xref: /openbmc/linux/arch/x86/mm/numa_64.c (revision e8e0929d)
1 /*
2  * Generic VM initialization for x86-64 NUMA setups.
3  * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4  */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15 
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22 
23 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
24 EXPORT_SYMBOL(node_data);
25 
26 struct memnode memnode;
27 
28 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
29 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
30 };
31 
32 int numa_off __initdata;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
35 
36 DEFINE_PER_CPU(int, node_number) = 0;
37 EXPORT_PER_CPU_SYMBOL(node_number);
38 
39 /*
40  * Map cpu index to node index
41  */
42 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
43 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
44 
45 /*
46  * Given a shift value, try to populate memnodemap[]
47  * Returns :
48  * 1 if OK
49  * 0 if memnodmap[] too small (of shift too small)
50  * -1 if node overlap or lost ram (shift too big)
51  */
52 static int __init populate_memnodemap(const struct bootnode *nodes,
53 				      int numnodes, int shift, int *nodeids)
54 {
55 	unsigned long addr, end;
56 	int i, res = -1;
57 
58 	memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
59 	for (i = 0; i < numnodes; i++) {
60 		addr = nodes[i].start;
61 		end = nodes[i].end;
62 		if (addr >= end)
63 			continue;
64 		if ((end >> shift) >= memnodemapsize)
65 			return 0;
66 		do {
67 			if (memnodemap[addr >> shift] != NUMA_NO_NODE)
68 				return -1;
69 
70 			if (!nodeids)
71 				memnodemap[addr >> shift] = i;
72 			else
73 				memnodemap[addr >> shift] = nodeids[i];
74 
75 			addr += (1UL << shift);
76 		} while (addr < end);
77 		res = 1;
78 	}
79 	return res;
80 }
81 
82 static int __init allocate_cachealigned_memnodemap(void)
83 {
84 	unsigned long addr;
85 
86 	memnodemap = memnode.embedded_map;
87 	if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
88 		return 0;
89 
90 	addr = 0x8000;
91 	nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
92 	nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
93 				      nodemap_size, L1_CACHE_BYTES);
94 	if (nodemap_addr == -1UL) {
95 		printk(KERN_ERR
96 		       "NUMA: Unable to allocate Memory to Node hash map\n");
97 		nodemap_addr = nodemap_size = 0;
98 		return -1;
99 	}
100 	memnodemap = phys_to_virt(nodemap_addr);
101 	reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
102 
103 	printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 	       nodemap_addr, nodemap_addr + nodemap_size);
105 	return 0;
106 }
107 
108 /*
109  * The LSB of all start and end addresses in the node map is the value of the
110  * maximum possible shift.
111  */
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 					 int numnodes)
114 {
115 	int i, nodes_used = 0;
116 	unsigned long start, end;
117 	unsigned long bitfield = 0, memtop = 0;
118 
119 	for (i = 0; i < numnodes; i++) {
120 		start = nodes[i].start;
121 		end = nodes[i].end;
122 		if (start >= end)
123 			continue;
124 		bitfield |= start;
125 		nodes_used++;
126 		if (end > memtop)
127 			memtop = end;
128 	}
129 	if (nodes_used <= 1)
130 		i = 63;
131 	else
132 		i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 	memnodemapsize = (memtop >> i)+1;
134 	return i;
135 }
136 
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
138 			      int *nodeids)
139 {
140 	int shift;
141 
142 	shift = extract_lsb_from_nodes(nodes, numnodes);
143 	if (allocate_cachealigned_memnodemap())
144 		return -1;
145 	printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
146 		shift);
147 
148 	if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
149 		printk(KERN_INFO "Your memory is not aligned you need to "
150 		       "rebuild your kernel with a bigger NODEMAPSIZE "
151 		       "shift=%d\n", shift);
152 		return -1;
153 	}
154 	return shift;
155 }
156 
157 int __meminit  __early_pfn_to_nid(unsigned long pfn)
158 {
159 	return phys_to_nid(pfn << PAGE_SHIFT);
160 }
161 
162 static void * __init early_node_mem(int nodeid, unsigned long start,
163 				    unsigned long end, unsigned long size,
164 				    unsigned long align)
165 {
166 	unsigned long mem = find_e820_area(start, end, size, align);
167 	void *ptr;
168 
169 	if (mem != -1L)
170 		return __va(mem);
171 
172 	ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
173 	if (ptr == NULL) {
174 		printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
