xref: /openbmc/linux/arch/x86/mm/numa_emulation.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA emulation
4  */
5 #include <linux/kernel.h>
6 #include <linux/errno.h>
7 #include <linux/topology.h>
8 #include <linux/memblock.h>
9 #include <asm/dma.h>
10 
11 #include "numa_internal.h"
12 
13 static int emu_nid_to_phys[MAX_NUMNODES];
14 static char *emu_cmdline __initdata;
15 
16 int __init numa_emu_cmdline(char *str)
17 {
18 	emu_cmdline = str;
19 	return 0;
20 }
21 
22 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
23 {
24 	int i;
25 
26 	for (i = 0; i < mi->nr_blks; i++)
27 		if (mi->blk[i].nid == nid)
28 			return i;
29 	return -ENOENT;
30 }
31 
32 static u64 __init mem_hole_size(u64 start, u64 end)
33 {
34 	unsigned long start_pfn = PFN_UP(start);
35 	unsigned long end_pfn = PFN_DOWN(end);
36 
37 	if (start_pfn < end_pfn)
38 		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
39 	return 0;
40 }
41 
42 /*
43  * Sets up nid to range from @start to @end.  The return value is -errno if
44  * something went wrong, 0 otherwise.
45  */
46 static int __init emu_setup_memblk(struct numa_meminfo *ei,
47 				   struct numa_meminfo *pi,
48 				   int nid, int phys_blk, u64 size)
49 {
50 	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
51 	struct numa_memblk *pb = &pi->blk[phys_blk];
52 
53 	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
54 		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
55 		return -EINVAL;
56 	}
57 
58 	ei->nr_blks++;
59 	eb->start = pb->start;
60 	eb->end = pb->start + size;
61 	eb->nid = nid;
62 
63 	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
64 		emu_nid_to_phys[nid] = pb->nid;
65 
66 	pb->start += size;
67 	if (pb->start >= pb->end) {
68 		WARN_ON_ONCE(pb->start > pb->end);
69 		numa_remove_memblk_from(phys_blk, pi);
70 	}
71 
72 	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
73 	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
74 	return 0;
75 }
76 
77 /*
78  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
79  * to max_addr.
80  *
81  * Returns zero on success or negative on error.
82  */
83 static int __init split_nodes_interleave(struct numa_meminfo *ei,
84 					 struct numa_meminfo *pi,
85 					 u64 addr, u64 max_addr, int nr_nodes)
86 {
87 	nodemask_t physnode_mask = numa_nodes_parsed;
88 	u64 size;
89 	int big;
90 	int nid = 0;
91 	int i, ret;
92 
93 	if (nr_nodes <= 0)
94 		return -1;
95 	if (nr_nodes > MAX_NUMNODES) {
96 		pr_info("numa=fake=%d too large, reducing to %d\n",
97 			nr_nodes, MAX_NUMNODES);
98 		nr_nodes = MAX_NUMNODES;
99 	}
100 
101 	/*
102 	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
103 	 * the division in ulong number of pages and convert back.
104 	 */
105 	size = max_addr - addr - mem_hole_size(addr, max_addr);
106 	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
107 
108 	/*
109 	 * Calculate the number of big nodes that can be allocated as a result
110 	 * of consolidating the remainder.
111 	 */
112 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
113 		FAKE_NODE_MIN_SIZE;
114 
115 	size &= FAKE_NODE_MIN_HASH_MASK;
116 	if (!size) {
117 		pr_err("Not enough memory for each node.  "
118 			"NUMA emulation disabled.\n");
119 		return -1;
120 	}
121 
122 	/*
123 	 * Continue to fill physical nodes with fake nodes until there is no
124 	 * memory left on any of them.
125 	 */
126 	while (nodes_weight(physnode_mask)) {
127 		for_each_node_mask(i, physnode_mask) {
128 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
129 			u64 start, limit, end;
130 			int phys_blk;
131 
132 			phys_blk = emu_find_memblk_by_nid(i, pi);
133 			if (phys_blk < 0) {
134 				node_clear(i, physnode_mask);
135 				continue;
136 			}
137 			start = pi->blk[phys_blk].start;
138 			limit = pi->blk[phys_blk].end;
139 			end = start + size;
140 
141 			if (nid < big)
142 				end += FAKE_NODE_MIN_SIZE;
143 
144 			/*
145 			 * Continue to add memory to this fake node if its
146 			 * non-reserved memory is less than the per-node size.
