1 /* 2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation 3 * August 2002: added remote node KVA remap - Martin J. Bligh 4 * 5 * Copyright (C) 2002, IBM Corp. 6 * 7 * All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 17 * NON INFRINGEMENT. See the GNU General Public License for more 18 * details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/mm.h> 26 #include <linux/bootmem.h> 27 #include <linux/mmzone.h> 28 #include <linux/highmem.h> 29 #include <linux/initrd.h> 30 #include <linux/nodemask.h> 31 #include <linux/module.h> 32 #include <linux/kexec.h> 33 #include <linux/pfn.h> 34 #include <linux/swap.h> 35 #include <linux/acpi.h> 36 37 #include <asm/e820.h> 38 #include <asm/setup.h> 39 #include <asm/mmzone.h> 40 #include <asm/bios_ebda.h> 41 #include <asm/proto.h> 42 43 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 44 EXPORT_SYMBOL(node_data); 45 46 /* 47 * numa interface - we expect the numa architecture specific code to have 48 * populated the following initialisation. 49 * 50 * 1) node_online_map - the map of all nodes configured (online) in the system 51 * 2) node_start_pfn - the starting page frame number for a node 52 * 3) node_end_pfn - the ending page fram number for a node 53 */ 54 unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; 55 unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; 56 57 58 #ifdef CONFIG_DISCONTIGMEM 59 /* 60 * 4) physnode_map - the mapping between a pfn and owning node 61 * physnode_map keeps track of the physical memory layout of a generic 62 * numa node on a 64Mb break (each element of the array will 63 * represent 64Mb of memory and will be marked by the node id. so, 64 * if the first gig is on node 0, and the second gig is on node 1 65 * physnode_map will contain: 66 * 67 * physnode_map[0-15] = 0; 68 * physnode_map[16-31] = 1; 69 * physnode_map[32- ] = -1; 70 */ 71 s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; 72 EXPORT_SYMBOL(physnode_map); 73 74 void memory_present(int nid, unsigned long start, unsigned long end) 75 { 76 unsigned long pfn; 77 78 printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", 79 nid, start, end); 80 printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); 81 printk(KERN_DEBUG " "); 82 for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { 83 physnode_map[pfn / PAGES_PER_ELEMENT] = nid; 84 printk(KERN_CONT "%lx ", pfn); 85 } 86 printk(KERN_CONT "\n"); 87 } 88 89 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, 90 unsigned long end_pfn) 91 { 92 unsigned long nr_pages = end_pfn - start_pfn; 93 94 if (!nr_pages) 95 return 0; 96 97 return (nr_pages + 1) * sizeof(struct page); 98 } 99 #endif 100 101 extern unsigned long find_max_low_pfn(void); 102 extern unsigned long highend_pfn, highstart_pfn; 103 104 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) 105 106 unsigned long node_remap_size[MAX_NUMNODES]; 107 static void *node_remap_start_vaddr[MAX_NUMNODES]; 108 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); 109 110 static unsigned long kva_start_pfn; 111 static unsigned long kva_pages; 112 /* 113 * FLAT - support for basic PC memory model with discontig enabled, essentially 114 * a single node with all available processors in it with a flat 115 * memory map. 116 */ 117 int __init get_memcfg_numa_flat(void) 118 { 119 printk(KERN_DEBUG "NUMA - single node, flat memory mode\n"); 120 121 node_start_pfn[0] = 0; 122 node_end_pfn[0] = max_pfn; 123 e820_register_active_regions(0, 0, max_pfn); 124 memory_present(0, 0, max_pfn); 125 node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn); 126 127 /* Indicate there is one node available. */ 128 nodes_clear(node_online_map); 129 node_set_online(0); 130 return 1; 131 } 132 133 /* 134 * Find the highest page frame number we have available for the node 135 */ 136 static void __init propagate_e820_map_node(int nid) 137 { 138 if (node_end_pfn[nid] > max_pfn) 139 node_end_pfn[nid] = max_pfn; 140 /* 141 * if a user has given mem=XXXX, then we need to make sure 142 * that the node _starts_ before that, too, not just ends 143 */ 144 if (node_start_pfn[nid] > max_pfn) 145 node_start_pfn[nid] = max_pfn; 146 BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); 147 } 148 149 /* 150 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem 151 * method. For node zero take this from the bottom of memory, for 152 * subsequent nodes place them at node_remap_start_vaddr which contains 153 * node local data in physically node local memory. See setup_memory() 154 * for details. 