175 		       size, nodeid);
176 		return NULL;
177 	}
178 	return ptr;
179 }
180 
181 /* Initialize bootmem allocator for a node */
182 void __init
183 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
184 {
185 	unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
186 	const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
187 	unsigned long bootmap_start, nodedata_phys;
188 	void *bootmap;
189 	int nid;
190 
191 	if (!end)
192 		return;
193 
194 	/*
195 	 * Don't confuse VM with a node that doesn't have the
196 	 * minimum amount of memory:
197 	 */
198 	if (end && (end - start) < NODE_MIN_SIZE)
199 		return;
200 
201 	start = roundup(start, ZONE_ALIGN);
202 
203 	printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
204 	       start, end);
205 
206 	start_pfn = start >> PAGE_SHIFT;
207 	last_pfn = end >> PAGE_SHIFT;
208 
209 	node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
210 					   SMP_CACHE_BYTES);
211 	if (node_data[nodeid] == NULL)
212 		return;
213 	nodedata_phys = __pa(node_data[nodeid]);
214 	printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
215 		nodedata_phys + pgdat_size - 1);
216 
217 	memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
218 	NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
219 	NODE_DATA(nodeid)->node_start_pfn = start_pfn;
220 	NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
221 
222 	/*
223 	 * Find a place for the bootmem map
224 	 * nodedata_phys could be on other nodes by alloc_bootmem,
225 	 * so need to sure bootmap_start not to be small, otherwise
226 	 * early_node_mem will get that with find_e820_area instead
227 	 * of alloc_bootmem, that could clash with reserved range
228 	 */
229 	bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
230 	nid = phys_to_nid(nodedata_phys);
231 	if (nid == nodeid)
232 		bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
233 	else
234 		bootmap_start = roundup(start, PAGE_SIZE);
235 	/*
236 	 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
237 	 * to use that to align to PAGE_SIZE
238 	 */
239 	bootmap = early_node_mem(nodeid, bootmap_start, end,
240 				 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
241 	if (bootmap == NULL)  {
242 		if (nodedata_phys < start || nodedata_phys >= end)
243 			free_bootmem(nodedata_phys, pgdat_size);
244 		node_data[nodeid] = NULL;
245 		return;
246 	}
247 	bootmap_start = __pa(bootmap);
248 
249 	bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
250 					 bootmap_start >> PAGE_SHIFT,
251 					 start_pfn, last_pfn);
252 
253 	printk(KERN_INFO "  bootmap [%016lx -  %016lx] pages %lx\n",
254 		 bootmap_start, bootmap_start + bootmap_size - 1,
255 		 bootmap_pages);
256 
257 	free_bootmem_with_active_regions(nodeid, end);
258 
259 	/*
260 	 * convert early reserve to bootmem reserve earlier
261 	 * otherwise early_node_mem could use early reserved mem
262 	 * on previous node
263 	 */
264 	early_res_to_bootmem(start, end);
265 
266 	/*
267 	 * in some case early_node_mem could use alloc_bootmem
268 	 * to get range on other node, don't reserve that again
269 	 */
270 	if (nid != nodeid)
271 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid);
272 	else
273 		reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
274 					pgdat_size, BOOTMEM_DEFAULT);
275 	nid = phys_to_nid(bootmap_start);
276 	if (nid != nodeid)
277 		printk(KERN_INFO "    bootmap(%d) on node %d\n", nodeid, nid);
278 	else
279 		reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
280 				 bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
281 
282 	node_set_online(nodeid);
283 }
284 
285 /*
286  * There are unfortunately some poorly designed mainboards around that
287  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
288  * mapping. To avoid this fill in the mapping for all possible CPUs,
289  * as the number of CPUs is not known yet. We round robin the existing
290  * nodes.
291  */
292 void __init numa_init_array(void)
293 {
294 	int rr, i;
295 
296 	rr = first_node(node_online_map);
297 	for (i = 0; i < nr_cpu_ids; i++) {
298 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
299 			continue;
300 		numa_set_node(i, rr);
301 		rr = next_node(rr, node_online_map);
302 		if (rr == MAX_NUMNODES)
303 			rr = first_node(node_online_map);
304 	}
305 }
306 
307 #ifdef CONFIG_NUMA_EMU
308 /* Numa emulation */
309 static char *cmdline __initdata;
310 
311 /*
312  * Setups up nid to range from addr to addr + size.  If the end
313  * boundary is greater than max_addr, then max_addr is used instead.
