xref: /openbmc/linux/arch/x86/mm/pat/memtype.c (revision 9d4fa1a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44 
45 #include <asm/cacheflush.h>
46 #include <asm/processor.h>
47 #include <asm/tlbflush.h>
48 #include <asm/x86_init.h>
49 #include <asm/pgtable.h>
50 #include <asm/fcntl.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/page.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/io.h>
57 
58 #include "memtype.h"
59 #include "../mm_internal.h"
60 
61 #undef pr_fmt
62 #define pr_fmt(fmt) "" fmt
63 
64 static bool __read_mostly pat_bp_initialized;
65 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
66 static bool __read_mostly pat_bp_enabled;
67 static bool __read_mostly pat_cm_initialized;
68 
69 /*
70  * PAT support is enabled by default, but can be disabled for
71  * various user-requested or hardware-forced reasons:
72  */
73 void pat_disable(const char *msg_reason)
74 {
75 	if (pat_disabled)
76 		return;
77 
78 	if (pat_bp_initialized) {
79 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
80 		return;
81 	}
82 
83 	pat_disabled = true;
84 	pr_info("x86/PAT: %s\n", msg_reason);
85 }
86 
87 static int __init nopat(char *str)
88 {
89 	pat_disable("PAT support disabled via boot option.");
90 	return 0;
91 }
92 early_param("nopat", nopat);
93 
94 bool pat_enabled(void)
95 {
96 	return pat_bp_enabled;
97 }
98 EXPORT_SYMBOL_GPL(pat_enabled);
99 
100 int pat_debug_enable;
101 
102 static int __init pat_debug_setup(char *str)
103 {
104 	pat_debug_enable = 1;
105 	return 0;
106 }
107 __setup("debugpat", pat_debug_setup);
108 
109 #ifdef CONFIG_X86_PAT
110 /*
111  * X86 PAT uses page flags arch_1 and uncached together to keep track of
112  * memory type of pages that have backing page struct.
113  *
114  * X86 PAT supports 4 different memory types:
115  *  - _PAGE_CACHE_MODE_WB
116  *  - _PAGE_CACHE_MODE_WC
117  *  - _PAGE_CACHE_MODE_UC_MINUS
118  *  - _PAGE_CACHE_MODE_WT
119  *
120  * _PAGE_CACHE_MODE_WB is the default type.
121  */
122 
123 #define _PGMT_WB		0
124 #define _PGMT_WC		(1UL << PG_arch_1)
125 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
126 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
127 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
128 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
129 
130 static inline enum page_cache_mode get_page_memtype(struct page *pg)
131 {
132 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
133 
134 	if (pg_flags == _PGMT_WB)
135 		return _PAGE_CACHE_MODE_WB;
136 	else if (pg_flags == _PGMT_WC)
137 		return _PAGE_CACHE_MODE_WC;
138 	else if (pg_flags == _PGMT_UC_MINUS)
139 		return _PAGE_CACHE_MODE_UC_MINUS;
140 	else
141 		return _PAGE_CACHE_MODE_WT;
142 }
143 
144 static inline void set_page_memtype(struct page *pg,
145 				    enum page_cache_mode memtype)
146 {
147 	unsigned long memtype_flags;
148 	unsigned long old_flags;
149 	unsigned long new_flags;
150 
151 	switch (memtype) {
152 	case _PAGE_CACHE_MODE_WC:
153 		memtype_flags = _PGMT_WC;
154 		break;
155 	case _PAGE_CACHE_MODE_UC_MINUS:
156 		memtype_flags = _PGMT_UC_MINUS;
157 		break;
158 	case _PAGE_CACHE_MODE_WT:
159 		memtype_flags = _PGMT_WT;
160 		break;
161 	case _PAGE_CACHE_MODE_WB:
162 	default:
163 		memtype_flags = _PGMT_WB;
164 		break;
165 	}
166 
167 	do {
168 		old_flags = pg->flags;
169 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
170 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
171 }
172 #else
173 static inline enum page_cache_mode get_page_memtype(struct page *pg)
174 {
175 	return -1;
176 }
177 static inline void set_page_memtype(struct page *pg,
178 				    enum page_cache_mode memtype)
179 {
180 }
181 #endif
182 
183 enum {
184 	PAT_UC = 0,		/* uncached */
185 	PAT_WC = 1,		/* Write combining */
186 	PAT_WT = 4,		/* Write Through */
187 	PAT_WP = 5,		/* Write Protected */
188 	PAT_WB = 6,		/* Write Back (default) */
189 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
190 };
191 
192 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
193 
194 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
195 {
196 	enum page_cache_mode cache;
197 	char *cache_mode;
198 
199 	switch (pat_val) {
200 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
201 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
202 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
203 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
204 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
205 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
206 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
207 	}
208 
209 	memcpy(msg, cache_mode, 4);
210 
211 	return cache;
212 }
213 
214 #undef CM
215 
216 /*
217  * Update the cache mode to pgprot translation tables according to PAT
218  * configuration.
