xref: /openbmc/linux/arch/x86/mm/numa_64.c (revision b627b4ed)
1 /*
2  * Generic VM initialization for x86-64 NUMA setups.
3  * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4  */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15 
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22 
23 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
24 EXPORT_SYMBOL(node_data);
25 
26 struct memnode memnode;
27 
28 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
29 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
30 };
31 
32 int numa_off __initdata;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
35 
36 DEFINE_PER_CPU(int, node_number) = 0;
37 EXPORT_PER_CPU_SYMBOL(node_number);
38 
39 /*
40  * Map cpu index to node index
41  */
42 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
43 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
44 
45 /*
46  * Given a shift value, try to populate memnodemap[]
47  * Returns :
48  * 1 if OK
49  * 0 if memnodmap[] too small (of shift too small)
50  * -1 if node overlap or lost ram (shift too big)
51  */
52 static int __init populate_memnodemap(const struct bootnode *nodes,
53 				      int numnodes, int shift, int *nodeids)
54 {
55 	unsigned long addr, end;
56 	int i, res = -1;
57 
58 	memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
59 	for (i = 0; i < numnodes; i++) {
60 		addr = nodes[i].start;
61 		end = nodes[i].end;
62 		if (addr >= end)
63 			continue;
64 		if ((end >> shift) >= memnodemapsize)
65 			return 0;
66 		do {
67 			if (memnodemap[addr >> shift] != NUMA_NO_NODE)
68 				return -1;
69 
70 			if (!nodeids)
71 				memnodemap[addr >> shift] = i;
72 			else
73 				memnodemap[addr >> shift] = nodeids[i];
74 
75 			addr += (1UL << shift);
76 		} while (addr < end);
77 		res = 1;
78 	}
79 	return res;
80 }
81 
82 static int __init allocate_cachealigned_memnodemap(void)
83 {
84 	unsigned long addr;
85 
86 	memnodemap = memnode.embedded_map;
87 	if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
88 		return 0;
89 
90 	addr = 0x8000;
91 	nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
92 	nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
93 				      nodemap_size, L1_CACHE_BYTES);
94 	if (nodemap_addr == -1UL) {
95 		printk(KERN_ERR
96 		       "NUMA: Unable to allocate Memory to Node hash map\n");
97 		nodemap_addr = nodemap_size = 0;
98 		return -1;
99 	}
100 	memnodemap = phys_to_virt(nodemap_addr);
101 	reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
102 
103 	printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 	       nodemap_addr, nodemap_addr + nodemap_size);
105 	return 0;
106 }
107 
108 /*
109  * The LSB of all start and end addresses in the node map is the value of the
110  * maximum possible shift.
111  */
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 					 int numnodes)
114 {
115 	int i, nodes_used = 0;
116 	unsigned long start, end;
117 	unsigned long bitfield = 0, memtop = 0;
118 
119 	for (i = 0; i < numnodes; i++) {
120 		start = nodes[i].start;
121 		end = nodes[i].end;
122 		if (start >= end)
123 			continue;
124 		bitfield |= start;
125 		nodes_used++;
126 		if (end > memtop)
127 			memtop = end;
128 	}
129 	if (nodes_used <= 1)
130 		i = 63;
131 	else
132 		i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 	memnodemapsize = (memtop >> i)+1;
134 	return i;
135 }
136 
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
138 			      int *nodeids)
139 {
140 	int shift;
141 
142 	shift = extract_lsb_from_nodes(nodes, numnodes);
143 	if (allocate_cachealigned_memnodemap())
144 		return -1;
145 	printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
146 		shift);
147 
148 	if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
149 		printk(KERN_INFO "Your memory is not aligned you need to "
150 		       "rebuild your kernel with a bigger NODEMAPSIZE "
151 		       "shift=%d\n", shift);
152 		return -1;
153 	}
154 	return shift;
155 }
156 
157 int __meminit  __early_pfn_to_nid(unsigned long pfn)
158 {
159 	return phys_to_nid(pfn << PAGE_SHIFT);
160 }
161 
162 static void * __init early_node_mem(int nodeid, unsigned long start,
163 				    unsigned long end, unsigned long size,
164 				    unsigned long align)
165 {
166 	unsigned long mem = find_e820_area(start, end, size, align);
167 	void *ptr;
168 
169 	if (mem != -1L)
170 		return __va(mem);
171 
172 	ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
173 	if (ptr == NULL) {
174 		printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
175 		       size, nodeid);
176 		return NULL;