147 			 */
148 			while (end - start - mem_hole_size(start, end) < size) {
149 				end += FAKE_NODE_MIN_SIZE;
150 				if (end > limit) {
151 					end = limit;
152 					break;
153 				}
154 			}
155 
156 			/*
157 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
158 			 * non-reserved memory in ZONE_DMA32 for the next node,
159 			 * this one must extend to the boundary.
160 			 */
161 			if (end < dma32_end && dma32_end - end -
162 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
163 				end = dma32_end;
164 
165 			/*
166 			 * If there won't be enough non-reserved memory for the
167 			 * next node, this one must extend to the end of the
168 			 * physical node.
169 			 */
170 			if (limit - end - mem_hole_size(end, limit) < size)
171 				end = limit;
172 
173 			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
174 					       phys_blk,
175 					       min(end, limit) - start);
176 			if (ret < 0)
177 				return ret;
178 		}
179 	}
180 	return 0;
181 }
182 
183 /*
184  * Returns the end address of a node so that there is at least `size' amount of
185  * non-reserved memory or `max_addr' is reached.
186  */
187 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
188 {
189 	u64 end = start + size;
190 
191 	while (end - start - mem_hole_size(start, end) < size) {
192 		end += FAKE_NODE_MIN_SIZE;
193 		if (end > max_addr) {
194 			end = max_addr;
195 			break;
196 		}
197 	}
198 	return end;
199 }
200 
201 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
202 {
203 	unsigned long max_pfn = PHYS_PFN(max_addr);
204 	unsigned long base_pfn = PHYS_PFN(base);
205 	unsigned long hole_pfns = PHYS_PFN(hole);
206 
207 	return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
208 }
209 
210 /*
211  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
212  * `addr' to `max_addr'.
213  *
214  * Returns zero on success or negative on error.
215  */
216 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
217 					      struct numa_meminfo *pi,
218 					      u64 addr, u64 max_addr, u64 size,
219 					      int nr_nodes, struct numa_memblk *pblk,
220 					      int nid)
221 {
222 	nodemask_t physnode_mask = numa_nodes_parsed;
223 	int i, ret, uniform = 0;
224 	u64 min_size;
225 
226 	if ((!size && !nr_nodes) || (nr_nodes && !pblk))
227 		return -1;
228 
229 	/*
230 	 * In the 'uniform' case split the passed in physical node by
231 	 * nr_nodes, in the non-uniform case, ignore the passed in
232 	 * physical block and try to create nodes of at least size
233 	 * @size.
234 	 *
235 	 * In the uniform case, split the nodes strictly by physical
236 	 * capacity, i.e. ignore holes. In the non-uniform case account
237 	 * for holes and treat @size as a minimum floor.
238 	 */
239 	if (!nr_nodes)
240 		nr_nodes = MAX_NUMNODES;
241 	else {
242 		nodes_clear(physnode_mask);
243 		node_set(pblk->nid, physnode_mask);
244 		uniform = 1;
245 	}
246 
247 	if (uniform) {
248 		min_size = uniform_size(max_addr, addr, 0, nr_nodes);
249 		size = min_size;
250 	} else {
251 		/*
252 		 * The limit on emulated nodes is MAX_NUMNODES, so the
253 		 * size per node is increased accordingly if the
254 		 * requested size is too small.  This creates a uniform
255 		 * distribution of node sizes across the entire machine
256 		 * (but not necessarily over physical nodes).
257 		 */
258 		min_size = uniform_size(max_addr, addr,
259 				mem_hole_size(addr, max_addr), nr_nodes);
260 	}
261 	min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
262 	if (size < min_size) {
263 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
264 			size >> 20, min_size >> 20);
265 		size = min_size;
266 	}
267 	size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
268 
269 	/*
270 	 * Fill physical nodes with fake nodes of size until there is no memory
271 	 * left on any of them.
272 	 */
273 	while (nodes_weight(physnode_mask)) {
274 		for_each_node_mask(i, physnode_mask) {
275 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
276 			u64 start, limit, end;
277 			int phys_blk;
278 
279 			phys_blk = emu_find_memblk_by_nid(i, pi);
280 			if (phys_blk < 0) {
281 				node_clear(i, physnode_mask);
282 				continue;
283 			}
284 
285 			start = pi->blk[phys_blk].start;
286 			limit = pi->blk[phys_blk].end;
287 
288 			if (uniform)
289 				end = start + size;
290 			else
291 				end = find_end_of_node(start, limit, size);
292 			/*
293 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
294 			 * non-reserved memory in ZONE_DMA32 for the next node,
295 			 * this one must extend to the boundary.