219  * Using lower indices is preferred, so we start with highest index.
220  */
221 static void __init_cache_modes(u64 pat)
222 {
223 	enum page_cache_mode cache;
224 	char pat_msg[33];
225 	int i;
226 
227 	WARN_ON_ONCE(pat_cm_initialized);
228 
229 	pat_msg[32] = 0;
230 	for (i = 7; i >= 0; i--) {
231 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
232 					   pat_msg + 4 * i);
233 		update_cache_mode_entry(i, cache);
234 	}
235 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
236 
237 	pat_cm_initialized = true;
238 }
239 
240 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
241 
242 static void pat_bp_init(u64 pat)
243 {
244 	u64 tmp_pat;
245 
246 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
247 		pat_disable("PAT not supported by the CPU.");
248 		return;
249 	}
250 
251 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
252 	if (!tmp_pat) {
253 		pat_disable("PAT support disabled by the firmware.");
254 		return;
255 	}
256 
257 	wrmsrl(MSR_IA32_CR_PAT, pat);
258 	pat_bp_enabled = true;
259 
260 	__init_cache_modes(pat);
261 }
262 
263 static void pat_ap_init(u64 pat)
264 {
265 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
266 		/*
267 		 * If this happens we are on a secondary CPU, but switched to
268 		 * PAT on the boot CPU. We have no way to undo PAT.
269 		 */
270 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
271 	}
272 
273 	wrmsrl(MSR_IA32_CR_PAT, pat);
274 }
275 
276 void init_cache_modes(void)
277 {
278 	u64 pat = 0;
279 
280 	if (pat_cm_initialized)
281 		return;
282 
283 	if (boot_cpu_has(X86_FEATURE_PAT)) {
284 		/*
285 		 * CPU supports PAT. Set PAT table to be consistent with
286 		 * PAT MSR. This case supports "nopat" boot option, and
287 		 * virtual machine environments which support PAT without
288 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
289 		 *
290 		 * If PAT MSR returns 0, it is considered invalid and emulates
291 		 * as No PAT.
292 		 */
293 		rdmsrl(MSR_IA32_CR_PAT, pat);
294 	}
295 
296 	if (!pat) {
297 		/*
298 		 * No PAT. Emulate the PAT table that corresponds to the two
299 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
300 		 * This setup is also the same as the BIOS default setup.
301 		 *
302 		 * PTE encoding:
303 		 *
304 		 *       PCD
305 		 *       |PWT  PAT
306 		 *       ||    slot
307 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
308 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
309 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
310 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
311 		 *
312 		 * NOTE: When WC or WP is used, it is redirected to UC- per
313 		 * the default setup in __cachemode2pte_tbl[].
314 		 */
315 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
316 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
317 	}
318 
319 	__init_cache_modes(pat);
320 }
321 
322 /**
323  * pat_init - Initialize the PAT MSR and PAT table on the current CPU
324  *
325  * This function initializes PAT MSR and PAT table with an OS-defined value
326  * to enable additional cache attributes, WC, WT and WP.
327  *
328  * This function must be called on all CPUs using the specific sequence of
329  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
330  * procedure for PAT.