314  * The return value is 0 if there is additional memory left for
315  * allocation past addr and -1 otherwise.  addr is adjusted to be at
316  * the end of the node.
317  */
318 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
319 				   u64 size, u64 max_addr)
320 {
321 	int ret = 0;
322 
323 	nodes[nid].start = *addr;
324 	*addr += size;
325 	if (*addr >= max_addr) {
326 		*addr = max_addr;
327 		ret = -1;
328 	}
329 	nodes[nid].end = *addr;
330 	node_set(nid, node_possible_map);
331 	printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
332 	       nodes[nid].start, nodes[nid].end,
333 	       (nodes[nid].end - nodes[nid].start) >> 20);
334 	return ret;
335 }
336 
337 /*
338  * Splits num_nodes nodes up equally starting at node_start.  The return value
339  * is the number of nodes split up and addr is adjusted to be at the end of the
340  * last node allocated.
341  */
342 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
343 				      u64 max_addr, int node_start,
344 				      int num_nodes)
345 {
346 	unsigned int big;
347 	u64 size;
348 	int i;
349 
350 	if (num_nodes <= 0)
351 		return -1;
352 	if (num_nodes > MAX_NUMNODES)
353 		num_nodes = MAX_NUMNODES;
354 	size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
355 	       num_nodes;
356 	/*
357 	 * Calculate the number of big nodes that can be allocated as a result
358 	 * of consolidating the leftovers.
359 	 */
360 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
361 	      FAKE_NODE_MIN_SIZE;
362 
363 	/* Round down to nearest FAKE_NODE_MIN_SIZE. */
364 	size &= FAKE_NODE_MIN_HASH_MASK;
365 	if (!size) {
366 		printk(KERN_ERR "Not enough memory for each node.  "
367 		       "NUMA emulation disabled.\n");
368 		return -1;
369 	}
370 
371 	for (i = node_start; i < num_nodes + node_start; i++) {
372 		u64 end = *addr + size;
373 
374 		if (i < big)
375 			end += FAKE_NODE_MIN_SIZE;
376 		/*
377 		 * The final node can have the remaining system RAM.  Other
378 		 * nodes receive roughly the same amount of available pages.
379 		 */
380 		if (i == num_nodes + node_start - 1)
381 			end = max_addr;
382 		else
383 			while (end - *addr - e820_hole_size(*addr, end) <
384 			       size) {
385 				end += FAKE_NODE_MIN_SIZE;
386 				if (end > max_addr) {
387 					end = max_addr;
388 					break;
389 				}
390 			}
391 		if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
392 			break;
393 	}
394 	return i - node_start + 1;
395 }
396 
397 /*
398  * Splits the remaining system RAM into chunks of size.  The remaining memory is
399  * always assigned to a final node and can be asymmetric.  Returns the number of
400  * nodes split.
401  */
402 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
403 				      u64 max_addr, int node_start, u64 size)
404 {
405 	int i = node_start;
406 	size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
407 	while (!setup_node_range(i++, nodes, addr, size, max_addr))
408 		;
409 	return i - node_start;
410 }
411 
412 /*
413  * Sets up the system RAM area from start_pfn to last_pfn according to the
414  * numa=fake command-line option.
415  */
416 static struct bootnode nodes[MAX_NUMNODES] __initdata;
417 
418 static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
419 {
420 	u64 size, addr = start_pfn << PAGE_SHIFT;
421 	u64 max_addr = last_pfn << PAGE_SHIFT;
422 	int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
423 
424 	memset(&nodes, 0, sizeof(nodes));
425 	/*
426 	 * If the numa=fake command-line is just a single number N, split the
427 	 * system RAM into N fake nodes.
428 	 */
429 	if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
430 		long n = simple_strtol(cmdline, NULL, 0);
431 
432 		num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
433 		if (num_nodes < 0)
434 			return num_nodes;
435 		goto out;
436 	}
437 
438 	/* Parse the command line. */
439 	for (coeff_flag = 0; ; cmdline++) {
440 		if (*cmdline && isdigit(*cmdline)) {
441 			num = num * 10 + *cmdline - '0';
442 			continue;
443 		}
444 		if (*cmdline == '*') {
445 			if (num > 0)
446 				coeff = num;
447 			coeff_flag = 1;
448 		}
449 		if (!*cmdline || *cmdline == ',') {
450 			if (!coeff_flag)
451 				coeff = 1;
452 			/*
453 			 * Round down to the nearest FAKE_NODE_MIN_SIZE.
