xref: /openbmc/linux/arch/x86/mm/numa_emulation.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA emulation
4  */
5 #include <linux/kernel.h>
6 #include <linux/errno.h>
7 #include <linux/topology.h>
8 #include <linux/memblock.h>
9 #include <linux/bootmem.h>
10 #include <asm/dma.h>
11 
12 #include "numa_internal.h"
13 
14 static int emu_nid_to_phys[MAX_NUMNODES];
15 static char *emu_cmdline __initdata;
16 
17 void __init numa_emu_cmdline(char *str)
18 {
19 	emu_cmdline = str;
20 }
21 
22 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
23 {
24 	int i;
25 
26 	for (i = 0; i < mi->nr_blks; i++)
27 		if (mi->blk[i].nid == nid)
28 			return i;
29 	return -ENOENT;
30 }
31 
32 static u64 __init mem_hole_size(u64 start, u64 end)
33 {
34 	unsigned long start_pfn = PFN_UP(start);
35 	unsigned long end_pfn = PFN_DOWN(end);
36 
37 	if (start_pfn < end_pfn)
38 		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
39 	return 0;
40 }
41 
42 /*
43  * Sets up nid to range from @start to @end.  The return value is -errno if
44  * something went wrong, 0 otherwise.
45  */
46 static int __init emu_setup_memblk(struct numa_meminfo *ei,
47 				   struct numa_meminfo *pi,
48 				   int nid, int phys_blk, u64 size)
49 {
50 	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
51 	struct numa_memblk *pb = &pi->blk[phys_blk];
52 
53 	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
54 		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
55 		return -EINVAL;
56 	}
57 
58 	ei->nr_blks++;
59 	eb->start = pb->start;
60 	eb->end = pb->start + size;
61 	eb->nid = nid;
62 
63 	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
64 		emu_nid_to_phys[nid] = nid;
65 
66 	pb->start += size;
67 	if (pb->start >= pb->end) {
68 		WARN_ON_ONCE(pb->start > pb->end);
69 		numa_remove_memblk_from(phys_blk, pi);
70 	}
71 
72 	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
73 	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
74 	return 0;
75 }
76 
77 /*
78  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
79  * to max_addr.
80  *
81  * Returns zero on success or negative on error.
82  */
83 static int __init split_nodes_interleave(struct numa_meminfo *ei,
84 					 struct numa_meminfo *pi,
85 					 u64 addr, u64 max_addr, int nr_nodes)
86 {
87 	nodemask_t physnode_mask = numa_nodes_parsed;
88 	u64 size;
89 	int big;
90 	int nid = 0;
91 	int i, ret;
92 
93 	if (nr_nodes <= 0)
94 		return -1;
95 	if (nr_nodes > MAX_NUMNODES) {
96 		pr_info("numa=fake=%d too large, reducing to %d\n",
97 			nr_nodes, MAX_NUMNODES);
98 		nr_nodes = MAX_NUMNODES;
99 	}
100 
101 	/*
102 	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
103 	 * the division in ulong number of pages and convert back.
104 	 */
105 	size = max_addr - addr - mem_hole_size(addr, max_addr);
106 	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
107 
108 	/*
109 	 * Calculate the number of big nodes that can be allocated as a result
110 	 * of consolidating the remainder.
111 	 */
112 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
113 		FAKE_NODE_MIN_SIZE;
114 
115 	size &= FAKE_NODE_MIN_HASH_MASK;
116 	if (!size) {
117 		pr_err("Not enough memory for each node.  "
118 			"NUMA emulation disabled.\n");
119 		return -1;
120 	}
121 
122 	/*
123 	 * Continue to fill physical nodes with fake nodes until there is no
124 	 * memory left on any of them.
