernel identity mapping share the same page-table pages,
476 	 * so the protections for kernel text and identity mappings have to
477 	 * be the same.
478 	 */
479 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
480 		return _PAGE_RW;
481 	return 0;
482 }
483 #else
484 static pgprotval_t protect_kernel_text_ro(unsigned long start,
485 					  unsigned long end)
486 {
487 	return 0;
488 }
489 #endif
490 
491 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
492 {
493 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
494 }
495 
496 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
497 				  unsigned long start, unsigned long end,
498 				  unsigned long pfn, const char *txt)
499 {
500 	static const char *lvltxt[] = {
501 		[CPA_CONFLICT]	= "conflict",
502 		[CPA_PROTECT]	= "protect",
503 		[CPA_DETECT]	= "detect",
504 	};
505 
506 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
507 		return;
508 
509 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
510 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
511 		(unsigned long long)val);
512 }
513 
514 /*
515  * Certain areas of memory on x86 require very specific protection flags,
516  * for example the BIOS area or kernel text. Callers don't always get this
517  * right (again, ioremap() on BIOS memory is not uncommon) so this function
518  * checks and fixes these known static required protection bits.
519  */
520 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
521 					  unsigned long pfn, unsigned long npg,
522 					  unsigned long lpsize, int warnlvl)
523 {
524 	pgprotval_t forbidden, res;
525 	unsigned long end;
526 
527 	/*
528 	 * There is no point in checking RW/NX conflicts when the requested
529 	 * mapping is setting the page !PRESENT.
530 	 */
531 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
532 		return prot;
533 
534 	/* Operate on the virtual address */
535 	end = start + npg * PAGE_SIZE - 1;
536 
537 	res = protect_kernel_text(start, end);
538 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
539 	forbidden = res;
540 
541 	/*
542 	 * Special case to preserve a large page. If the change spawns the
543 	 * full large page mapping then there is no point to split it
544 	 * up. Happens with ftrace and is going to be removed once ftrace
545 	 * switched to text_poke().
546 	 */
547 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
548 		res = protect_kernel_text_ro(start, end);
549 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
550 		forbidden |= res;
551 	}
552 
553 	/* Check the PFN directly */
554 	res = protect_pci_bios(pfn, pfn + npg - 1);
555 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
556 	forbidden |= res;
557 
558 	res = protect_rodata(pfn, pfn + npg - 1);
559 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
560 	forbidden |= res;
561 
562 	return __pgprot(pgprot_val(prot) & ~forbidden);
563 }
564 
565 /*
566  * Lookup the page table entry for a virtual address in a specific pgd.
567  * Return a pointer to the entry and the level of the mapping.
568  */
569 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
570 			     unsigned int *level)
571 {
572 	p4d_t *p4d;
573 	pud_t *pud;
574 	pmd_t *pmd;
575 
576 	*level = PG_LEVEL_NONE;
577 
578 	if (pgd_none(*pgd))
579 		return NULL;
580 
581 	p4d = p4d_offset(pgd, address);
582 	if (p4d_none(*p4d))
583 		return NULL;
584 
585 	*level = PG_LEVEL_512G;
586 	if (p4d_large(*p4d) || !p4d_present(*p4d))
587 		return (pte_t *)p4d;
588 
589 	pud = pud_offset(p4d, address);
590 	if (pud_none(*pud))
591 		return NULL;
592 
593 	*level = PG_LEVEL_1G;
594 	if (pud_large(*pud) || !pud_present(*pud))
595 		return (pte_t *)pud;
596 
597 	pmd = pmd_offset(pud, address);
598 	if (pmd_none(*pmd))
599 		return NULL;
600 
601 	*level = PG_LEVEL_2M;
602 	if (pmd_large(*pmd) || !pmd_present(*pmd))
603 		return (pte_t *)pmd;
604 
605 	*level = PG_LEVEL_4K;
606 
607 	return pte_offset_kernel(pmd, address);
608 }
609 
610 /*
611  * Lookup the page table entry for a virtual address. Return a pointer
612  * to the entry and the level of the mapping.
613  *
614  * Note: We return pud and pmd either when the entry is marked large
615  * or when the present bit is not set. Otherwise we would return a
616  * pointer to a nonexisting mapping.
617  */
618 pte_t *lookup_address(unsigned long address, unsigned int *level)
619 {
620 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
621 }
622 EXPORT_SYMBOL_GPL(lookup_address);
623 
624 /*
625  * Lookup the page table entry for a virtual address in a given mm. Return a
626  * pointer to the entry and the level of the mapping.
627  */
628 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
629 			    unsigned int *level)
630 {
631 	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
632 }
633 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
634 
635 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
636 				  unsigned int *level)
637 {
638 	if (cpa->pgd)
639 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
640 					       address, level);
641 
642 	return lookup_address(address, level);
643 }
644 
645 /*
646  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
647  * or NULL if not present.
648  */
649 pmd_t *lookup_pmd_address(unsigned long address)
650 {
651 	pgd_t *pgd;
652 	p4d_t *p4d;
653 	pud_t *pud;
654 
655 	pgd = pgd_offset_k(address);
656 	if (pgd_none(*pgd))
657 		return NULL;
658 
659 	p4d = p4d_offset(pgd, address);
660 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
661 		return NULL;
662 
663 	pud = pud_offset(p4d, address);
664 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
665 		return NULL;
666 
667 	return pmd_offset(pud, address);
668 }
669 
670 /*
671  * This is necessary because __pa() does not work on some
672  * kinds of memory, like vmalloc() or the alloc_remap()
673  * areas on 32-bit NUMA systems.  The percpu areas can
674  * end up in this kind of memory, for instance.
675  *
676  * This could be optimized, but it is only intended to be
677  * used at inititalization time, and keeping it
678  * unoptimized should increase the testing coverage for
679  * the more obscure platforms.
680  */
681 phys_addr_t slow_virt_to_phys(void *__virt_addr)
682 {
683 	unsigned long virt_addr = (unsigned long)__virt_addr;
684 	phys_addr_t phys_addr;
685 	unsigned long offset;
686 	enum pg_level level;
687 	pte_t *pte;
688 
689 	pte = lookup_address(virt_addr, &level);
690 	BUG_ON(!pte);
691 
692 	/*
693 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
694 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
695 	 * make 32-PAE kernel work correctly.