331  */
332 void pat_init(void)
333 {
334 	u64 pat;
335 	struct cpuinfo_x86 *c = &boot_cpu_data;
336 
337 #ifndef CONFIG_X86_PAT
338 	pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
339 #endif
340 
341 	if (pat_disabled)
342 		return;
343 
344 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
345 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
346 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
347 		/*
348 		 * PAT support with the lower four entries. Intel Pentium 2,
349 		 * 3, M, and 4 are affected by PAT errata, which makes the
350 		 * upper four entries unusable. To be on the safe side, we don't
351 		 * use those.
352 		 *
353 		 *  PTE encoding:
354 		 *      PAT
355 		 *      |PCD
356 		 *      ||PWT  PAT
357 		 *      |||    slot
358 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
359 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
360 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
361 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
362 		 * PAT bit unused
363 		 *
364 		 * NOTE: When WT or WP is used, it is redirected to UC- per
365 		 * the default setup in __cachemode2pte_tbl[].
366 		 */
367 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
368 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
369 	} else {
370 		/*
371 		 * Full PAT support.  We put WT in slot 7 to improve
372 		 * robustness in the presence of errata that might cause
373 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
374 		 * access will hit slot 3, and slot 3 is UC, so at worst
375 		 * we lose performance without causing a correctness issue.
376 		 * Pentium 4 erratum N46 is an example for such an erratum,
377 		 * although we try not to use PAT at all on affected CPUs.
378 		 *
379 		 *  PTE encoding:
380 		 *      PAT
381 		 *      |PCD
382 		 *      ||PWT  PAT
383 		 *      |||    slot
384 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
385 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
386 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
387 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
388 		 *      100    4    WB : Reserved
389 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
390 		 *      110    6    UC-: Reserved
391 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
392 		 *
393 		 * The reserved slots are unused, but mapped to their
394 		 * corresponding types in the presence of PAT errata.
395 		 */
396 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
397 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
398 	}
399 
400 	if (!pat_bp_initialized) {
401 		pat_bp_init(pat);
402 		pat_bp_initialized = true;
403 	} else {
404 		pat_ap_init(pat);
405 	}
406 }
407 
408 #undef PAT
409 
410 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
411 
412 /*
413  * Does intersection of PAT memory type and MTRR memory type and returns
414  * the resulting memory type as PAT understands it.
415  * (Type in pat and mtrr will not have same value)
416  * The intersection is based on "Effective Memory Type" tables in IA-32
417  * SDM vol 3a
418  */
419 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
420 				     enum page_cache_mode req_type)
421 {
422 	/*
423 	 * Look for MTRR hint to get the effective type in case where PAT
424 	 * request is for WB.
425 	 */
426 	if (req_type == _PAGE_CACHE_MODE_WB) {
427 		u8 mtrr_type, uniform;
428 
429 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
430 		if (mtrr_type != MTRR_TYPE_WRBACK)
431 			return _PAGE_CACHE_MODE_UC_MINUS;
432 
433 		return _PAGE_CACHE_MODE_WB;
434 	}
435 
436 	return req_type;
437 }
438 
439 struct pagerange_state {
440 	unsigned long		cur_pfn;
441 	int			ram;
442 	int			not_ram;
443 };
444 
445 static int
446 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
447 {
448 	struct pagerange_state *state = arg;
449 
450 	state->not_ram	|= initial_pfn > state->cur_pfn;
451 	state->ram	|= total_nr_pages > 0;
452 	state->cur_pfn	 = initial_pfn + total_nr_pages;
453 
454 	return state->ram && state->not_ram;
455 }
456 
457 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
458 {
459 	int ret = 0;
460 	unsigned long start_pfn = start >> PAGE_SHIFT;
461 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
462 	struct pagerange_state state = {start_pfn, 0, 0};
463 
464 	/*
465 	 * For legacy reasons, physical address range in the legacy ISA
466 	 * region is tracked as non-RAM. This will allow users of
467 	 * /dev/mem to map portions of legacy ISA region, even when
468 	 * some of those portions are listed(or not even listed) with
469 	 * different e820 types(RAM/reserved/..)
470 	 */
471 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
472 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
473 
474 	if (start_pfn < end_pfn) {
475 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
476 				&state, pagerange_is_ram_callback);
477 	}
478 
479 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
480 }
481 
482 /*
483  * For RAM pages, we use page flags to mark the pages with appropriate type.