125 	 */
126 	while (nodes_weight(physnode_mask)) {
127 		for_each_node_mask(i, physnode_mask) {
128 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
129 			u64 start, limit, end;
130 			int phys_blk;
131 
132 			phys_blk = emu_find_memblk_by_nid(i, pi);
133 			if (phys_blk < 0) {
134 				node_clear(i, physnode_mask);
135 				continue;
136 			}
137 			start = pi->blk[phys_blk].start;
138 			limit = pi->blk[phys_blk].end;
139 			end = start + size;
140 
141 			if (nid < big)
142 				end += FAKE_NODE_MIN_SIZE;
143 
144 			/*
145 			 * Continue to add memory to this fake node if its
146 			 * non-reserved memory is less than the per-node size.
147 			 */
148 			while (end - start - mem_hole_size(start, end) < size) {
149 				end += FAKE_NODE_MIN_SIZE;
150 				if (end > limit) {
151 					end = limit;
152 					break;
153 				}
154 			}
155 
156 			/*
157 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
158 			 * non-reserved memory in ZONE_DMA32 for the next node,
159 			 * this one must extend to the boundary.
160 			 */
161 			if (end < dma32_end && dma32_end - end -
162 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
163 				end = dma32_end;
164 
165 			/*
166 			 * If there won't be enough non-reserved memory for the
167 			 * next node, this one must extend to the end of the
168 			 * physical node.
169 			 */
170 			if (limit - end - mem_hole_size(end, limit) < size)
171 				end = limit;
172 
173 			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
174 					       phys_blk,
175 					       min(end, limit) - start);
176 			if (ret < 0)
177 				return ret;
178 		}
179 	}
180 	return 0;
181 }
182 
183 /*
184  * Returns the end address of a node so that there is at least `size' amount of
185  * non-reserved memory or `max_addr' is reached.
186  */
187 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
188 {
189 	u64 end = start + size;
190 
191 	while (end - start - mem_hole_size(start, end) < size) {
192 		end += FAKE_NODE_MIN_SIZE;
193 		if (end > max_addr) {
194 			end = max_addr;
195 			break;
196 		}
197 	}
198 	return end;
199 }
200 
201 /*
202  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
203  * `addr' to `max_addr'.
204  *
205  * Returns zero on success or negative on error.
206  */
207 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
208 					      struct numa_meminfo *pi,
209 					      u64 addr, u64 max_addr, u64 size)
210 {
211 	nodemask_t physnode_mask = numa_nodes_parsed;
212 	u64 min_size;
213 	int nid = 0;
214 	int i, ret;
215 
216 	if (!size)
217 		return -1;
218 	/*
219 	 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
220 	 * increased accordingly if the requested size is too small.  This
221 	 * creates a uniform distribution of node sizes across the entire
222 	 * machine (but not necessarily over physical nodes).
223 	 */
224 	min_size = (max_addr - addr - mem_hole_size(addr, max_addr)) / MAX_NUMNODES;
225 	min_size = max(min_size, FAKE_NODE_MIN_SIZE);
226 	if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
227 		min_size = (min_size + FAKE_NODE_MIN_SIZE) &
228 						FAKE_NODE_MIN_HASH_MASK;
229 	if (size < min_size) {
230 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
231 			size >> 20, min_size >> 20);
232 		size = min_size;
233 	}
234 	size &= FAKE_NODE_MIN_HASH_MASK;
235 
236 	/*
237 	 * Fill physical nodes with fake nodes of size until there is no memory
238 	 * left on any of them.
239 	 */
240 	while (nodes_weight(physnode_mask)) {
241 		for_each_node_mask(i, physnode_mask) {
242 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
243 			u64 start, limit, end;
244 			int phys_blk;
245 
246 			phys_blk = emu_find_memblk_by_nid(i, pi);
247 			if (phys_blk < 0) {
248 				node_clear(i, physnode_mask);
249 				continue;
250 			}
251 			start = pi->blk[phys_blk].start;
252 			limit = pi->blk[phys_blk].end;
253 
254 			end = find_end_of_node(start, limit, size);
255 			/*
256 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
257 			 * non-reserved memory in ZONE_DMA32 for the next node,
258 			 * this one must extend to the boundary.