454 			 * Command-line coefficients are in megabytes.
455 			 */
456 			size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
457 			if (size)
458 				for (i = 0; i < coeff; i++, num_nodes++)
459 					if (setup_node_range(num_nodes, nodes,
460 						&addr, size, max_addr) < 0)
461 						goto done;
462 			if (!*cmdline)
463 				break;
464 			coeff_flag = 0;
465 			coeff = -1;
466 		}
467 		num = 0;
468 	}
469 done:
470 	if (!num_nodes)
471 		return -1;
472 	/* Fill remainder of system RAM, if appropriate. */
473 	if (addr < max_addr) {
474 		if (coeff_flag && coeff < 0) {
475 			/* Split remaining nodes into num-sized chunks */
476 			num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
477 							 num_nodes, num);
478 			goto out;
479 		}
480 		switch (*(cmdline - 1)) {
481 		case '*':
482 			/* Split remaining nodes into coeff chunks */
483 			if (coeff <= 0)
484 				break;
485 			num_nodes += split_nodes_equally(nodes, &addr, max_addr,
486 							 num_nodes, coeff);
487 			break;
488 		case ',':
489 			/* Do not allocate remaining system RAM */
490 			break;
491 		default:
492 			/* Give one final node */
493 			setup_node_range(num_nodes, nodes, &addr,
494 					 max_addr - addr, max_addr);
495 			num_nodes++;
496 		}
497 	}
498 out:
499 	memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
500 	if (memnode_shift < 0) {
501 		memnode_shift = 0;
502 		printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
503 		       "disabled.\n");
504 		return -1;
505 	}
506 
507 	/*
508 	 * We need to vacate all active ranges that may have been registered by
509 	 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
510 	 * true.  NUMA emulation has succeeded so we will not scan ACPI nodes.
511 	 */
512 	remove_all_active_ranges();
513 #ifdef CONFIG_ACPI_NUMA
514 	acpi_numa = -1;
515 #endif
516 	for_each_node_mask(i, node_possible_map) {
517 		e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
518 						nodes[i].end >> PAGE_SHIFT);
519 		setup_node_bootmem(i, nodes[i].start, nodes[i].end);
520 	}
521 	acpi_fake_nodes(nodes, num_nodes);
522 	numa_init_array();
523 	return 0;
524 }
525 #endif /* CONFIG_NUMA_EMU */
526 
527 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
528 {
529 	int i;
530 
531 	nodes_clear(node_possible_map);
532 	nodes_clear(node_online_map);
533 
534 #ifdef CONFIG_NUMA_EMU
535 	if (cmdline && !numa_emulation(start_pfn, last_pfn))
536 		return;
537 	nodes_clear(node_possible_map);
538 	nodes_clear(node_online_map);
539 #endif
540 
541 #ifdef CONFIG_ACPI_NUMA
542 	if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
543 					  last_pfn << PAGE_SHIFT))
544 		return;
545 	nodes_clear(node_possible_map);
546 	nodes_clear(node_online_map);
547 #endif
548 
549 #ifdef CONFIG_K8_NUMA
550 	if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
551 					last_pfn<<PAGE_SHIFT))
552 		return;
553 	nodes_clear(node_possible_map);
554 	nodes_clear(node_online_map);
555 #endif
556 	printk(KERN_INFO "%s\n",
557 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
558 
559 	printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
560 	       start_pfn << PAGE_SHIFT,
561 	       last_pfn << PAGE_SHIFT);
562 	/* setup dummy node covering all memory */
563 	memnode_shift = 63;
564 	memnodemap = memnode.embedded_map;
565 	memnodemap[0] = 0;
566 	node_set_online(0);
567 	node_set(0, node_possible_map);
568 	for (i = 0; i < nr_cpu_ids; i++)
569 		numa_set_node(i, 0);
570 	e820_register_active_regions(0, start_pfn, last_pfn);
571 	setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
572 }
573 
574 unsigned long __init numa_free_all_bootmem(void)
575 {
576 	unsigned long pages = 0;
577 	int i;
578 
579 	for_each_online_node(i)
580 		pages += free_all_bootmem_node(NODE_DATA(i));
581 
582 	return pages;
583 }
584 
585 static __init int numa_setup(char *opt)
586 {
587 	if (!opt)
588 		return -EINVAL;
589 	if (!strncmp(opt, "off", 3))
590 		numa_off = 1;
591 #ifdef CONFIG_NUMA_EMU
592 	if (!strncmp(opt, "fake=", 5))
593 		cmdline = opt + 5;
594 #endif
595 #ifdef CONFIG_ACPI_NUMA
596 	if (!strncmp(opt, "noacpi", 6))
597 		acpi_numa = -1;
598 #endif
599 	return 0;
600 }
601 early_param("numa", numa_setup);
602 
603 #ifdef CONFIG_NUMA
604 /*
605  * Setup early cpu_to_node.