296 			 */
297 			if (end < dma32_end && dma32_end - end -
298 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
299 				end = dma32_end;
300 
301 			/*
302 			 * If there won't be enough non-reserved memory for the
303 			 * next node, this one must extend to the end of the
304 			 * physical node.
305 			 */
306 			if ((limit - end - mem_hole_size(end, limit) < size)
307 					&& !uniform)
308 				end = limit;
309 
310 			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
311 					       phys_blk,
312 					       min(end, limit) - start);
313 			if (ret < 0)
314 				return ret;
315 		}
316 	}
317 	return nid;
318 }
319 
320 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
321 					      struct numa_meminfo *pi,
322 					      u64 addr, u64 max_addr, u64 size)
323 {
324 	return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
325 			0, NULL, 0);
326 }
327 
328 static int __init setup_emu2phys_nid(int *dfl_phys_nid)
329 {
330 	int i, max_emu_nid = 0;
331 
332 	*dfl_phys_nid = NUMA_NO_NODE;
333 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
334 		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
335 			max_emu_nid = i;
336 			if (*dfl_phys_nid == NUMA_NO_NODE)
337 				*dfl_phys_nid = emu_nid_to_phys[i];
338 		}
339 	}
340 
341 	return max_emu_nid;
342 }
343 
344 /**
345  * numa_emulation - Emulate NUMA nodes
346  * @numa_meminfo: NUMA configuration to massage
347  * @numa_dist_cnt: The size of the physical NUMA distance table
348  *
349  * Emulate NUMA nodes according to the numa=fake kernel parameter.
350  * @numa_meminfo contains the physical memory configuration and is modified
351  * to reflect the emulated configuration on success.  @numa_dist_cnt is
352  * used to determine the size of the physical distance table.
353  *
354  * On success, the following modifications are made.
355  *
356  * - @numa_meminfo is updated to reflect the emulated nodes.
357  *
358  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
359  *   emulated nodes.
360  *
361  * - NUMA distance table is rebuilt to represent distances between emulated
362  *   nodes.  The distances are determined considering how emulated nodes
363  *   are mapped to physical nodes and match the actual distances.
364  *
365  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
366  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
367  *
368  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
369  * identity mapping and no other modification is made.
370  */
371 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
372 {
373 	static struct numa_meminfo ei __initdata;
374 	static struct numa_meminfo pi __initdata;
375 	const u64 max_addr = PFN_PHYS(max_pfn);
376 	u8 *phys_dist = NULL;
377 	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
378 	int max_emu_nid, dfl_phys_nid;
379 	int i, j, ret;
380 
381 	if (!emu_cmdline)
382 		goto no_emu;
383 
384 	memset(&ei, 0, sizeof(ei));
385 	pi = *numa_meminfo;
386 
387 	for (i = 0; i < MAX_NUMNODES; i++)
388 		emu_nid_to_phys[i] = NUMA_NO_NODE;
389 
390 	/*
391 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
392 	 * the fixed node size.  Otherwise, if it is just a single number N,
393 	 * split the system RAM into N fake nodes.
394 	 */
395 	if (strchr(emu_cmdline, 'U')) {
396 		nodemask_t physnode_mask = numa_nodes_parsed;
397 		unsigned long n;
398 		int nid = 0;
399 
400 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
401 		ret = -1;
402 		for_each_node_mask(i, physnode_mask) {
403 			/*
404 			 * The reason we pass in blk[0] is due to
405 			 * numa_remove_memblk_from() called by
406 			 * emu_setup_memblk() will delete entry 0
407 			 * and then move everything else up in the pi.blk
408 			 * array. Therefore we should always be looking
409 			 * at blk[0].