696 	 */
697 	switch (level) {
698 	case PG_LEVEL_1G:
699 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
700 		offset = virt_addr & ~PUD_PAGE_MASK;
701 		break;
702 	case PG_LEVEL_2M:
703 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
704 		offset = virt_addr & ~PMD_PAGE_MASK;
705 		break;
706 	default:
707 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
708 		offset = virt_addr & ~PAGE_MASK;
709 	}
710 
711 	return (phys_addr_t)(phys_addr | offset);
712 }
713 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
714 
715 /*
716  * Set the new pmd in all the pgds we know about:
717  */
718 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
719 {
720 	/* change init_mm */
721 	set_pte_atomic(kpte, pte);
722 #ifdef CONFIG_X86_32
723 	if (!SHARED_KERNEL_PMD) {
724 		struct page *page;
725 
726 		list_for_each_entry(page, &pgd_list, lru) {
727 			pgd_t *pgd;
728 			p4d_t *p4d;
729 			pud_t *pud;
730 			pmd_t *pmd;
731 
732 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
733 			p4d = p4d_offset(pgd, address);
734 			pud = pud_offset(p4d, address);
735 			pmd = pmd_offset(pud, address);
736 			set_pte_atomic((pte_t *)pmd, pte);
737 		}
738 	}
739 #endif
740 }
741 
742 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
743 {
744 	/*
745 	 * _PAGE_GLOBAL means "global page" for present PTEs.
746 	 * But, it is also used to indicate _PAGE_PROTNONE
747 	 * for non-present PTEs.
748 	 *
749 	 * This ensures that a _PAGE_GLOBAL PTE going from
750 	 * present to non-present is not confused as
751 	 * _PAGE_PROTNONE.
752 	 */
753 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
754 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
755 
756 	return prot;
757 }
758 
759 static int __should_split_large_page(pte_t *kpte, unsigned long address,
760 				     struct cpa_data *cpa)
761 {
762 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
763 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
764 	pte_t new_pte, *tmp;
765 	enum pg_level level;
766 
767 	/*
768 	 * Check for races, another CPU might have split this page
769 	 * up already:
770 	 */
771 	tmp = _lookup_address_cpa(cpa, address, &level);
772 	if (tmp != kpte)
773 		return 1;
774 
775 	switch (level) {
776 	case PG_LEVEL_2M:
777 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
778 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
779 		cpa_inc_2m_checked();
780 		break;
781 	case PG_LEVEL_1G:
782 		old_prot = pud_pgprot(*(pud_t *)kpte);
783 		old_pfn = pud_pfn(*(pud_t *)kpte);
784 		cpa_inc_1g_checked();
785 		break;
786 	default:
787 		return -EINVAL;
788 	}
789 
790 	psize = page_level_size(level);
791 	pmask = page_level_mask(level);
792 
793 	/*
794 	 * Calculate the number of pages, which fit into this large
795 	 * page starting at address:
796 	 */
797 	lpaddr = (address + psize) & pmask;
798 	numpages = (lpaddr - address) >> PAGE_SHIFT;
799 	if (numpages < cpa->numpages)
800 		cpa->numpages = numpages;
801 
802 	/*
803 	 * We are safe now. Check whether the new pgprot is the same:
804 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
805 	 * up accordingly.
806 	 */
807 
808 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
809 	req_prot = pgprot_large_2_4k(old_prot);
810 
811 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
812 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
813 
814 	/*
815 	 * req_prot is in format of 4k pages. It must be converted to large
816 	 * page format: the caching mode includes the PAT bit located at
817 	 * different bit positions in the two formats.
818 	 */
819 	req_prot = pgprot_4k_2_large(req_prot);
820 	req_prot = pgprot_clear_protnone_bits(req_prot);
821 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
822 		pgprot_val(req_prot) |= _PAGE_PSE;
823 
824 	/*
825 	 * old_pfn points to the large page base pfn. So we need to add the
826 	 * offset of the virtual address:
827 	 */
828 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
829 	cpa->pfn = pfn;
830 
831 	/*
832 	 * Calculate the large page base address and the number of 4K pages
833 	 * in the large page
834 	 */
835 	lpaddr = address & pmask;
836 	numpages = psize >> PAGE_SHIFT;
837 
838 	/*
839 	 * Sanity check that the existing mapping is correct versus the static
840 	 * protections. static_protections() guards against !PRESENT, so no
841 	 * extra conditional required here.
842 	 */
843 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
844 				      psize, CPA_CONFLICT);
845 
846 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
847 		/*
848 		 * Split the large page and tell the split code to
849 		 * enforce static protections.
850 		 */
851 		cpa->force_static_prot = 1;
852 		return 1;
853 	}
854 
855 	/*
856 	 * Optimization: If the requested pgprot is the same as the current
857 	 * pgprot, then the large page can be preserved and no updates are
858 	 * required independent of alignment and length of the requested
859 	 * range. The above already established that the current pgprot is
860 	 * correct, which in consequence makes the requested pgprot correct
861 	 * as well if it is the same. The static protection scan below will
862 	 * not come to a different conclusion.
863 	 */
864 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
865 		cpa_inc_lp_sameprot(level);
866 		return 0;
867 	}
868 
869 	/*
870 	 * If the requested range does not cover the full page, split it up
871 	 */
872 	if (address != lpaddr || cpa->numpages != numpages)
873 		return 1;
874 
875 	/*
876 	 * Check whether the requested pgprot is conflicting with a static
877 	 * protection requirement in the large page.
878 	 */
879 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
880 				      psize, CPA_DETECT);
881 
882 	/*
883 	 * If there is a conflict, split the large page.
884 	 *
885 	 * There used to be a 4k wise evaluation trying really hard to
886 	 * preserve the large pages, but experimentation has shown, that this
887 	 * does not help at all. There might be corner cases which would
888 	 * preserve one large page occasionally, but it's really not worth the
889 	 * extra code and cycles for the common case.
890 	 */
891 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
892 		return 1;
893 
894 	/* All checks passed. Update the large page mapping. */
895 	new_pte = pfn_pte(old_pfn, new_prot);
896 	__set_pmd_pte(kpte, address, new_pte);
897 	cpa->flags |= CPA_FLUSHTLB;
898 	cpa_inc_lp_preserved(level);
899 	return 0;
900 }
901 
902 static int should_split_large_page(pte_t *kpte, unsigned long address,
903 				   struct cpa_data *cpa)
904 {
905 	int do_split;
906 
907 	if (cpa->force_split)
908 		return 1;
909 
910 	spin_lock(&pgd_lock);
911 	do_split = __should_split_large_page(kpte, address, cpa);
912 	spin_unlock(&pgd_lock);
913 
914 	return do_split;
915 }
916 
917 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
918 			  pgprot_t ref_prot, unsigned long address,
919 			  unsigned long size)
920 {
921 	unsigned int npg = PFN_DOWN(size);
922 	pgprot_t prot;
923 
924 	/*
925 	 * If should_split_large_page() discovered an inconsistent mapping,
926 	 * remove the invalid protection in the split mapping.