484  * The page flags are limited to four types, WB (default), WC, WT and UC-.
485  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
486  * a new memory type is only allowed for a page mapped with the default WB
487  * type.
488  *
489  * Here we do two passes:
490  * - Find the memtype of all the pages in the range, look for any conflicts.
491  * - In case of no conflicts, set the new memtype for pages in the range.
492  */
493 static int reserve_ram_pages_type(u64 start, u64 end,
494 				  enum page_cache_mode req_type,
495 				  enum page_cache_mode *new_type)
496 {
497 	struct page *page;
498 	u64 pfn;
499 
500 	if (req_type == _PAGE_CACHE_MODE_WP) {
501 		if (new_type)
502 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
503 		return -EINVAL;
504 	}
505 
506 	if (req_type == _PAGE_CACHE_MODE_UC) {
507 		/* We do not support strong UC */
508 		WARN_ON_ONCE(1);
509 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
510 	}
511 
512 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
513 		enum page_cache_mode type;
514 
515 		page = pfn_to_page(pfn);
516 		type = get_page_memtype(page);
517 		if (type != _PAGE_CACHE_MODE_WB) {
518 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
519 				start, end - 1, type, req_type);
520 			if (new_type)
521 				*new_type = type;
522 
523 			return -EBUSY;
524 		}
525 	}
526 
527 	if (new_type)
528 		*new_type = req_type;
529 
530 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
531 		page = pfn_to_page(pfn);
532 		set_page_memtype(page, req_type);
533 	}
534 	return 0;
535 }
536 
537 static int free_ram_pages_type(u64 start, u64 end)
538 {
539 	struct page *page;
540 	u64 pfn;
541 
542 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
543 		page = pfn_to_page(pfn);
544 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
545 	}
546 	return 0;
547 }
548 
549 static u64 sanitize_phys(u64 address)
550 {
551 	/*
552 	 * When changing the memtype for pages containing poison allow
553 	 * for a "decoy" virtual address (bit 63 clear) passed to
554 	 * set_memory_X(). __pa() on a "decoy" address results in a
555 	 * physical address with bit 63 set.
556 	 *
557 	 * Decoy addresses are not present for 32-bit builds, see
558 	 * set_mce_nospec().
559 	 */
560 	if (IS_ENABLED(CONFIG_X86_64))
561 		return address & __PHYSICAL_MASK;
562 	return address;
563 }
564 
565 /*
566  * req_type typically has one of the:
567  * - _PAGE_CACHE_MODE_WB
568  * - _PAGE_CACHE_MODE_WC
569  * - _PAGE_CACHE_MODE_UC_MINUS
570  * - _PAGE_CACHE_MODE_UC
571  * - _PAGE_CACHE_MODE_WT
572  *
573  * If new_type is NULL, function will return an error if it cannot reserve the
574  * region with req_type. If new_type is non-NULL, function will return
575  * available type in new_type in case of no error. In case of any error
576  * it will return a negative return value.
577  */
578 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
579 		    enum page_cache_mode *new_type)
580 {
581 	struct memtype *entry_new;
582 	enum page_cache_mode actual_type;
583 	int is_range_ram;
584 	int err = 0;
585 
586 	start = sanitize_phys(start);
587 	end = sanitize_phys(end);
588 	if (start >= end) {
589 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
590 				start, end - 1, cattr_name(req_type));
591 		return -EINVAL;
592 	}
593 
594 	if (!pat_enabled()) {
595 		/* This is identical to page table setting without PAT */
596 		if (new_type)
597 			*new_type = req_type;
598 		return 0;
599 	}
600 
601 	/* Low ISA region is always mapped WB in page table. No need to track */
602 	if (x86_platform.is_untracked_pat_range(start, end)) {
603 		if (new_type)
604 			*new_type = _PAGE_CACHE_MODE_WB;
605 		return 0;
606 	}
607 
608 	/*
609 	 * Call mtrr_lookup to get the type hint. This is an
610 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
611 	 * tools and ACPI tools). Use WB request for WB memory and use
612 	 * UC_MINUS otherwise.