177 	}
178 	return ptr;
179 }
180 
181 /* Initialize bootmem allocator for a node */
182 void __init setup_node_bootmem(int nodeid, unsigned long start,
183 			       unsigned long end)
184 {
185 	unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
186 	unsigned long bootmap_start, nodedata_phys;
187 	void *bootmap;
188 	const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
189 	int nid;
190 
191 	start = roundup(start, ZONE_ALIGN);
192 
193 	printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
194 	       start, end);
195 
196 	start_pfn = start >> PAGE_SHIFT;
197 	last_pfn = end >> PAGE_SHIFT;
198 
199 	node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
200 					   SMP_CACHE_BYTES);
201 	if (node_data[nodeid] == NULL)
202 		return;
203 	nodedata_phys = __pa(node_data[nodeid]);
204 	printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
205 		nodedata_phys + pgdat_size - 1);
206 
207 	memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
208 	NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
209 	NODE_DATA(nodeid)->node_start_pfn = start_pfn;
210 	NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
211 
212 	/*
213 	 * Find a place for the bootmem map
214 	 * nodedata_phys could be on other nodes by alloc_bootmem,
215 	 * so need to sure bootmap_start not to be small, otherwise
216 	 * early_node_mem will get that with find_e820_area instead
217 	 * of alloc_bootmem, that could clash with reserved range
218 	 */
219 	bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
220 	nid = phys_to_nid(nodedata_phys);
221 	if (nid == nodeid)
222 		bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
223 	else
224 		bootmap_start = roundup(start, PAGE_SIZE);
225 	/*
226 	 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
227 	 * to use that to align to PAGE_SIZE
228 	 */
229 	bootmap = early_node_mem(nodeid, bootmap_start, end,
230 				 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
231 	if (bootmap == NULL)  {
232 		if (nodedata_phys < start || nodedata_phys >= end)
233 			free_bootmem(nodedata_phys, pgdat_size);
234 		node_data[nodeid] = NULL;
235 		return;
236 	}
237 	bootmap_start = __pa(bootmap);
238 
239 	bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
240 					 bootmap_start >> PAGE_SHIFT,
241 					 start_pfn, last_pfn);
242 
243 	printk(KERN_INFO "  bootmap [%016lx -  %016lx] pages %lx\n",
244 		 bootmap_start, bootmap_start + bootmap_size - 1,
245 		 bootmap_pages);
246 
247 	free_bootmem_with_active_regions(nodeid, end);
248 
249 	/*
250 	 * convert early reserve to bootmem reserve earlier
251 	 * otherwise early_node_mem could use early reserved mem
252 	 * on previous node
253 	 */
254 	early_res_to_bootmem(start, end);
255 
256 	/*
257 	 * in some case early_node_mem could use alloc_bootmem
258 	 * to get range on other node, don't reserve that again
259 	 */
260 	if (nid != nodeid)
261 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid);
262 	else
263 		reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
264 					pgdat_size, BOOTMEM_DEFAULT);
265 	nid = phys_to_nid(bootmap_start);
266 	if (nid != nodeid)
267 		printk(KERN_INFO "    bootmap(%d) on node %d\n", nodeid, nid);
268 	else
269 		reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
270 				 bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
271 
272 #ifdef CONFIG_ACPI_NUMA
273 	srat_reserve_add_area(nodeid);
274 #endif
275 	node_set_online(nodeid);
276 }
277 
278 /*
279  * There are unfortunately some poorly designed mainboards around that
280  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
281  * mapping. To avoid this fill in the mapping for all possible CPUs,
282  * as the number of CPUs is not known yet. We round robin the existing
283  * nodes.
284  */
285 void __init numa_init_array(void)
286 {
287 	int rr, i;
288 
289 	rr = first_node(node_online_map);
290 	for (i = 0; i < nr_cpu_ids; i++) {
291 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
292 			continue;
293 		numa_set_node(i, rr);
294 		rr = next_node(rr, node_online_map);
295 		if (rr == MAX_NUMNODES)
296 			rr = first_node(node_online_map);
297 	}
298 }
299 
300 #ifdef CONFIG_NUMA_EMU
301 /* Numa emulation */
302 static char *cmdline __initdata;
303 
304 /*
305  * Setups up nid to range from addr to addr + size.  If the end
306  * boundary is greater than max_addr, then max_addr is used instead.
307  * The return value is 0 if there is additional memory left for
308  * allocation past addr and -1 otherwise.  addr is adjusted to be at
309  * the end of the node.