927 	 */
928 	if (!cpa->force_static_prot)
929 		goto set;
930 
931 	/* Hand in lpsize = 0 to enforce the protection mechanism */
932 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
933 
934 	if (pgprot_val(prot) == pgprot_val(ref_prot))
935 		goto set;
936 
937 	/*
938 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
939 	 * fixed trivially as that would require to rescan the newly
940 	 * installed PMD mappings after returning from split_large_page()
941 	 * so an eventual further split can allocate the necessary PTE
942 	 * pages. Warn for now and revisit it in case this actually
943 	 * happens.
944 	 */
945 	if (size == PAGE_SIZE)
946 		ref_prot = prot;
947 	else
948 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
949 set:
950 	set_pte(pte, pfn_pte(pfn, ref_prot));
951 }
952 
953 static int
954 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
955 		   struct page *base)
956 {
957 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
958 	pte_t *pbase = (pte_t *)page_address(base);
959 	unsigned int i, level;
960 	pgprot_t ref_prot;
961 	pte_t *tmp;
962 
963 	spin_lock(&pgd_lock);
964 	/*
965 	 * Check for races, another CPU might have split this page
966 	 * up for us already:
967 	 */
968 	tmp = _lookup_address_cpa(cpa, address, &level);
969 	if (tmp != kpte) {
970 		spin_unlock(&pgd_lock);
971 		return 1;
972 	}
973 
974 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
975 
976 	switch (level) {
977 	case PG_LEVEL_2M:
978 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
979 		/*
980 		 * Clear PSE (aka _PAGE_PAT) and move
981 		 * PAT bit to correct position.
982 		 */
983 		ref_prot = pgprot_large_2_4k(ref_prot);
984 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
985 		lpaddr = address & PMD_MASK;
986 		lpinc = PAGE_SIZE;
987 		break;
988 
989 	case PG_LEVEL_1G:
990 		ref_prot = pud_pgprot(*(pud_t *)kpte);
991 		ref_pfn = pud_pfn(*(pud_t *)kpte);
992 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
993 		lpaddr = address & PUD_MASK;
994 		lpinc = PMD_SIZE;
995 		/*
996 		 * Clear the PSE flags if the PRESENT flag is not set
997 		 * otherwise pmd_present/pmd_huge will return true
998 		 * even on a non present pmd.
999 		 */
1000 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1001 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1002 		break;
1003 
1004 	default:
1005 		spin_unlock(&pgd_lock);
1006 		return 1;
1007 	}
1008 
1009 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1010 
1011 	/*
1012 	 * Get the target pfn from the original entry:
1013 	 */
1014 	pfn = ref_pfn;
1015 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1016 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1017 
1018 	if (virt_addr_valid(address)) {
1019 		unsigned long pfn = PFN_DOWN(__pa(address));
1020 
1021 		if (pfn_range_is_mapped(pfn, pfn + 1))
1022 			split_page_count(level);
1023 	}
1024 
1025 	/*
1026 	 * Install the new, split up pagetable.
1027 	 *
1028 	 * We use the standard kernel pagetable protections for the new
1029 	 * pagetable protections, the actual ptes set above control the
1030 	 * primary protection behavior:
1031 	 */
1032 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1033 
1034 	/*
1035 	 * Do a global flush tlb after splitting the large page
1036 	 * and before we do the actual change page attribute in the PTE.
1037 	 *
1038 	 * Without this, we violate the TLB application note, that says:
1039 	 * "The TLBs may contain both ordinary and large-page
1040 	 *  translations for a 4-KByte range of linear addresses. This
1041 	 *  may occur if software modifies the paging structures so that
1042 	 *  the page size used for the address range changes. If the two
1043 	 *  translations differ with respect to page frame or attributes
1044 	 *  (e.g., permissions), processor behavior is undefined and may
1045 	 *  be implementation-specific."
1046 	 *
1047 	 * We do this global tlb flush inside the cpa_lock, so that we
1048 	 * don't allow any other cpu, with stale tlb entries change the
1049 	 * page attribute in parallel, that also falls into the
1050 	 * just split large page entry.
1051 	 */
1052 	flush_tlb_all();
1053 	spin_unlock(&pgd_lock);
1054 
1055 	return 0;
1056 }
1057 
1058 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1059 			    unsigned long address)
1060 {
1061 	struct page *base;
1062 
1063 	if (!debug_pagealloc_enabled())
1064 		spin_unlock(&cpa_lock);
1065 	base = alloc_pages(GFP_KERNEL, 0);
1066 	if (!debug_pagealloc_enabled())
1067 		spin_lock(&cpa_lock);
1068 	if (!base)
1069 		return -ENOMEM;
1070 
1071 	if (__split_large_page(cpa, kpte, address, base))
1072 		__free_page(base);
1073 
1074 	return 0;
1075 }
1076 
1077 static bool try_to_free_pte_page(pte_t *pte)
1078 {
1079 	int i;
1080 
1081 	for (i = 0; i < PTRS_PER_PTE; i++)
1082 		if (!pte_none(pte[i]))
1083 			return false;
1084 
1085 	free_page((unsigned long)pte);
1086 	return true;
1087 }
1088 
1089 static bool try_to_free_pmd_page(pmd_t *pmd)
1090 {
1091 	int i;
1092 
1093 	for (i = 0; i < PTRS_PER_PMD; i++)
1094 		if (!pmd_none(pmd[i]))
1095 			return false;
1096 
1097 	free_page((unsigned long)pmd);
1098 	return true;
1099 }
1100 
1101 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1102 {
1103 	pte_t *pte = pte_offset_kernel(pmd, start);
1104 
1105 	while (start < end) {
1106 		set_pte(pte, __pte(0));
1107 
1108 		start += PAGE_SIZE;
1109 		pte++;
1110 	}
1111 
1112 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1113 		pmd_clear(pmd);
1114 		return true;
1115 	}
1116 	return false;
1117 }
1118 
1119 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1120 			      unsigned long start, unsigned long end)
1121 {
1122 	if (unmap_pte_range(pmd, start, end))
1123 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1124 			pud_clear(pud);
1125 }
1126 
1127 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1128 {
1129 	pmd_t *pmd = pmd_offset(pud, start);
1130 
1131 	/*
1132 	 * Not on a 2MB page boundary?
1133 	 */
1134 	if (start & (PMD_SIZE - 1)) {
1135 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1136 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1137 
1138 		__unmap_pmd_range(pud, pmd, start, pre_end);
1139 
1140 		start = pre_end;
1141 		pmd++;
1142 	}
1143 
1144 	/*
1145 	 * Try to unmap in 2M chunks.
1146 	 */
1147 	while (end - start >= PMD_SIZE) {
1148 		if (pmd_large(*pmd))
1149 			pmd_clear(pmd);
1150 		else
1151 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1152 
1153 		start += PMD_SIZE;
1154 		pmd++;
1155 	}
1156 
1157 	/*
1158 	 * 4K leftovers?