259 			 */
260 			if (end < dma32_end && dma32_end - end -
261 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
262 				end = dma32_end;
263 
264 			/*
265 			 * If there won't be enough non-reserved memory for the
266 			 * next node, this one must extend to the end of the
267 			 * physical node.
268 			 */
269 			if (limit - end - mem_hole_size(end, limit) < size)
270 				end = limit;
271 
272 			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
273 					       phys_blk,
274 					       min(end, limit) - start);
275 			if (ret < 0)
276 				return ret;
277 		}
278 	}
279 	return 0;
280 }
281 
282 int __init setup_emu2phys_nid(int *dfl_phys_nid)
283 {
284 	int i, max_emu_nid = 0;
285 
286 	*dfl_phys_nid = NUMA_NO_NODE;
287 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
288 		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
289 			max_emu_nid = i;
290 			if (*dfl_phys_nid == NUMA_NO_NODE)
291 				*dfl_phys_nid = emu_nid_to_phys[i];
292 		}
293 	}
294 
295 	return max_emu_nid;
296 }
297 
298 /**
299  * numa_emulation - Emulate NUMA nodes
300  * @numa_meminfo: NUMA configuration to massage
301  * @numa_dist_cnt: The size of the physical NUMA distance table
302  *
303  * Emulate NUMA nodes according to the numa=fake kernel parameter.
304  * @numa_meminfo contains the physical memory configuration and is modified
305  * to reflect the emulated configuration on success.  @numa_dist_cnt is
306  * used to determine the size of the physical distance table.
307  *
308  * On success, the following modifications are made.
309  *
310  * - @numa_meminfo is updated to reflect the emulated nodes.
311  *
312  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
313  *   emulated nodes.
314  *
315  * - NUMA distance table is rebuilt to represent distances between emulated
316  *   nodes.  The distances are determined considering how emulated nodes
317  *   are mapped to physical nodes and match the actual distances.
318  *
319  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
320  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
321  *
322  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
323  * identity mapping and no other modification is made.
324  */
325 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
326 {
327 	static struct numa_meminfo ei __initdata;
328 	static struct numa_meminfo pi __initdata;
329 	const u64 max_addr = PFN_PHYS(max_pfn);
330 	u8 *phys_dist = NULL;
331 	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
332 	int max_emu_nid, dfl_phys_nid;
333 	int i, j, ret;
334 
335 	if (!emu_cmdline)
336 		goto no_emu;
337 
338 	memset(&ei, 0, sizeof(ei));
339 	pi = *numa_meminfo;
340 
341 	for (i = 0; i < MAX_NUMNODES; i++)
342 		emu_nid_to_phys[i] = NUMA_NO_NODE;
343 
344 	/*
345 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
346 	 * the fixed node size.  Otherwise, if it is just a single number N,
347 	 * split the system RAM into N fake nodes.
348 	 */
349 	if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
350 		u64 size;
351 
352 		size = memparse(emu_cmdline, &emu_cmdline);
353 		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
354 	} else {
355 		unsigned long n;
356 
357 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
358 		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
359 	}
360 	if (*emu_cmdline == ':')
361 		emu_cmdline++;
362 
363 	if (ret < 0)
364 		goto no_emu;
365 
366 	if (numa_cleanup_meminfo(&ei) < 0) {
367 		pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
368 		goto no_emu;
369 	}
370 
371 	/* copy the physical distance table */
372 	if (numa_dist_cnt) {
373 		u64 phys;
374 
375 		phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
376 					      phys_size, PAGE_SIZE);
377 		if (!phys) {
378 			pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
379 			goto no_emu;
380 		}
381 		memblock_reserve(phys, phys_size);
382 		phys_dist = __va(phys);
383 
384 		for (i = 0; i < numa_dist_cnt; i++)
385 			for (j = 0; j < numa_dist_cnt; j++)
386 				phys_dist[i * numa_dist_cnt + j] =
387 					node_distance(i, j);
388 	}
389 
390 	/*
391 	 * Determine the max emulated nid and the default phys nid to use
392 	 * for unmapped nodes.