155 */ 156 static void __init allocate_pgdat(int nid) 157 { 158 char buf[16]; 159 160 if (node_has_online_mem(nid) && node_remap_start_vaddr[nid]) 161 NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; 162 else { 163 unsigned long pgdat_phys; 164 pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT, 165 max_pfn_mapped<<PAGE_SHIFT, 166 sizeof(pg_data_t), 167 PAGE_SIZE); 168 NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT)); 169 memset(buf, 0, sizeof(buf)); 170 sprintf(buf, "NODE_DATA %d", nid); 171 reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf); 172 } 173 printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n", 174 nid, (unsigned long)NODE_DATA(nid)); 175 } 176 177 /* 178 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel 179 * virtual address space (KVA) is reserved and portions of nodes are mapped 180 * using it. This is to allow node-local memory to be allocated for 181 * structures that would normally require ZONE_NORMAL. The memory is 182 * allocated with alloc_remap() and callers should be prepared to allocate 183 * from the bootmem allocator instead. 184 */ 185 static unsigned long node_remap_start_pfn[MAX_NUMNODES]; 186 static void *node_remap_end_vaddr[MAX_NUMNODES]; 187 static void *node_remap_alloc_vaddr[MAX_NUMNODES]; 188 static unsigned long node_remap_offset[MAX_NUMNODES]; 189 190 void *alloc_remap(int nid, unsigned long size) 191 { 192 void *allocation = node_remap_alloc_vaddr[nid]; 193 194 size = ALIGN(size, L1_CACHE_BYTES); 195 196 if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) 197 return NULL; 198 199 node_remap_alloc_vaddr[nid] += size; 200 memset(allocation, 0, size); 201 202 return allocation; 203 } 204 205 static void __init remap_numa_kva(void) 206 { 207 void *vaddr; 208 unsigned long pfn; 209 int node; 210 211 for_each_online_node(node) { 212 printk(KERN_DEBUG "remap_numa_kva: node %d\n", node); 213 for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { 214 vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); 215 printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n", 216 (unsigned long)vaddr, 217 node_remap_start_pfn[node] + pfn); 218 set_pmd_pfn((ulong) vaddr, 219 node_remap_start_pfn[node] + pfn, 220 PAGE_KERNEL_LARGE); 221 } 222 } 223 } 224 225 #ifdef CONFIG_HIBERNATION 226 /** 227 * resume_map_numa_kva - add KVA mapping to the temporary page tables created 228 * during resume from hibernation 229 * @pgd_base - temporary resume page directory 230 */ 231 void resume_map_numa_kva(pgd_t *pgd_base) 232 { 233 int node; 234 235 for_each_online_node(node) { 236 unsigned long start_va, start_pfn, size, pfn; 237 238 start_va = (unsigned long)node_remap_start_vaddr[node]; 239 start_pfn = node_remap_start_pfn[node]; 240 size = node_remap_size[node]; 241 242 printk(KERN_DEBUG "%s: node %d\n", __func__, node); 243 244 for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) { 245 unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); 246 pgd_t *pgd = pgd_base + pgd_index(vaddr); 247 pud_t *pud = pud_offset(pgd, vaddr); 248 pmd_t *pmd = pmd_offset(pud, vaddr); 249 250 set_pmd(pmd, pfn_pmd(start_pfn + pfn, 251 PAGE_KERNEL_LARGE_EXEC)); 252 253 printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n", 254 __func__, vaddr, start_pfn + pfn); 255 } 256 } 257 } 258 #endif 259 260 static unsigned long calculate_numa_remap_pages(void) 261 { 262 int nid; 263 unsigned long size, reserve_pages = 0; 264 265 for_each_online_node(nid) { 266 u64 node_kva_target; 267 u64 node_kva_final; 268 269 /* 270 * The acpi/srat node info can show hot-add memroy zones 271 * where memory could be added but not currently present. 272 */ 273 printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", 274 nid, node_start_pfn[nid], node_end_pfn[nid]); 275 if (node_start_pfn[nid] > max_pfn) 276 continue; 277 if (!node_end_pfn[nid]) 278 continue; 279 if (node_end_pfn[nid] > max_pfn) 280 node_end_pfn[nid] = max_pfn; 281 282 /* ensure the remap includes space for the pgdat. */ 283 size = node_remap_size[nid] + sizeof(pg_data_t); 284 285 /* convert size to large (pmd size) pages, rounding up */ 286 size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; 287 /* now the roundup is correct, convert to PAGE_SIZE pages */ 288 size = size * PTRS_PER_PTE; 289 290 node_kva_target = round_down(node_end_pfn[nid] - size, 291 PTRS_PER_PTE); 292 node_kva_target <<= PAGE_SHIFT; 293 do { 294 node_kva_final = find_e820_area(node_kva_target, 295 ((u64)node_end_pfn[nid])<<PAGE_SHIFT, 296 ((u64)size)<<PAGE_SHIFT, 297 LARGE_PAGE_BYTES); 298 node_kva_target -= LARGE_PAGE_BYTES; 299 } while (node_kva_final == -1ULL && 300 (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid])); 301 302 if (node_kva_final == -1ULL) 303 panic("Can not get kva ram\n"); 304 305 node_remap_size[nid] = size; 306 node_remap_offset[nid] = reserve_pages; 307 reserve_pages += size; 308 printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of" 309 " node %d at %llx\n", 310 size, nid, node_kva_final>>PAGE_SHIFT); 311 312 /* 313 * prevent kva address below max_low_pfn want it on system 314 * with less memory later. 