1159 	 */
1160 	if (start < end)
1161 		return __unmap_pmd_range(pud, pmd, start, end);
1162 
1163 	/*
1164 	 * Try again to free the PMD page if haven't succeeded above.
1165 	 */
1166 	if (!pud_none(*pud))
1167 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1168 			pud_clear(pud);
1169 }
1170 
1171 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1172 {
1173 	pud_t *pud = pud_offset(p4d, start);
1174 
1175 	/*
1176 	 * Not on a GB page boundary?
1177 	 */
1178 	if (start & (PUD_SIZE - 1)) {
1179 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1180 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1181 
1182 		unmap_pmd_range(pud, start, pre_end);
1183 
1184 		start = pre_end;
1185 		pud++;
1186 	}
1187 
1188 	/*
1189 	 * Try to unmap in 1G chunks?
1190 	 */
1191 	while (end - start >= PUD_SIZE) {
1192 
1193 		if (pud_large(*pud))
1194 			pud_clear(pud);
1195 		else
1196 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1197 
1198 		start += PUD_SIZE;
1199 		pud++;
1200 	}
1201 
1202 	/*
1203 	 * 2M leftovers?
1204 	 */
1205 	if (start < end)
1206 		unmap_pmd_range(pud, start, end);
1207 
1208 	/*
1209 	 * No need to try to free the PUD page because we'll free it in
1210 	 * populate_pgd's error path
1211 	 */
1212 }
1213 
1214 static int alloc_pte_page(pmd_t *pmd)
1215 {
1216 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1217 	if (!pte)
1218 		return -1;
1219 
1220 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1221 	return 0;
1222 }
1223 
1224 static int alloc_pmd_page(pud_t *pud)
1225 {
1226 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1227 	if (!pmd)
1228 		return -1;
1229 
1230 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1231 	return 0;
1232 }
1233 
1234 static void populate_pte(struct cpa_data *cpa,
1235 			 unsigned long start, unsigned long end,
1236 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1237 {
1238 	pte_t *pte;
1239 
1240 	pte = pte_offset_kernel(pmd, start);
1241 
1242 	pgprot = pgprot_clear_protnone_bits(pgprot);
1243 
1244 	while (num_pages-- && start < end) {
1245 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1246 
1247 		start	 += PAGE_SIZE;
1248 		cpa->pfn++;
1249 		pte++;
1250 	}
1251 }
1252 
1253 static long populate_pmd(struct cpa_data *cpa,
1254 			 unsigned long start, unsigned long end,
1255 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1256 {
1257 	long cur_pages = 0;
1258 	pmd_t *pmd;
1259 	pgprot_t pmd_pgprot;
1260 
1261 	/*
1262 	 * Not on a 2M boundary?
1263 	 */
1264 	if (start & (PMD_SIZE - 1)) {
1265 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1266 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1267 
1268 		pre_end   = min_t(unsigned long, pre_end, next_page);
1269 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1270 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1271 
1272 		/*
1273 		 * Need a PTE page?
1274 		 */
1275 		pmd = pmd_offset(pud, start);
1276 		if (pmd_none(*pmd))
1277 			if (alloc_pte_page(pmd))
1278 				return -1;
1279 
1280 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1281 
1282 		start = pre_end;
1283 	}
1284 
1285 	/*
1286 	 * We mapped them all?
1287 	 */
1288 	if (num_pages == cur_pages)
1289 		return cur_pages;
1290 
1291 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1292 
1293 	while (end - start >= PMD_SIZE) {
1294 
1295 		/*
1296 		 * We cannot use a 1G page so allocate a PMD page if needed.
1297 		 */
1298 		if (pud_none(*pud))
1299 			if (alloc_pmd_page(pud))
1300 				return -1;
1301 
1302 		pmd = pmd_offset(pud, start);
1303 
1304 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1305 					canon_pgprot(pmd_pgprot))));
1306 
1307 		start	  += PMD_SIZE;
1308 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1309 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1310 	}
1311 
1312 	/*
1313 	 * Map trailing 4K pages.
1314 	 */
1315 	if (start < end) {
1316 		pmd = pmd_offset(pud, start);
1317 		if (pmd_none(*pmd))
1318 			if (alloc_pte_page(pmd))
1319 				return -1;
1320 
1321 		populate_pte(cpa, start, end, num_pages - cur_pages,
1322 			     pmd, pgprot);
1323 	}
1324 	return num_pages;
1325 }
1326 
1327 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1328 			pgprot_t pgprot)
1329 {
1330 	pud_t *pud;
1331 	unsigned long end;
1332 	long cur_pages = 0;
1333 	pgprot_t pud_pgprot;
1334 
1335 	end = start + (cpa->numpages << PAGE_SHIFT);
1336 
1337 	/*
1338 	 * Not on a Gb page boundary? => map everything up to it with
1339 	 * smaller pages.
1340 	 */
1341 	if (start & (PUD_SIZE - 1)) {
1342 		unsigned long pre_end;
1343 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1344 
1345 		pre_end   = min_t(unsigned long, end, next_page);
1346 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1347 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1348 
1349 		pud = pud_offset(p4d, start);
1350 
1351 		/*
1352 		 * Need a PMD page?
1353 		 */
1354 		if (pud_none(*pud))
1355 			if (alloc_pmd_page(pud))
1356 				return -1;
1357 
1358 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1359 					 pud, pgprot);
1360 		if (cur_pages < 0)
1361 			return cur_pages;
1362 
1363 		start = pre_end;
1364 	}
1365 
1366 	/* We mapped them all? */
1367 	if (cpa->numpages == cur_pages)
1368 		return cur_pages;
1369 
1370 	pud = pud_offset(p4d, start);
1371 	pud_pgprot = pgprot_4k_2_large(pgprot);
1372 
1373 	/*
1374 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1375 	 */
1376 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1377 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1378 				   canon_pgprot(pud_pgprot))));
1379 
1380 		start	  += PUD_SIZE;
1381 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1382 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1383 		pud++;
1384 	}
1385 
1386 	/* Map trailing leftover */
1387 	if (start < end) {
1388 		long tmp;
1389 
1390 		pud = pud_offset(p4d, start);
1391 		if (pud_none(*pud))
1392 			if (alloc_pmd_page(pud))
1393 				return -1;
1394 
1395 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1396 				   pud, pgprot);
1397 		if (tmp < 0)
1398 			return cur_pages;
1399 
1400 		cur_pages += tmp;
1401 	}
1402 	return cur_pages;
1403 }
1404 
1405 /*
1406  * Restrictions for kernel page table do not necessarily apply when mapping in
1407  * an alternate PGD.