310  */
311 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
312 				   u64 size, u64 max_addr)
313 {
314 	int ret = 0;
315 
316 	nodes[nid].start = *addr;
317 	*addr += size;
318 	if (*addr >= max_addr) {
319 		*addr = max_addr;
320 		ret = -1;
321 	}
322 	nodes[nid].end = *addr;
323 	node_set(nid, node_possible_map);
324 	printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
325 	       nodes[nid].start, nodes[nid].end,
326 	       (nodes[nid].end - nodes[nid].start) >> 20);
327 	return ret;
328 }
329 
330 /*
331  * Splits num_nodes nodes up equally starting at node_start.  The return value
332  * is the number of nodes split up and addr is adjusted to be at the end of the
333  * last node allocated.
334  */
335 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
336 				      u64 max_addr, int node_start,
337 				      int num_nodes)
338 {
339 	unsigned int big;
340 	u64 size;
341 	int i;
342 
343 	if (num_nodes <= 0)
344 		return -1;
345 	if (num_nodes > MAX_NUMNODES)
346 		num_nodes = MAX_NUMNODES;
347 	size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
348 	       num_nodes;
349 	/*
350 	 * Calculate the number of big nodes that can be allocated as a result
351 	 * of consolidating the leftovers.
352 	 */
353 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
354 	      FAKE_NODE_MIN_SIZE;
355 
356 	/* Round down to nearest FAKE_NODE_MIN_SIZE. */
357 	size &= FAKE_NODE_MIN_HASH_MASK;
358 	if (!size) {
359 		printk(KERN_ERR "Not enough memory for each node.  "
360 		       "NUMA emulation disabled.\n");
361 		return -1;
362 	}
363 
364 	for (i = node_start; i < num_nodes + node_start; i++) {
365 		u64 end = *addr + size;
366 
367 		if (i < big)
368 			end += FAKE_NODE_MIN_SIZE;
369 		/*
370 		 * The final node can have the remaining system RAM.  Other
371 		 * nodes receive roughly the same amount of available pages.
372 		 */
373 		if (i == num_nodes + node_start - 1)
374 			end = max_addr;
375 		else
376 			while (end - *addr - e820_hole_size(*addr, end) <
377 			       size) {
378 				end += FAKE_NODE_MIN_SIZE;
379 				if (end > max_addr) {
380 					end = max_addr;
381 					break;
382 				}
383 			}
384 		if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
385 			break;
386 	}
387 	return i - node_start + 1;
388 }
389 
390 /*
391  * Splits the remaining system RAM into chunks of size.  The remaining memory is
392  * always assigned to a final node and can be asymmetric.  Returns the number of
393  * nodes split.
394  */
395 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
396 				      u64 max_addr, int node_start, u64 size)
397 {
398 	int i = node_start;
399 	size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
400 	while (!setup_node_range(i++, nodes, addr, size, max_addr))
401 		;
402 	return i - node_start;
403 }
404 
405 /*
406  * Sets up the system RAM area from start_pfn to last_pfn according to the
407  * numa=fake command-line option.
408  */
409 static struct bootnode nodes[MAX_NUMNODES] __initdata;
410 
411 static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
412 {
413 	u64 size, addr = start_pfn << PAGE_SHIFT;
414 	u64 max_addr = last_pfn << PAGE_SHIFT;
415 	int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
416 
417 	memset(&nodes, 0, sizeof(nodes));
418 	/*
419 	 * If the numa=fake command-line is just a single number N, split the
420 	 * system RAM into N fake nodes.
421 	 */
422 	if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
423 		long n = simple_strtol(cmdline, NULL, 0);
424 
425 		num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
426 		if (num_nodes < 0)
427 			return num_nodes;
428 		goto out;
429 	}
430 
431 	/* Parse the command line. */
432 	for (coeff_flag = 0; ; cmdline++) {
433 		if (*cmdline && isdigit(*cmdline)) {
434 			num = num * 10 + *cmdline - '0';
435 			continue;
436 		}
437 		if (*cmdline == '*') {
438 			if (num > 0)
439 				coeff = num;
440 			coeff_flag = 1;
441 		}
442 		if (!*cmdline || *cmdline == ',') {
443 			if (!coeff_flag)
444 				coeff = 1;
445 			/*
446 			 * Round down to the nearest FAKE_NODE_MIN_SIZE.
447 			 * Command-line coefficients are in megabytes.