315 * layout will be: KVA address , KVA RAM 316 * 317 * we are supposed to only record the one less then max_low_pfn 318 * but we could have some hole in high memory, and it will only 319 * check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide 320 * to use it as free. 321 * So reserve_early here, hope we don't run out of that array 322 */ 323 reserve_early(node_kva_final, 324 node_kva_final+(((u64)size)<<PAGE_SHIFT), 325 "KVA RAM"); 326 327 node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT; 328 remove_active_range(nid, node_remap_start_pfn[nid], 329 node_remap_start_pfn[nid] + size); 330 } 331 printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n", 332 reserve_pages); 333 return reserve_pages; 334 } 335 336 static void init_remap_allocator(int nid) 337 { 338 node_remap_start_vaddr[nid] = pfn_to_kaddr( 339 kva_start_pfn + node_remap_offset[nid]); 340 node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + 341 (node_remap_size[nid] * PAGE_SIZE); 342 node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + 343 ALIGN(sizeof(pg_data_t), PAGE_SIZE); 344 345 printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid, 346 (ulong) node_remap_start_vaddr[nid], 347 (ulong) node_remap_end_vaddr[nid]); 348 } 349 350 void __init initmem_init(unsigned long start_pfn, 351 unsigned long end_pfn) 352 { 353 int nid; 354 long kva_target_pfn; 355 356 /* 357 * When mapping a NUMA machine we allocate the node_mem_map arrays 358 * from node local memory. They are then mapped directly into KVA 359 * between zone normal and vmalloc space. Calculate the size of 360 * this space and use it to adjust the boundary between ZONE_NORMAL 361 * and ZONE_HIGHMEM. 362 */ 363 364 get_memcfg_numa(); 365 366 kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE); 367 368 kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE); 369 do { 370 kva_start_pfn = find_e820_area(kva_target_pfn<<PAGE_SHIFT, 371 max_low_pfn<<PAGE_SHIFT, 372 kva_pages<<PAGE_SHIFT, 373 PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT; 374 kva_target_pfn -= PTRS_PER_PTE; 375 } while (kva_start_pfn == -1UL && kva_target_pfn > min_low_pfn); 376 377 if (kva_start_pfn == -1UL) 378 panic("Can not get kva space\n"); 379 380 printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n", 381 kva_start_pfn, max_low_pfn); 382 printk(KERN_INFO "max_pfn = %lx\n", max_pfn); 383 384 /* avoid clash with initrd */ 385 reserve_early(kva_start_pfn<<PAGE_SHIFT, 386 (kva_start_pfn + kva_pages)<<PAGE_SHIFT, 387 "KVA PG"); 388 #ifdef CONFIG_HIGHMEM 389 highstart_pfn = highend_pfn = max_pfn; 390 if (max_pfn > max_low_pfn) 391 highstart_pfn = max_low_pfn; 392 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", 393 pages_to_mb(highend_pfn - highstart_pfn)); 394 num_physpages = highend_pfn; 395 high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; 396 #else 397 num_physpages = max_low_pfn; 398 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; 399 #endif 400 printk(KERN_NOTICE "%ldMB LOWMEM available.\n", 401 pages_to_mb(max_low_pfn)); 402 printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", 403 max_low_pfn, highstart_pfn); 404 405 printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", 406 (ulong) pfn_to_kaddr(max_low_pfn)); 407 for_each_online_node(nid) { 408 init_remap_allocator(nid); 409 410 allocate_pgdat(nid); 411 } 412 remap_numa_kva(); 413 414 printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", 415 (ulong) pfn_to_kaddr(highstart_pfn)); 416 for_each_online_node(nid) 417 propagate_e820_map_node(nid); 418 419 for_each_online_node(nid) { 420 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 421 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 422 } 423 424 setup_bootmem_allocator(); 425 } 426 427 #ifdef CONFIG_MEMORY_HOTPLUG 428 static int paddr_to_nid(u64 addr) 429 { 430 int nid; 431 unsigned long pfn = PFN_DOWN(addr); 432 433 for_each_node(nid) 434 if (node_start_pfn[nid] <= pfn && 435 pfn < node_end_pfn[nid]) 436 return nid; 437 438 return -1; 439 } 440 441 /* 442 * This function is used to ask node id BEFORE memmap and mem_section's 443 * initialization (pfn_to_nid() can't be used yet). 444 * If _PXM is not defined on ACPI's DSDT, node id must be found by this. 445 */ 446 int memory_add_physaddr_to_nid(u64 addr) 447 { 448 int nid = paddr_to_nid(addr); 449 return (nid >= 0) ? nid : 0; 450 } 451 452 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 453 #endif 454 455