613 	 */
614 	actual_type = pat_x_mtrr_type(start, end, req_type);
615 
616 	if (new_type)
617 		*new_type = actual_type;
618 
619 	is_range_ram = pat_pagerange_is_ram(start, end);
620 	if (is_range_ram == 1) {
621 
622 		err = reserve_ram_pages_type(start, end, req_type, new_type);
623 
624 		return err;
625 	} else if (is_range_ram < 0) {
626 		return -EINVAL;
627 	}
628 
629 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
630 	if (!entry_new)
631 		return -ENOMEM;
632 
633 	entry_new->start = start;
634 	entry_new->end	 = end;
635 	entry_new->type	 = actual_type;
636 
637 	spin_lock(&memtype_lock);
638 
639 	err = memtype_check_insert(entry_new, new_type);
640 	if (err) {
641 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
642 			start, end - 1,
643 			cattr_name(entry_new->type), cattr_name(req_type));
644 		kfree(entry_new);
645 		spin_unlock(&memtype_lock);
646 
647 		return err;
648 	}
649 
650 	spin_unlock(&memtype_lock);
651 
652 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
653 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
654 		new_type ? cattr_name(*new_type) : "-");
655 
656 	return err;
657 }
658 
659 int memtype_free(u64 start, u64 end)
660 {
661 	int is_range_ram;
662 	struct memtype *entry_old;
663 
664 	if (!pat_enabled())
665 		return 0;
666 
667 	start = sanitize_phys(start);
668 	end = sanitize_phys(end);
669 
670 	/* Low ISA region is always mapped WB. No need to track */
671 	if (x86_platform.is_untracked_pat_range(start, end))
672 		return 0;
673 
674 	is_range_ram = pat_pagerange_is_ram(start, end);
675 	if (is_range_ram == 1)
676 		return free_ram_pages_type(start, end);
677 	if (is_range_ram < 0)
678 		return -EINVAL;
679 
680 	spin_lock(&memtype_lock);
681 	entry_old = memtype_erase(start, end);
682 	spin_unlock(&memtype_lock);
683 
684 	if (IS_ERR(entry_old)) {
685 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
686 			current->comm, current->pid, start, end - 1);
687 		return -EINVAL;
688 	}
689 
690 	kfree(entry_old);
691 
692 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
693 
694 	return 0;
695 }
696 
697 
698 /**
699  * lookup_memtype - Looksup the memory type for a physical address
700  * @paddr: physical address of which memory type needs to be looked up
701  *
702  * Only to be called when PAT is enabled
703  *
704  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
705  * or _PAGE_CACHE_MODE_WT.
706  */
707 static enum page_cache_mode lookup_memtype(u64 paddr)
708 {
709 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
710 	struct memtype *entry;
711 
712 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
713 		return rettype;
714 
715 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
716 		struct page *page;
717 
718 		page = pfn_to_page(paddr >> PAGE_SHIFT);
719 		return get_page_memtype(page);
720 	}
721 
722 	spin_lock(&memtype_lock);
723 
724 	entry = memtype_lookup(paddr);
725 	if (entry != NULL)
726 		rettype = entry->type;
727 	else
728 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
729 
730 	spin_unlock(&memtype_lock);
731 
732 	return rettype;
733 }
734 
735 /**
736  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
737  * of @pfn cannot be overridden by UC MTRR memory type.
738  *
739  * Only to be called when PAT is enabled.
740  *
741  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
742  * Returns false in other cases.