448 			 */
449 			size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
450 			if (size)
451 				for (i = 0; i < coeff; i++, num_nodes++)
452 					if (setup_node_range(num_nodes, nodes,
453 						&addr, size, max_addr) < 0)
454 						goto done;
455 			if (!*cmdline)
456 				break;
457 			coeff_flag = 0;
458 			coeff = -1;
459 		}
460 		num = 0;
461 	}
462 done:
463 	if (!num_nodes)
464 		return -1;
465 	/* Fill remainder of system RAM, if appropriate. */
466 	if (addr < max_addr) {
467 		if (coeff_flag && coeff < 0) {
468 			/* Split remaining nodes into num-sized chunks */
469 			num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
470 							 num_nodes, num);
471 			goto out;
472 		}
473 		switch (*(cmdline - 1)) {
474 		case '*':
475 			/* Split remaining nodes into coeff chunks */
476 			if (coeff <= 0)
477 				break;
478 			num_nodes += split_nodes_equally(nodes, &addr, max_addr,
479 							 num_nodes, coeff);
480 			break;
481 		case ',':
482 			/* Do not allocate remaining system RAM */
483 			break;
484 		default:
485 			/* Give one final node */
486 			setup_node_range(num_nodes, nodes, &addr,
487 					 max_addr - addr, max_addr);
488 			num_nodes++;
489 		}
490 	}
491 out:
492 	memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
493 	if (memnode_shift < 0) {
494 		memnode_shift = 0;
495 		printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
496 		       "disabled.\n");
497 		return -1;
498 	}
499 
500 	/*
501 	 * We need to vacate all active ranges that may have been registered by
502 	 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
503 	 * true.  NUMA emulation has succeeded so we will not scan ACPI nodes.
504 	 */
505 	remove_all_active_ranges();
506 #ifdef CONFIG_ACPI_NUMA
507 	acpi_numa = -1;
508 #endif
509 	for_each_node_mask(i, node_possible_map) {
510 		e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
511 						nodes[i].end >> PAGE_SHIFT);
512 		setup_node_bootmem(i, nodes[i].start, nodes[i].end);
513 	}
514 	acpi_fake_nodes(nodes, num_nodes);
515 	numa_init_array();
516 	return 0;
517 }
518 #endif /* CONFIG_NUMA_EMU */
519 
520 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
521 {
522 	int i;
523 
524 	nodes_clear(node_possible_map);
525 	nodes_clear(node_online_map);
526 
527 #ifdef CONFIG_NUMA_EMU
528 	if (cmdline && !numa_emulation(start_pfn, last_pfn))
529 		return;
530 	nodes_clear(node_possible_map);
531 	nodes_clear(node_online_map);
532 #endif
533 
534 #ifdef CONFIG_ACPI_NUMA
535 	if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
536 					  last_pfn << PAGE_SHIFT))
537 		return;
538 	nodes_clear(node_possible_map);
539 	nodes_clear(node_online_map);
540 #endif
541 
542 #ifdef CONFIG_K8_NUMA
543 	if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
544 					last_pfn<<PAGE_SHIFT))
545 		return;
546 	nodes_clear(node_possible_map);
547 	nodes_clear(node_online_map);
548 #endif
549 	printk(KERN_INFO "%s\n",
550 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
551 
552 	printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
553 	       start_pfn << PAGE_SHIFT,
554 	       last_pfn << PAGE_SHIFT);
555 	/* setup dummy node covering all memory */
556 	memnode_shift = 63;
557 	memnodemap = memnode.embedded_map;
558 	memnodemap[0] = 0;
559 	node_set_online(0);
560 	node_set(0, node_possible_map);
561 	for (i = 0; i < nr_cpu_ids; i++)
562 		numa_set_node(i, 0);
563 	e820_register_active_regions(0, start_pfn, last_pfn);
564 	setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
565 }
566 
567 unsigned long __init numa_free_all_bootmem(void)
568 {
569 	unsigned long pages = 0;
570 	int i;
571 
572 	for_each_online_node(i)
573 		pages += free_all_bootmem_node(NODE_DATA(i));
574 
575 	return pages;
576 }
577 
578 void __init paging_init(void)
579 {
580 	unsigned long max_zone_pfns[MAX_NR_ZONES];
581 
582 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
583 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
584 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
585 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
586 
587 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
588 	sparse_init();
589 
590 	free_area_init_nodes(max_zone_pfns);
591 }
592 
593 static __init int numa_setup(char *opt)
594 {
595 	if (!opt)
596 		return -EINVAL;
597 	if (!strncmp(opt, "off", 3))
598 		numa_off = 1;
599 #ifdef CONFIG_NUMA_EMU
600 	if (!strncmp(opt, "fake=", 5))
601 		cmdline = opt + 5;
602 #endif
603 #ifdef CONFIG_ACPI_NUMA
604 	if (!strncmp(opt, "noacpi", 6))
605 		acpi_numa = -1;
606 	if (!strncmp(opt, "hotadd=", 7))
607 		hotadd_percent = simple_strtoul(opt+7, NULL, 10);
608 #endif
609 	return 0;
610 }
611 early_param("numa", numa_setup);
612 
613 #ifdef CONFIG_NUMA
614 /*
615  * Setup early cpu_to_node.