606  *
607  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
608  * and apicid_to_node[] tables have valid entries for a CPU.
609  * This means we skip cpu_to_node[] initialisation for NUMA
610  * emulation and faking node case (when running a kernel compiled
611  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
612  * is already initialized in a round robin manner at numa_init_array,
613  * prior to this call, and this initialization is good enough
614  * for the fake NUMA cases.
615  *
616  * Called before the per_cpu areas are setup.
617  */
618 void __init init_cpu_to_node(void)
619 {
620 	int cpu;
621 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
622 
623 	BUG_ON(cpu_to_apicid == NULL);
624 
625 	for_each_possible_cpu(cpu) {
626 		int node;
627 		u16 apicid = cpu_to_apicid[cpu];
628 
629 		if (apicid == BAD_APICID)
630 			continue;
631 		node = apicid_to_node[apicid];
632 		if (node == NUMA_NO_NODE)
633 			continue;
634 		if (!node_online(node))
635 			continue;
636 		numa_set_node(cpu, node);
637 	}
638 }
639 #endif
640 
641 
642 void __cpuinit numa_set_node(int cpu, int node)
643 {
644 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
645 
646 	/* early setting, no percpu area yet */
647 	if (cpu_to_node_map) {
648 		cpu_to_node_map[cpu] = node;
649 		return;
650 	}
651 
652 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
653 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
654 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
655 		dump_stack();
656 		return;
657 	}
658 #endif
659 	per_cpu(x86_cpu_to_node_map, cpu) = node;
660 
661 	if (node != NUMA_NO_NODE)
662 		per_cpu(node_number, cpu) = node;
663 }
664 
665 void __cpuinit numa_clear_node(int cpu)
666 {
667 	numa_set_node(cpu, NUMA_NO_NODE);
668 }
669 
670 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
671 
672 void __cpuinit numa_add_cpu(int cpu)
673 {
674 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
675 }
676 
677 void __cpuinit numa_remove_cpu(int cpu)
678 {
679 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
680 }
681 
682 #else /* CONFIG_DEBUG_PER_CPU_MAPS */
683 
684 /*
685  * --------- debug versions of the numa functions ---------
686  */
687 static void __cpuinit numa_set_cpumask(int cpu, int enable)
688 {
689 	int node = early_cpu_to_node(cpu);
690 	struct cpumask *mask;
691 	char buf[64];
692 
693 	mask = node_to_cpumask_map[node];
694 	if (mask == NULL) {
695 		printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
696 		dump_stack();
697 		return;
698 	}
699 
700 	if (enable)
701 		cpumask_set_cpu(cpu, mask);
702 	else
703 		cpumask_clear_cpu(cpu, mask);
704 
705 	cpulist_scnprintf(buf, sizeof(buf), mask);
706 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
707 		enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
708 }
709 
710 void __cpuinit numa_add_cpu(int cpu)
711 {
712 	numa_set_cpumask(cpu, 1);
713 }
714 
715 void __cpuinit numa_remove_cpu(int cpu)
716 {
717 	numa_set_cpumask(cpu, 0);
718 }
719 
720 int cpu_to_node(int cpu)
721 {
722 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
723 		printk(KERN_WARNING
724 			"cpu_to_node(%d): usage too early!\n", cpu);
725 		dump_stack();
726 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
727 	}
728 	return per_cpu(x86_cpu_to_node_map, cpu);
729 }
730 EXPORT_SYMBOL(cpu_to_node);
731 
732 /*
733  * Same function as cpu_to_node() but used if called before the
734  * per_cpu areas are setup.
735  */
736 int early_cpu_to_node(int cpu)
737 {
738 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
739 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
740 
741 	if (!cpu_possible(cpu)) {
742 		printk(KERN_WARNING
743 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
744 		dump_stack();
745 		return NUMA_NO_NODE;
746 	}
747 	return per_cpu(x86_cpu_to_node_map, cpu);
748 }
749 
750 /*
751  * --------- end of debug versions of the numa functions ---------
752  */
753 
754 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
755