743  */
744 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
745 {
746 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
747 
748 	return cm == _PAGE_CACHE_MODE_UC ||
749 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
750 	       cm == _PAGE_CACHE_MODE_WC;
751 }
752 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
753 
754 /**
755  * memtype_reserve_io - Request a memory type mapping for a region of memory
756  * @start: start (physical address) of the region
757  * @end: end (physical address) of the region
758  * @type: A pointer to memtype, with requested type. On success, requested
759  * or any other compatible type that was available for the region is returned
760  *
761  * On success, returns 0
762  * On failure, returns non-zero
763  */
764 int memtype_reserve_io(resource_size_t start, resource_size_t end,
765 			enum page_cache_mode *type)
766 {
767 	resource_size_t size = end - start;
768 	enum page_cache_mode req_type = *type;
769 	enum page_cache_mode new_type;
770 	int ret;
771 
772 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
773 
774 	ret = memtype_reserve(start, end, req_type, &new_type);
775 	if (ret)
776 		goto out_err;
777 
778 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
779 		goto out_free;
780 
781 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
782 		goto out_free;
783 
784 	*type = new_type;
785 	return 0;
786 
787 out_free:
788 	memtype_free(start, end);
789 	ret = -EBUSY;
790 out_err:
791 	return ret;
792 }
793 
794 /**
795  * memtype_free_io - Release a memory type mapping for a region of memory
796  * @start: start (physical address) of the region
797  * @end: end (physical address) of the region
798  */
799 void memtype_free_io(resource_size_t start, resource_size_t end)
800 {
801 	memtype_free(start, end);
802 }
803 
804 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
805 {
806 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
807 
808 	return memtype_reserve_io(start, start + size, &type);
809 }
810 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
811 
812 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
813 {
814 	memtype_free_io(start, start + size);
815 }
816 EXPORT_SYMBOL(arch_io_free_memtype_wc);
817 
818 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
819 				unsigned long size, pgprot_t vma_prot)
820 {
821 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
822 		vma_prot = pgprot_decrypted(vma_prot);
823 
824 	return vma_prot;
825 }
826 
827 #ifdef CONFIG_STRICT_DEVMEM
828 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
829 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
830 {
831 	return 1;
832 }
833 #else
834 /* This check is needed to avoid cache aliasing when PAT is enabled */
835 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
836 {
837 	u64 from = ((u64)pfn) << PAGE_SHIFT;
838 	u64 to = from + size;
839 	u64 cursor = from;
840 
841 	if (!pat_enabled())
842 		return 1;
843 
844 	while (cursor < to) {
845 		if (!devmem_is_allowed(pfn))
846 			return 0;
847 		cursor += PAGE_SIZE;
848 		pfn++;
849 	}
850 	return 1;
851 }
852 #endif /* CONFIG_STRICT_DEVMEM */
853 
854 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
855 				unsigned long size, pgprot_t *vma_prot)
856 {
857 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
858 
859 	if (!range_is_allowed(pfn, size))
860 		return 0;
861 
862 	if (file->f_flags & O_DSYNC)
863 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
864 
865 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
866 			     cachemode2protval(pcm));
867 	return 1;
868 }
869 
870 /*
871  * Change the memory type for the physical address range in kernel identity
872  * mapping space if that range is a part of identity map.
873  */
874 int memtype_kernel_map_sync(u64 base, unsigned long size,
875 			    enum page_cache_mode pcm)
876 {
877 	unsigned long id_sz;
878 
879 	if (base > __pa(high_memory-1))
880 		return 0;
881 
882 	/*
883 	 * Some areas in the middle of the kernel identity range
884 	 * are not mapped, for example the PCI space.
885 	 */
886 	if (!page_is_ram(base >> PAGE_SHIFT))
887 		return 0;
888 
889 	id_sz = (__pa(high_memory-1) <= base + size) ?
890 				__pa(high_memory) - base : size;
891 
892 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
893 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
894 			current->comm, current->pid,
895 			cattr_name(pcm),
896 			base, (unsigned long long)(base + size-1));
897 		return -EINVAL;
898 	}
899 	return 0;
900 }
901 
902 /*
903  * Internal interface to reserve a range of physical memory with prot.
904  * Reserved non RAM regions only and after successful memtype_reserve,
905  * this func also keeps identity mapping (if any) in sync with this new prot.
906  */
907 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
908 				int strict_prot)
909 {
910 	int is_ram = 0;
911 	int ret;
912 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
913 	enum page_cache_mode pcm = want_pcm;
914 
915 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
916 
917 	/*
918 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
919 	 * track of number of mappings of RAM pages. We can assert that
920 	 * the type requested matches the type of first page in the range.