410 			 */
411 			ret = split_nodes_size_interleave_uniform(&ei, &pi,
412 					pi.blk[0].start, pi.blk[0].end, 0,
413 					n, &pi.blk[0], nid);
414 			if (ret < 0)
415 				break;
416 			if (ret < n) {
417 				pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
418 						__func__, i, ret, n);
419 				ret = -1;
420 				break;
421 			}
422 			nid = ret;
423 		}
424 	} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
425 		u64 size;
426 
427 		size = memparse(emu_cmdline, &emu_cmdline);
428 		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
429 	} else {
430 		unsigned long n;
431 
432 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
433 		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
434 	}
435 	if (*emu_cmdline == ':')
436 		emu_cmdline++;
437 
438 	if (ret < 0)
439 		goto no_emu;
440 
441 	if (numa_cleanup_meminfo(&ei) < 0) {
442 		pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
443 		goto no_emu;
444 	}
445 
446 	/* copy the physical distance table */
447 	if (numa_dist_cnt) {
448 		u64 phys;
449 
450 		phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
451 					      phys_size, PAGE_SIZE);
452 		if (!phys) {
453 			pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
454 			goto no_emu;
455 		}
456 		memblock_reserve(phys, phys_size);
457 		phys_dist = __va(phys);
458 
459 		for (i = 0; i < numa_dist_cnt; i++)
460 			for (j = 0; j < numa_dist_cnt; j++)
461 				phys_dist[i * numa_dist_cnt + j] =
462 					node_distance(i, j);
463 	}
464 
465 	/*
466 	 * Determine the max emulated nid and the default phys nid to use
467 	 * for unmapped nodes.
468 	 */
469 	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
470 
471 	/* commit */
472 	*numa_meminfo = ei;
473 
474 	/* Make sure numa_nodes_parsed only contains emulated nodes */
475 	nodes_clear(numa_nodes_parsed);
476 	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
477 		if (ei.blk[i].start != ei.blk[i].end &&
478 		    ei.blk[i].nid != NUMA_NO_NODE)
479 			node_set(ei.blk[i].nid, numa_nodes_parsed);
480 
481 	/*
482 	 * Transform __apicid_to_node table to use emulated nids by
483 	 * reverse-mapping phys_nid.  The maps should always exist but fall
484 	 * back to zero just in case.
485 	 */
486 	for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
487 		if (__apicid_to_node[i] == NUMA_NO_NODE)
488 			continue;
489 		for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
490 			if (__apicid_to_node[i] == emu_nid_to_phys[j])
491 				break;
492 		__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
493 	}
494 
495 	/* make sure all emulated nodes are mapped to a physical node */
496 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
497 		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
498 			emu_nid_to_phys[i] = dfl_phys_nid;
499 
500 	/* transform distance table */
501 	numa_reset_distance();
502 	for (i = 0; i < max_emu_nid + 1; i++) {
503 		for (j = 0; j < max_emu_nid + 1; j++) {
504 			int physi = emu_nid_to_phys[i];
505 			int physj = emu_nid_to_phys[j];
506 			int dist;
507 
508 			if (get_option(&emu_cmdline, &dist) == 2)
509 				;
510 			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
511 				dist = physi == physj ?
512 					LOCAL_DISTANCE : REMOTE_DISTANCE;
513 			else
514 				dist = phys_dist[physi * numa_dist_cnt + physj];
515 
516 			numa_set_distance(i, j, dist);
517 		}
518 	}
519 
520 	/* free the copied physical distance table */
521 	if (phys_dist)
522 		memblock_free(__pa(phys_dist), phys_size);
523 	return;
524 
525 no_emu:
526 	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
527 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
528 		emu_nid_to_phys[i] = i;
529 }
530 
531 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
532 void numa_add_cpu(int cpu)
533 {
534 	int physnid, nid;
535 
536 	nid = early_cpu_to_node(cpu);
537 	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
538 
539 	physnid = emu_nid_to_phys[nid];
540 
541 	/*
542 	 * Map the cpu to each emulated node that is allocated on the physical
543 	 * node of the cpu's apic id.
544 	 */
545 	for_each_online_node(nid)
546 		if (emu_nid_to_phys[nid] == physnid)
547 			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
548 }
549 
550 void numa_remove_cpu(int cpu)
551 {
552 	int i;
553 
554 	for_each_online_node(i)
555 		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
556 }
557 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
558 static void numa_set_cpumask(int cpu, bool enable)
559 {
560 	int nid, physnid;
561 
562 	nid = early_cpu_to_node(cpu);
563 	if (nid == NUMA_NO_NODE) {
564 		/* early_cpu_to_node() already emits a warning and trace */
565 		return;
566 	}
567 
568 	physnid = emu_nid_to_phys[nid];
569 
570 	for_each_online_node(nid) {
571 		if (emu_nid_to_phys[nid] != physnid)
572 			continue;
573 
574 		debug_cpumask_set_cpu(cpu, nid, enable);
575 	}
576 }
577 
578 void numa_add_cpu(int cpu)
579 {
580 	numa_set_cpumask(cpu, true);
581 }
582 
583 void numa_remove_cpu(int cpu)
584 {
585 	numa_set_cpumask(cpu, false);
586 }
587 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
588