616  *
617  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
618  * and apicid_to_node[] tables have valid entries for a CPU.
619  * This means we skip cpu_to_node[] initialisation for NUMA
620  * emulation and faking node case (when running a kernel compiled
621  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
622  * is already initialized in a round robin manner at numa_init_array,
623  * prior to this call, and this initialization is good enough
624  * for the fake NUMA cases.
625  *
626  * Called before the per_cpu areas are setup.
627  */
628 void __init init_cpu_to_node(void)
629 {
630 	int cpu;
631 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
632 
633 	BUG_ON(cpu_to_apicid == NULL);
634 
635 	for_each_possible_cpu(cpu) {
636 		int node;
637 		u16 apicid = cpu_to_apicid[cpu];
638 
639 		if (apicid == BAD_APICID)
640 			continue;
641 		node = apicid_to_node[apicid];
642 		if (node == NUMA_NO_NODE)
643 			continue;
644 		if (!node_online(node))
645 			continue;
646 		numa_set_node(cpu, node);
647 	}
648 }
649 #endif
650 
651 
652 void __cpuinit numa_set_node(int cpu, int node)
653 {
654 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
655 
656 	/* early setting, no percpu area yet */
657 	if (cpu_to_node_map) {
658 		cpu_to_node_map[cpu] = node;
659 		return;
660 	}
661 
662 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
663 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
664 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
665 		dump_stack();
666 		return;
667 	}
668 #endif
669 	per_cpu(x86_cpu_to_node_map, cpu) = node;
670 
671 	if (node != NUMA_NO_NODE)
672 		per_cpu(node_number, cpu) = node;
673 }
674 
675 void __cpuinit numa_clear_node(int cpu)
676 {
677 	numa_set_node(cpu, NUMA_NO_NODE);
678 }
679 
680 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
681 
682 void __cpuinit numa_add_cpu(int cpu)
683 {
684 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
685 }
686 
687 void __cpuinit numa_remove_cpu(int cpu)
688 {
689 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
690 }
691 
692 #else /* CONFIG_DEBUG_PER_CPU_MAPS */
693 
694 /*
695  * --------- debug versions of the numa functions ---------
696  */
697 static void __cpuinit numa_set_cpumask(int cpu, int enable)
698 {
699 	int node = early_cpu_to_node(cpu);
700 	struct cpumask *mask;
701 	char buf[64];
702 
703 	mask = node_to_cpumask_map[node];
704 	if (mask == NULL) {
705 		printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
706 		dump_stack();
707 		return;
708 	}
709 
710 	if (enable)
711 		cpumask_set_cpu(cpu, mask);
712 	else
713 		cpumask_clear_cpu(cpu, mask);
714 
715 	cpulist_scnprintf(buf, sizeof(buf), mask);
716 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
717 		enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
718 }
719 
720 void __cpuinit numa_add_cpu(int cpu)
721 {
722 	numa_set_cpumask(cpu, 1);
723 }
724 
725 void __cpuinit numa_remove_cpu(int cpu)
726 {
727 	numa_set_cpumask(cpu, 0);
728 }
729 
730 int cpu_to_node(int cpu)
731 {
732 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
733 		printk(KERN_WARNING
734 			"cpu_to_node(%d): usage too early!\n", cpu);
735 		dump_stack();
736 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
737 	}
738 	return per_cpu(x86_cpu_to_node_map, cpu);
739 }
740 EXPORT_SYMBOL(cpu_to_node);
741 
742 /*
743  * Same function as cpu_to_node() but used if called before the
744  * per_cpu areas are setup.
745  */
746 int early_cpu_to_node(int cpu)
747 {
748 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
749 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
750 
751 	if (!cpu_possible(cpu)) {
752 		printk(KERN_WARNING
753 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
754 		dump_stack();
755 		return NUMA_NO_NODE;
756 	}
757 	return per_cpu(x86_cpu_to_node_map, cpu);
758 }
759 
760 /*
761  * --------- end of debug versions of the numa functions ---------
762  */
763 
764 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
765