393 	 */
394 	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
395 
396 	/* commit */
397 	*numa_meminfo = ei;
398 
399 	/* Make sure numa_nodes_parsed only contains emulated nodes */
400 	nodes_clear(numa_nodes_parsed);
401 	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
402 		if (ei.blk[i].start != ei.blk[i].end &&
403 		    ei.blk[i].nid != NUMA_NO_NODE)
404 			node_set(ei.blk[i].nid, numa_nodes_parsed);
405 
406 	/*
407 	 * Transform __apicid_to_node table to use emulated nids by
408 	 * reverse-mapping phys_nid.  The maps should always exist but fall
409 	 * back to zero just in case.
410 	 */
411 	for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
412 		if (__apicid_to_node[i] == NUMA_NO_NODE)
413 			continue;
414 		for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
415 			if (__apicid_to_node[i] == emu_nid_to_phys[j])
416 				break;
417 		__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
418 	}
419 
420 	/* make sure all emulated nodes are mapped to a physical node */
421 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
422 		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
423 			emu_nid_to_phys[i] = dfl_phys_nid;
424 
425 	/* transform distance table */
426 	numa_reset_distance();
427 	for (i = 0; i < max_emu_nid + 1; i++) {
428 		for (j = 0; j < max_emu_nid + 1; j++) {
429 			int physi = emu_nid_to_phys[i];
430 			int physj = emu_nid_to_phys[j];
431 			int dist;
432 
433 			if (get_option(&emu_cmdline, &dist) == 2)
434 				;
435 			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
436 				dist = physi == physj ?
437 					LOCAL_DISTANCE : REMOTE_DISTANCE;
438 			else
439 				dist = phys_dist[physi * numa_dist_cnt + physj];
440 
441 			numa_set_distance(i, j, dist);
442 		}
443 	}
444 
445 	/* free the copied physical distance table */
446 	if (phys_dist)
447 		memblock_free(__pa(phys_dist), phys_size);
448 	return;
449 
450 no_emu:
451 	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
452 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
453 		emu_nid_to_phys[i] = i;
454 }
455 
456 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
457 void numa_add_cpu(int cpu)
458 {
459 	int physnid, nid;
460 
461 	nid = early_cpu_to_node(cpu);
462 	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
463 
464 	physnid = emu_nid_to_phys[nid];
465 
466 	/*
467 	 * Map the cpu to each emulated node that is allocated on the physical
468 	 * node of the cpu's apic id.
469 	 */
470 	for_each_online_node(nid)
471 		if (emu_nid_to_phys[nid] == physnid)
472 			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
473 }
474 
475 void numa_remove_cpu(int cpu)
476 {
477 	int i;
478 
479 	for_each_online_node(i)
480 		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
481 }
482 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
483 static void numa_set_cpumask(int cpu, bool enable)
484 {
485 	int nid, physnid;
486 
487 	nid = early_cpu_to_node(cpu);
488 	if (nid == NUMA_NO_NODE) {
489 		/* early_cpu_to_node() already emits a warning and trace */
490 		return;
491 	}
492 
493 	physnid = emu_nid_to_phys[nid];
494 
495 	for_each_online_node(nid) {
496 		if (emu_nid_to_phys[nid] != physnid)
497 			continue;
498 
499 		debug_cpumask_set_cpu(cpu, nid, enable);
500 	}
501 }
502 
503 void numa_add_cpu(int cpu)
504 {
505 	numa_set_cpumask(cpu, true);
506 }
507 
508 void numa_remove_cpu(int cpu)
509 {
510 	numa_set_cpumask(cpu, false);
511 }
512 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
513