1408  */
1409 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1410 {
1411 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1412 	pud_t *pud = NULL;	/* shut up gcc */
1413 	p4d_t *p4d;
1414 	pgd_t *pgd_entry;
1415 	long ret;
1416 
1417 	pgd_entry = cpa->pgd + pgd_index(addr);
1418 
1419 	if (pgd_none(*pgd_entry)) {
1420 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1421 		if (!p4d)
1422 			return -1;
1423 
1424 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1425 	}
1426 
1427 	/*
1428 	 * Allocate a PUD page and hand it down for mapping.
1429 	 */
1430 	p4d = p4d_offset(pgd_entry, addr);
1431 	if (p4d_none(*p4d)) {
1432 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1433 		if (!pud)
1434 			return -1;
1435 
1436 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1437 	}
1438 
1439 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1440 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1441 
1442 	ret = populate_pud(cpa, addr, p4d, pgprot);
1443 	if (ret < 0) {
1444 		/*
1445 		 * Leave the PUD page in place in case some other CPU or thread
1446 		 * already found it, but remove any useless entries we just
1447 		 * added to it.
1448 		 */
1449 		unmap_pud_range(p4d, addr,
1450 				addr + (cpa->numpages << PAGE_SHIFT));
1451 		return ret;
1452 	}
1453 
1454 	cpa->numpages = ret;
1455 	return 0;
1456 }
1457 
1458 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1459 			       int primary)
1460 {
1461 	if (cpa->pgd) {
1462 		/*
1463 		 * Right now, we only execute this code path when mapping
1464 		 * the EFI virtual memory map regions, no other users
1465 		 * provide a ->pgd value. This may change in the future.
1466 		 */
1467 		return populate_pgd(cpa, vaddr);
1468 	}
1469 
1470 	/*
1471 	 * Ignore all non primary paths.
1472 	 */
1473 	if (!primary) {
1474 		cpa->numpages = 1;
1475 		return 0;
1476 	}
1477 
1478 	/*
1479 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1480 	 * to have holes.
1481 	 * Also set numpages to '1' indicating that we processed cpa req for
1482 	 * one virtual address page and its pfn. TBD: numpages can be set based
1483 	 * on the initial value and the level returned by lookup_address().
1484 	 */
1485 	if (within(vaddr, PAGE_OFFSET,
1486 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1487 		cpa->numpages = 1;
1488 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1489 		return 0;
1490 
1491 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1492 		/* Faults in the highmap are OK, so do not warn: */
1493 		return -EFAULT;
1494 	} else {
1495 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1496 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1497 			*cpa->vaddr);
1498 
1499 		return -EFAULT;
1500 	}
1501 }
1502 
1503 static int __change_page_attr(struct cpa_data *cpa, int primary)
1504 {
1505 	unsigned long address;
1506 	int do_split, err;
1507 	unsigned int level;
1508 	pte_t *kpte, old_pte;
1509 
1510 	address = __cpa_addr(cpa, cpa->curpage);
1511 repeat:
1512 	kpte = _lookup_address_cpa(cpa, address, &level);
1513 	if (!kpte)
1514 		return __cpa_process_fault(cpa, address, primary);
1515 
1516 	old_pte = *kpte;
1517 	if (pte_none(old_pte))
1518 		return __cpa_process_fault(cpa, address, primary);
1519 
1520 	if (level == PG_LEVEL_4K) {
1521 		pte_t new_pte;
1522 		pgprot_t new_prot = pte_pgprot(old_pte);
1523 		unsigned long pfn = pte_pfn(old_pte);
1524 
1525 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1526 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1527 
1528 		cpa_inc_4k_install();
1529 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1530 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1531 					      CPA_PROTECT);
1532 
1533 		new_prot = pgprot_clear_protnone_bits(new_prot);
1534 
1535 		/*
1536 		 * We need to keep the pfn from the existing PTE,
1537 		 * after all we're only going to change it's attributes
1538 		 * not the memory it points to
1539 		 */
1540 		new_pte = pfn_pte(pfn, new_prot);
1541 		cpa->pfn = pfn;
1542 		/*
1543 		 * Do we really change anything ?
1544 		 */
1545 		if (pte_val(old_pte) != pte_val(new_pte)) {
1546 			set_pte_atomic(kpte, new_pte);
1547 			cpa->flags |= CPA_FLUSHTLB;
1548 		}
1549 		cpa->numpages = 1;
1550 		return 0;
1551 	}
1552 
1553 	/*
1554 	 * Check, whether we can keep the large page intact
1555 	 * and just change the pte:
1556 	 */
1557 	do_split = should_split_large_page(kpte, address, cpa);
1558 	/*
1559 	 * When the range fits into the existing large page,
1560 	 * return. cp->numpages and cpa->tlbflush have been updated in
1561 	 * try_large_page:
1562 	 */
1563 	if (do_split <= 0)
1564 		return do_split;
1565 
1566 	/*
1567 	 * We have to split the large page:
1568 	 */
1569 	err = split_large_page(cpa, kpte, address);
1570 	if (!err)
1571 		goto repeat;
1572 
1573 	return err;
1574 }
1575 
1576 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1577 
1578 static int cpa_process_alias(struct cpa_data *cpa)
1579 {
1580 	struct cpa_data alias_cpa;
1581 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1582 	unsigned long vaddr;
1583 	int ret;
1584 
1585 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1586 		return 0;
1587 
1588 	/*
1589 	 * No need to redo, when the primary call touched the direct
1590 	 * mapping already:
1591 	 */
1592 	vaddr = __cpa_addr(cpa, cpa->curpage);
1593 	if (!(within(vaddr, PAGE_OFFSET,
1594 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1595 
1596 		alias_cpa = *cpa;
1597 		alias_cpa.vaddr = &laddr;
1598 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1599 		alias_cpa.curpage = 0;
1600 
1601 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1602 		if (ret)
1603 			return ret;
1604 	}
1605 
1606 #ifdef CONFIG_X86_64
1607 	/*
1608 	 * If the primary call didn't touch the high mapping already
1609 	 * and the physical address is inside the kernel map, we need
1610 	 * to touch the high mapped kernel as well:
1611 	 */
1612 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1613 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1614 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1615 					       __START_KERNEL_map - phys_base;
1616 		alias_cpa = *cpa;
1617 		alias_cpa.vaddr = &temp_cpa_vaddr;
1618 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1619 		alias_cpa.curpage = 0;
1620 
1621 		/*
1622 		 * The high mapping range is imprecise, so ignore the
1623 		 * return value.
1624 		 */
1625 		__change_page_attr_set_clr(&alias_cpa, 0);
1626 	}
1627 #endif
1628 
1629 	return 0;
1630 }
1631 
1632 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1633 {
1634 	unsigned long numpages = cpa->numpages;
1635 	unsigned long rempages = numpages;
1636 	int ret = 0;
1637 
1638 	while (rempages) {
1639 		/*
1640 		 * Store the remaining nr of pages for the large page
1641 		 * preservation check.