921 	 */
922 	if (is_ram) {
923 		if (!pat_enabled())
924 			return 0;
925 
926 		pcm = lookup_memtype(paddr);
927 		if (want_pcm != pcm) {
928 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
929 				current->comm, current->pid,
930 				cattr_name(want_pcm),
931 				(unsigned long long)paddr,
932 				(unsigned long long)(paddr + size - 1),
933 				cattr_name(pcm));
934 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
935 					     (~_PAGE_CACHE_MASK)) |
936 					     cachemode2protval(pcm));
937 		}
938 		return 0;
939 	}
940 
941 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
942 	if (ret)
943 		return ret;
944 
945 	if (pcm != want_pcm) {
946 		if (strict_prot ||
947 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
948 			memtype_free(paddr, paddr + size);
949 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
950 			       current->comm, current->pid,
951 			       cattr_name(want_pcm),
952 			       (unsigned long long)paddr,
953 			       (unsigned long long)(paddr + size - 1),
954 			       cattr_name(pcm));
955 			return -EINVAL;
956 		}
957 		/*
958 		 * We allow returning different type than the one requested in
959 		 * non strict case.
960 		 */
961 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
962 				      (~_PAGE_CACHE_MASK)) |
963 				     cachemode2protval(pcm));
964 	}
965 
966 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
967 		memtype_free(paddr, paddr + size);
968 		return -EINVAL;
969 	}
970 	return 0;
971 }
972 
973 /*
974  * Internal interface to free a range of physical memory.
975  * Frees non RAM regions only.
976  */
977 static void free_pfn_range(u64 paddr, unsigned long size)
978 {
979 	int is_ram;
980 
981 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
982 	if (is_ram == 0)
983 		memtype_free(paddr, paddr + size);
984 }
985 
986 /*
987  * track_pfn_copy is called when vma that is covering the pfnmap gets
988  * copied through copy_page_range().
989  *
990  * If the vma has a linear pfn mapping for the entire range, we get the prot
991  * from pte and reserve the entire vma range with single reserve_pfn_range call.
992  */
993 int track_pfn_copy(struct vm_area_struct *vma)
994 {
995 	resource_size_t paddr;
996 	unsigned long prot;
997 	unsigned long vma_size = vma->vm_end - vma->vm_start;
998 	pgprot_t pgprot;
999 
1000 	if (vma->vm_flags & VM_PAT) {
1001 		/*
1002 		 * reserve the whole chunk covered by vma. We need the
1003 		 * starting address and protection from pte.
1004 		 */
1005 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1006 			WARN_ON_ONCE(1);
1007 			return -EINVAL;
1008 		}
1009 		pgprot = __pgprot(prot);
1010 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 /*
1017  * prot is passed in as a parameter for the new mapping. If the vma has
1018  * a linear pfn mapping for the entire range, or no vma is provided,
1019  * reserve the entire pfn + size range with single reserve_pfn_range
1020  * call.
1021  */
1022 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1023 		    unsigned long pfn, unsigned long addr, unsigned long size)
1024 {
1025 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1026 	enum page_cache_mode pcm;
1027 
1028 	/* reserve the whole chunk starting from paddr */
1029 	if (!vma || (addr == vma->vm_start
1030 				&& size == (vma->vm_end - vma->vm_start))) {
1031 		int ret;
1032 
1033 		ret = reserve_pfn_range(paddr, size, prot, 0);
1034 		if (ret == 0 && vma)
1035 			vma->vm_flags |= VM_PAT;
1036 		return ret;
1037 	}
1038 
1039 	if (!pat_enabled())
1040 		return 0;
1041 
1042 	/*
1043 	 * For anything smaller than the vma size we set prot based on the
1044 	 * lookup.
1045 	 */
1046 	pcm = lookup_memtype(paddr);
1047 
1048 	/* Check memtype for the remaining pages */
1049 	while (size > PAGE_SIZE) {
1050 		size -= PAGE_SIZE;
1051 		paddr += PAGE_SIZE;
1052 		if (pcm != lookup_memtype(paddr))
1053 			return -EINVAL;
1054 	}
1055 
1056 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1057 			 cachemode2protval(pcm));
1058 
1059 	return 0;
1060 }
1061 
1062 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1063 {
1064 	enum page_cache_mode pcm;
1065 
1066 	if (!pat_enabled())
1067 		return;
1068 
1069 	/* Set prot based on lookup */
1070 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1071 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1072 			 cachemode2protval(pcm));
1073 }
1074 
1075 /*
1076  * untrack_pfn is called while unmapping a pfnmap for a region.