1642 		 */
1643 		cpa->numpages = rempages;
1644 		/* for array changes, we can't use large page */
1645 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1646 			cpa->numpages = 1;
1647 
1648 		if (!debug_pagealloc_enabled())
1649 			spin_lock(&cpa_lock);
1650 		ret = __change_page_attr(cpa, checkalias);
1651 		if (!debug_pagealloc_enabled())
1652 			spin_unlock(&cpa_lock);
1653 		if (ret)
1654 			goto out;
1655 
1656 		if (checkalias) {
1657 			ret = cpa_process_alias(cpa);
1658 			if (ret)
1659 				goto out;
1660 		}
1661 
1662 		/*
1663 		 * Adjust the number of pages with the result of the
1664 		 * CPA operation. Either a large page has been
1665 		 * preserved or a single page update happened.
1666 		 */
1667 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1668 		rempages -= cpa->numpages;
1669 		cpa->curpage += cpa->numpages;
1670 	}
1671 
1672 out:
1673 	/* Restore the original numpages */
1674 	cpa->numpages = numpages;
1675 	return ret;
1676 }
1677 
1678 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1679 				    pgprot_t mask_set, pgprot_t mask_clr,
1680 				    int force_split, int in_flag,
1681 				    struct page **pages)
1682 {
1683 	struct cpa_data cpa;
1684 	int ret, cache, checkalias;
1685 
1686 	memset(&cpa, 0, sizeof(cpa));
1687 
1688 	/*
1689 	 * Check, if we are requested to set a not supported
1690 	 * feature.  Clearing non-supported features is OK.
1691 	 */
1692 	mask_set = canon_pgprot(mask_set);
1693 
1694 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1695 		return 0;
1696 
1697 	/* Ensure we are PAGE_SIZE aligned */
1698 	if (in_flag & CPA_ARRAY) {
1699 		int i;
1700 		for (i = 0; i < numpages; i++) {
1701 			if (addr[i] & ~PAGE_MASK) {
1702 				addr[i] &= PAGE_MASK;
1703 				WARN_ON_ONCE(1);
1704 			}
1705 		}
1706 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1707 		/*
1708 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1709 		 * No need to check in that case
1710 		 */
1711 		if (*addr & ~PAGE_MASK) {
1712 			*addr &= PAGE_MASK;
1713 			/*
1714 			 * People should not be passing in unaligned addresses:
1715 			 */
1716 			WARN_ON_ONCE(1);
1717 		}
1718 	}
1719 
1720 	/* Must avoid aliasing mappings in the highmem code */
1721 	kmap_flush_unused();
1722 
1723 	vm_unmap_aliases();
1724 
1725 	cpa.vaddr = addr;
1726 	cpa.pages = pages;
1727 	cpa.numpages = numpages;
1728 	cpa.mask_set = mask_set;
1729 	cpa.mask_clr = mask_clr;
1730 	cpa.flags = 0;
1731 	cpa.curpage = 0;
1732 	cpa.force_split = force_split;
1733 
1734 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1735 		cpa.flags |= in_flag;
1736 
1737 	/* No alias checking for _NX bit modifications */
1738 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1739 	/* Has caller explicitly disabled alias checking? */
1740 	if (in_flag & CPA_NO_CHECK_ALIAS)
1741 		checkalias = 0;
1742 
1743 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1744 
1745 	/*
1746 	 * Check whether we really changed something:
1747 	 */
1748 	if (!(cpa.flags & CPA_FLUSHTLB))
1749 		goto out;
1750 
1751 	/*
1752 	 * No need to flush, when we did not set any of the caching
1753 	 * attributes:
1754 	 */
1755 	cache = !!pgprot2cachemode(mask_set);
1756 
1757 	/*
1758 	 * On error; flush everything to be sure.
1759 	 */
1760 	if (ret) {
1761 		cpa_flush_all(cache);
1762 		goto out;
1763 	}
1764 
1765 	cpa_flush(&cpa, cache);
1766 out:
1767 	return ret;
1768 }
1769 
1770 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1771 				       pgprot_t mask, int array)
1772 {
1773 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1774 		(array ? CPA_ARRAY : 0), NULL);
1775 }
1776 
1777 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1778 					 pgprot_t mask, int array)
1779 {
1780 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1781 		(array ? CPA_ARRAY : 0), NULL);
1782 }
1783 
1784 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1785 				       pgprot_t mask)
1786 {
1787 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1788 		CPA_PAGES_ARRAY, pages);
1789 }
1790 
1791 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1792 					 pgprot_t mask)
1793 {
1794 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1795 		CPA_PAGES_ARRAY, pages);
1796 }
1797 
1798 /*
1799  * _set_memory_prot is an internal helper for callers that have been passed
1800  * a pgprot_t value from upper layers and a reservation has already been taken.
1801  * If you want to set the pgprot to a specific page protocol, use the
1802  * set_memory_xx() functions.
1803  */
1804 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1805 {
1806 	return change_page_attr_set_clr(&addr, numpages, prot,
1807 					__pgprot(~pgprot_val(prot)), 0, 0,
1808 					NULL);
1809 }
1810 
1811 int _set_memory_uc(unsigned long addr, int numpages)
1812 {
1813 	/*
1814 	 * for now UC MINUS. see comments in ioremap()
1815 	 * If you really need strong UC use ioremap_uc(), but note
1816 	 * that you cannot override IO areas with set_memory_*() as
1817 	 * these helpers cannot work with IO memory.
1818 	 */
1819 	return change_page_attr_set(&addr, numpages,
1820 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1821 				    0);
1822 }
1823 
1824 int set_memory_uc(unsigned long addr, int numpages)
1825 {
1826 	int ret;
1827 
1828 	/*
1829 	 * for now UC MINUS. see comments in ioremap()
1830 	 */
1831 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1832 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1833 	if (ret)
1834 		goto out_err;
1835 
1836 	ret = _set_memory_uc(addr, numpages);
1837 	if (ret)
1838 		goto out_free;
1839 
1840 	return 0;
1841 
1842 out_free:
1843 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1844 out_err:
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL(set_memory_uc);
1848 
1849 int _set_memory_wc(unsigned long addr, int numpages)
1850 {
1851 	int ret;
1852 
1853 	ret = change_page_attr_set(&addr, numpages,
1854 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1855 				   0);
1856 	if (!ret) {
1857 		ret = change_page_attr_set_clr(&addr, numpages,
1858 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1859 					       __pgprot(_PAGE_CACHE_MASK),
1860 					       0, 0, NULL);
1861 	}
1862 	return ret;
1863 }
1864 
1865 int set_memory_wc(unsigned long addr, int numpages)
1866 {
1867 	int ret;
1868 
1869 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1870 		_PAGE_CACHE_MODE_WC, NULL);
1871 	if (ret)
1872 		return ret;
1873 
1874 	ret = _set_memory_wc(addr, numpages);
1875 	if (ret)
1876 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1877 
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(set_memory_wc);
1881 
1882 int _set_memory_wt(unsigned long addr, int numpages)
1883 {
1884 	return change_page_attr_set(&addr, numpages,
1885 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1886 }
1887 
1888 int _set_memory_wb(unsigned long addr, int numpages)
1889 {
1890 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1891 	return change_page_attr_clear(&addr, numpages,
1892 				      __pgprot(_PAGE_CACHE_MASK), 0);
1893 }
1894 
1895 int set_memory_wb(unsigned long addr, int numpages)
1896 {
1897 	int ret;
1898 
1899 	ret = _set_memory_wb(addr, numpages);
1900 	if (ret)
1901 		return ret;
1902 
1903 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL(set_memory_wb);
1907 
1908 int set_memory_x(unsigned long addr, int numpages)
1909 {
1910 	if (!(__supported_pte_mask & _PAGE_NX))
1911 		return 0;
1912 
1913 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1914 }
1915 
1916 int set_memory_nx(unsigned long addr, int numpages)
1917 {
1918 	if (!(__supported_pte_mask & _PAGE_NX))
1919 		return 0;
1920 
1921 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1922 }
1923 
1924 int set_memory_ro(unsigned long addr, int numpages)
1925 {
1926 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1927 }
1928 
1929 int set_memory_rw(unsigned long addr, int numpages)
1930 {
1931 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1932 }
1933 
1934 int set_memory_np(unsigned long addr, int numpages)
1935 {
1936 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1937 }
1938 
1939 int set_memory_np_noalias(unsigned long addr, int numpages)
1940 {
1941 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1942 
1943 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1944 					__pgprot(_PAGE_PRESENT), 0,
1945 					cpa_flags, NULL);
1946 }
1947 
1948 int set_memory_4k(unsigned long addr, int numpages)
1949 {
1950 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1951 					__pgprot(0), 1, 0, NULL);
1952 }
1953 
1954 int set_memory_nonglobal(unsigned long addr, int numpages)
1955 {
1956 	return change_page_attr_clear(&addr, numpages,
1957 				      __pgprot(_PAGE_GLOBAL), 0);
1958 }
1959 
1960 int set_memory_global(unsigned long addr, int numpages)
1961 {
1962 	return change_page_attr_set(&addr, numpages,
1963 				    __pgprot(_PAGE_GLOBAL), 0);
1964 }
1965 
1966 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1967 {
1968 	struct cpa_data cpa;
1969 	int ret;
1970 
1971 	/* Nothing to do if memory encryption is not active */
1972 	if (!mem_encrypt_active())
1973 		return 0;
1974 
1975 	/* Should not be working on unaligned addresses */
1976 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1977 		addr &= PAGE_MASK;
1978 
1979 	memset(&cpa, 0, sizeof(cpa));
1980 	cpa.vaddr = &addr;
1981 	cpa.numpages = numpages;
1982 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1983 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1984 	cpa.pgd = init_mm.pgd;
1985 
1986 	/* Must avoid aliasing mappings in the highmem code */
1987 	kmap_flush_unused();
1988 	vm_unmap_aliases();
1989 
1990 	/*
1991 	 * Before changing the encryption attribute, we need to flush caches.
1992 	 */
1993 	cpa_flush(&cpa, 1);
1994 
1995 	ret = __change_page_attr_set_clr(&cpa, 1);
1996 
1997 	/*
1998 	 * After changing the encryption attribute, we need to flush TLBs again
1999 	 * in case any speculative TLB caching occurred (but no need to flush
2000 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2001 	 * flushing gets optimized in the cpa_flush() path use the same logic
2002 	 * as above.
2003 	 */
2004 	cpa_flush(&cpa, 0);
2005 
2006 	return ret;
2007 }
2008 
2009 int set_memory_encrypted(unsigned long addr, int numpages)
2010 {
2011 	return __set_memory_enc_dec(addr, numpages, true);
2012 }
2013 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2014 
2015 int set_memory_decrypted(unsigned long addr, int numpages)
2016 {
2017 	return __set_memory_enc_dec(addr, numpages, false);
2018 }
2019 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2020 
2021 int set_pages_uc(struct page *page, int numpages)
2022 {
2023 	unsigned long addr = (unsigned long)page_address(page);
2024 
2025 	return set_memory_uc(addr, numpages);
2026 }
2027 EXPORT_SYMBOL(set_pages_uc);
2028 
2029 static int _set_pages_array(struct page **pages, int numpages,
2030 		enum page_cache_mode new_type)
2031 {
2032 	unsigned long start;
2033 	unsigned long end;
2034 	enum page_cache_mode set_type;
2035 	int i;
2036 	int free_idx;
2037 	int ret;
2038 
2039 	for (i = 0; i < numpages; i++) {
2040 		if (PageHighMem(pages[i]))
2041 			continue;
2042 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2043 		end = start + PAGE_SIZE;
2044 		if (memtype_reserve(start, end, new_type, NULL))
2045 			goto err_out;
2046 	}
2047 
2048 	/* If WC, set to UC- first and then WC */
2049 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2050 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2051 
2052 	ret = cpa_set_pages_array(pages, numpages,
2053 				  cachemode2pgprot(set_type));
2054 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2055 		ret = change_page_attr_set_clr(NULL, numpages,
2056 					       cachemode2pgprot(
2057 						_PAGE_CACHE_MODE_WC),
2058 					       __pgprot(_PAGE_CACHE_MASK),
2059 					       0, CPA_PAGES_ARRAY, pages);
2060 	if (ret)
2061 		goto err_out;
2062 	return 0; /* Success */
2063 err_out:
2064 	free_idx = i;
2065 	for (i = 0; i < free_idx; i++) {
2066 		if (PageHighMem(pages[i]))
2067 			continue;
2068 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2069 		end = start + PAGE_SIZE;
2070 		memtype_free(start, end);
2071 	}
2072 	return -EINVAL;
2073 }
2074 
2075 int set_pages_array_uc(struct page **pages, int numpages)
2076 {
2077 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2078 }
2079 EXPORT_SYMBOL(set_pages_array_uc);
2080 
2081 int set_pages_array_wc(struct page **pages, int numpages)
2082 {
2083 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2084 }
2085 EXPORT_SYMBOL(set_pages_array_wc);
2086 
2087 int set_pages_array_wt(struct page **pages, int numpages)
2088 {
2089 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2090 }
2091 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2092 
2093 int set_pages_wb(struct page *page, int numpages)
2094 {
2095 	unsigned long addr = (unsigned long)page_address(page);
2096 
2097 	return set_memory_wb(addr, numpages);
2098 }
2099 EXPORT_SYMBOL(set_pages_wb);
2100 
2101 int set_pages_array_wb(struct page **pages, int numpages)
2102 {
2103 	int retval;
2104 	unsigned long start;
2105 	unsigned long end;
2106 	int i;
2107 
2108 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2109 	retval = cpa_clear_pages_array(pages, numpages,
2110 			__pgprot(_PAGE_CACHE_MASK));
2111 	if (retval)
2112 		return retval;
2113 
2114 	for (i = 0; i < numpages; i++) {
2115 		if (PageHighMem(pages[i]))
2116 			continue;
2117 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2118 		end = start + PAGE_SIZE;
2119 		memtype_free(start, end);
2120 	}
2121 
2122 	return 0;
2123 }
2124 EXPORT_SYMBOL(set_pages_array_wb);
2125 
2126 int set_pages_ro(struct page *page, int numpages)
2127 {
2128 	unsigned long addr = (unsigned long)page_address(page);
2129 
2130 	return set_memory_ro(addr, numpages);
2131 }
2132 
2133 int set_pages_rw(struct page *page, int numpages)
2134 {
2135 	unsigned long addr = (unsigned long)page_address(page);
2136 
2137 	return set_memory_rw(addr, numpages);
2138 }
2139 
2140 static int __set_pages_p(struct page *page, int numpages)
2141 {
2142 	unsigned long tempaddr = (unsigned long) page_address(page);
2143 	struct cpa_data cpa = { .vaddr = &tempaddr,
2144 				.pgd = NULL,
2145 				.numpages = numpages,
2146 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2147 				.mask_clr = __pgprot(0),
2148 				.flags = 0};
2149 
2150 	/*
2151 	 * No alias checking needed for setting present flag. otherwise,
2152 	 * we may need to break large pages for 64-bit kernel text
2153 	 * mappings (this adds to complexity if we want to do this from
2154 	 * atomic context especially). Let's keep it simple!