1077  * untrack can be called for a specific region indicated by pfn and size or
1078  * can be for the entire vma (in which case pfn, size are zero).
1079  */
1080 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1081 		 unsigned long size)
1082 {
1083 	resource_size_t paddr;
1084 	unsigned long prot;
1085 
1086 	if (vma && !(vma->vm_flags & VM_PAT))
1087 		return;
1088 
1089 	/* free the chunk starting from pfn or the whole chunk */
1090 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1091 	if (!paddr && !size) {
1092 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1093 			WARN_ON_ONCE(1);
1094 			return;
1095 		}
1096 
1097 		size = vma->vm_end - vma->vm_start;
1098 	}
1099 	free_pfn_range(paddr, size);
1100 	if (vma)
1101 		vma->vm_flags &= ~VM_PAT;
1102 }
1103 
1104 /*
1105  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1106  * with the old vma after its pfnmap page table has been removed.  The new
1107  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1108  */
1109 void untrack_pfn_moved(struct vm_area_struct *vma)
1110 {
1111 	vma->vm_flags &= ~VM_PAT;
1112 }
1113 
1114 pgprot_t pgprot_writecombine(pgprot_t prot)
1115 {
1116 	return __pgprot(pgprot_val(prot) |
1117 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1118 }
1119 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1120 
1121 pgprot_t pgprot_writethrough(pgprot_t prot)
1122 {
1123 	return __pgprot(pgprot_val(prot) |
1124 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1125 }
1126 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1127 
1128 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1129 
1130 /*
1131  * We are allocating a temporary printout-entry to be passed
1132  * between seq_start()/next() and seq_show():
1133  */
1134 static struct memtype *memtype_get_idx(loff_t pos)
1135 {
1136 	struct memtype *entry_print;
1137 	int ret;
1138 
1139 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1140 	if (!entry_print)
1141 		return NULL;
1142 
1143 	spin_lock(&memtype_lock);
1144 	ret = memtype_copy_nth_element(entry_print, pos);
1145 	spin_unlock(&memtype_lock);
1146 
1147 	/* Free it on error: */
1148 	if (ret) {
1149 		kfree(entry_print);
1150 		return NULL;
1151 	}
1152 
1153 	return entry_print;
1154 }
1155 
1156 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1157 {
1158 	if (*pos == 0) {
1159 		++*pos;
1160 		seq_puts(seq, "PAT memtype list:\n");
1161 	}
1162 
1163 	return memtype_get_idx(*pos);
1164 }
1165 
1166 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1167 {
1168 	++*pos;
1169 	return memtype_get_idx(*pos);
1170 }
1171 
1172 static void memtype_seq_stop(struct seq_file *seq, void *v)
1173 {
1174 }
1175 
1176 static int memtype_seq_show(struct seq_file *seq, void *v)
1177 {
1178 	struct memtype *entry_print = (struct memtype *)v;
1179 
1180 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1181 			entry_print->start,
1182 			entry_print->end,
1183 			cattr_name(entry_print->type));
1184 
1185 	kfree(entry_print);
1186 
1187 	return 0;
1188 }
1189 
1190 static const struct seq_operations memtype_seq_ops = {
1191 	.start = memtype_seq_start,
1192 	.next  = memtype_seq_next,
1193 	.stop  = memtype_seq_stop,
1194 	.show  = memtype_seq_show,
1195 };
1196 
1197 static int memtype_seq_open(struct inode *inode, struct file *file)
1198 {
1199 	return seq_open(file, &memtype_seq_ops);
1200 }
1201 
1202 static const struct file_operations memtype_fops = {
1203 	.open    = memtype_seq_open,
1204 	.read    = seq_read,
1205 	.llseek  = seq_lseek,
1206 	.release = seq_release,
1207 };
1208 
1209 static int __init pat_memtype_list_init(void)
1210 {
1211 	if (pat_enabled()) {
1212 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1213 				    arch_debugfs_dir, NULL, &memtype_fops);
1214 	}
1215 	return 0;
1216 }
1217 late_initcall(pat_memtype_list_init);
1218 
1219 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1220