2155 	 */
2156 	return __change_page_attr_set_clr(&cpa, 0);
2157 }
2158 
2159 static int __set_pages_np(struct page *page, int numpages)
2160 {
2161 	unsigned long tempaddr = (unsigned long) page_address(page);
2162 	struct cpa_data cpa = { .vaddr = &tempaddr,
2163 				.pgd = NULL,
2164 				.numpages = numpages,
2165 				.mask_set = __pgprot(0),
2166 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2167 				.flags = 0};
2168 
2169 	/*
2170 	 * No alias checking needed for setting not present flag. otherwise,
2171 	 * we may need to break large pages for 64-bit kernel text
2172 	 * mappings (this adds to complexity if we want to do this from
2173 	 * atomic context especially). Let's keep it simple!
2174 	 */
2175 	return __change_page_attr_set_clr(&cpa, 0);
2176 }
2177 
2178 int set_direct_map_invalid_noflush(struct page *page)
2179 {
2180 	return __set_pages_np(page, 1);
2181 }
2182 
2183 int set_direct_map_default_noflush(struct page *page)
2184 {
2185 	return __set_pages_p(page, 1);
2186 }
2187 
2188 void __kernel_map_pages(struct page *page, int numpages, int enable)
2189 {
2190 	if (PageHighMem(page))
2191 		return;
2192 	if (!enable) {
2193 		debug_check_no_locks_freed(page_address(page),
2194 					   numpages * PAGE_SIZE);
2195 	}
2196 
2197 	/*
2198 	 * The return value is ignored as the calls cannot fail.
2199 	 * Large pages for identity mappings are not used at boot time
2200 	 * and hence no memory allocations during large page split.
2201 	 */
2202 	if (enable)
2203 		__set_pages_p(page, numpages);
2204 	else
2205 		__set_pages_np(page, numpages);
2206 
2207 	/*
2208 	 * We should perform an IPI and flush all tlbs,
2209 	 * but that can deadlock->flush only current cpu.
2210 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2211 	 * CR3 reload in __native_flush_tlb().
2212 	 */
2213 	preempt_disable();
2214 	__flush_tlb_all();
2215 	preempt_enable();
2216 
2217 	arch_flush_lazy_mmu_mode();
2218 }
2219 
2220 #ifdef CONFIG_HIBERNATION
2221 bool kernel_page_present(struct page *page)
2222 {
2223 	unsigned int level;
2224 	pte_t *pte;
2225 
2226 	if (PageHighMem(page))
2227 		return false;
2228 
2229 	pte = lookup_address((unsigned long)page_address(page), &level);
2230 	return (pte_val(*pte) & _PAGE_PRESENT);
2231 }
2232 #endif /* CONFIG_HIBERNATION */
2233 
2234 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2235 				   unsigned numpages, unsigned long page_flags)
2236 {
2237 	int retval = -EINVAL;
2238 
2239 	struct cpa_data cpa = {
2240 		.vaddr = &address,
2241 		.pfn = pfn,
2242 		.pgd = pgd,
2243 		.numpages = numpages,
2244 		.mask_set = __pgprot(0),
2245 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2246 		.flags = 0,
2247 	};
2248 
2249 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2250 
2251 	if (!(__supported_pte_mask & _PAGE_NX))
2252 		goto out;
2253 
2254 	if (!(page_flags & _PAGE_ENC))
2255 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2256 
2257 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2258 
2259 	retval = __change_page_attr_set_clr(&cpa, 0);
2260 	__flush_tlb_all();
2261 
2262 out:
2263 	return retval;
2264 }
2265 
2266 /*
2267  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2268  * function shouldn't be used in an SMP environment. Presently, it's used only
2269  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2270  */
2271 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2272 				     unsigned long numpages)
2273 {
2274 	int retval;
2275 
2276 	/*
2277 	 * The typical sequence for unmapping is to find a pte through
2278 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2279 	 * the address is already mapped) and change it's protections. As pfn is
2280 	 * the *target* of a mapping, it's not useful while unmapping.
2281 	 */
2282 	struct cpa_data cpa = {
2283 		.vaddr		= &address,
2284 		.pfn		= 0,
2285 		.pgd		= pgd,
2286 		.numpages	= numpages,
2287 		.mask_set	= __pgprot(0),
2288 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2289 		.flags		= 0,
2290 	};
2291 
2292 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2293 
2294 	retval = __change_page_attr_set_clr(&cpa, 0);
2295 	__flush_tlb_all();
2296 
2297 	return retval;
2298 }
2299 
2300 /*
2301  * The testcases use internal knowledge of the implementation that shouldn't
2302  * be exposed to the rest of the kernel. Include these directly here.
2303  */
2304 #ifdef CONFIG_CPA_DEBUG
2305 #include "cpa-test.c"
2306 #endif
2307