1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Common code for 32 and 64-bit NUMA */ 3 #include <linux/acpi.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/string.h> 7 #include <linux/init.h> 8 #include <linux/memblock.h> 9 #include <linux/mmzone.h> 10 #include <linux/ctype.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/proto.h> 17 #include <asm/dma.h> 18 #include <asm/amd_nb.h> 19 20 #include "numa_internal.h" 21 22 int numa_off; 23 nodemask_t numa_nodes_parsed __initdata; 24 25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 26 EXPORT_SYMBOL(node_data); 27 28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo; 29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; 30 31 static int numa_distance_cnt; 32 static u8 *numa_distance; 33 34 static __init int numa_setup(char *opt) 35 { 36 if (!opt) 37 return -EINVAL; 38 if (!strncmp(opt, "off", 3)) 39 numa_off = 1; 40 if (!strncmp(opt, "fake=", 5)) 41 return numa_emu_cmdline(opt + 5); 42 if (!strncmp(opt, "noacpi", 6)) 43 disable_srat(); 44 if (!strncmp(opt, "nohmat", 6)) 45 disable_hmat(); 46 return 0; 47 } 48 early_param("numa", numa_setup); 49 50 /* 51 * apicid, cpu, node mappings 52 */ 53 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 54 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 55 }; 56 57 int numa_cpu_node(int cpu) 58 { 59 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 60 61 if (apicid != BAD_APICID) 62 return __apicid_to_node[apicid]; 63 return NUMA_NO_NODE; 64 } 65 66 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 67 EXPORT_SYMBOL(node_to_cpumask_map); 68 69 /* 70 * Map cpu index to node index 71 */ 72 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 73 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 74 75 void numa_set_node(int cpu, int node) 76 { 77 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 78 79 /* early setting, no percpu area yet */ 80 if (cpu_to_node_map) { 81 cpu_to_node_map[cpu] = node; 82 return; 83 } 84 85 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 86 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 87 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 88 dump_stack(); 89 return; 90 } 91 #endif 92 per_cpu(x86_cpu_to_node_map, cpu) = node; 93 94 set_cpu_numa_node(cpu, node); 95 } 96 97 void numa_clear_node(int cpu) 98 { 99 numa_set_node(cpu, NUMA_NO_NODE); 100 } 101 102 /* 103 * Allocate node_to_cpumask_map based on number of available nodes 104 * Requires node_possible_map to be valid. 105 * 106 * Note: cpumask_of_node() is not valid until after this is done. 107 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 108 */ 109 void __init setup_node_to_cpumask_map(void) 110 { 111 unsigned int node; 112 113 /* setup nr_node_ids if not done yet */ 114 if (nr_node_ids == MAX_NUMNODES) 115 setup_nr_node_ids(); 116 117 /* allocate the map */ 118 for (node = 0; node < nr_node_ids; node++) 119 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 120 121 /* cpumask_of_node() will now work */ 122 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 123 } 124 125 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 126 struct numa_meminfo *mi) 127 { 128 /* ignore zero length blks */ 129 if (start == end) 130 return 0; 131 132 /* whine about and ignore invalid blks */ 133 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 134 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 135 nid, start, end - 1); 136 return 0; 137 } 138 139 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 140 pr_err("too many memblk ranges\n"); 141 return -EINVAL; 142 } 143 144 mi->blk[mi->nr_blks].start = start; 145 mi->blk[mi->nr_blks].end = end; 146 mi->blk[mi->nr_blks].nid = nid; 147 mi->nr_blks++; 148 return 0; 149 } 150 151 /** 152 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 153 * @idx: Index of memblk to remove 154 * @mi: numa_meminfo to remove memblk from 155 * 156 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 157 * decrementing @mi->nr_blks. 158 */ 159 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 160 { 161 mi->nr_blks--; 162 memmove(&mi->blk[idx], &mi->blk[idx + 1], 163 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 164 } 165 166 /** 167 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another 168 * @dst: numa_meminfo to append block to 169 * @idx: Index of memblk to remove 170 * @src: numa_meminfo to remove memblk from 171 */ 172 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, 173 struct numa_meminfo *src) 174 { 175 dst->blk[dst->nr_blks++] = src->blk[idx]; 176 numa_remove_memblk_from(idx, src); 177 } 178 179 /** 180 * numa_add_memblk - Add one numa_memblk to numa_meminfo 181 * @nid: NUMA node ID of the new memblk 182 * @start: Start address of the new memblk 183 * @end: End address of the new memblk 184 * 185 * Add a new memblk to the default numa_meminfo. 186 * 187 * RETURNS: 188 * 0 on success, -errno on failure. 189 */ 190 int __init numa_add_memblk(int nid, u64 start, u64 end) 191 { 192 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 193 } 194 195 /* Allocate NODE_DATA for a node on the local memory */ 196 static void __init alloc_node_data(int nid) 197 { 198 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 199 u64 nd_pa; 200 void *nd; 201 int tnid; 202 203 /* 204 * Allocate node data. Try node-local memory and then any node. 205 * Never allocate in DMA zone. 206 */ 207 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 208 if (!nd_pa) { 209 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", 210 nd_size, nid); 211 return; 212 } 213 nd = __va(nd_pa); 214 215 /* report and initialize */ 216 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 217 nd_pa, nd_pa + nd_size - 1); 218 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 219 if (tnid != nid) 220 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 221 222 node_data[nid] = nd; 223 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 224 225 node_set_online(nid); 226 } 227 228 /** 229 * numa_cleanup_meminfo - Cleanup a numa_meminfo 230 * @mi: numa_meminfo to clean up 231 * 232 * Sanitize @mi by merging and removing unnecessary memblks. Also check for 233 * conflicts and clear unused memblks. 234 * 235 * RETURNS: 236 * 0 on success, -errno on failure. 237 */ 238 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 239 { 240 const u64 low = 0; 241 const u64 high = PFN_PHYS(max_pfn); 242 int i, j, k; 243 244 /* first, trim all entries */ 245 for (i = 0; i < mi->nr_blks; i++) { 246 struct numa_memblk *bi = &mi->blk[i]; 247 248 /* move / save reserved memory ranges */ 249 if (!memblock_overlaps_region(&memblock.memory, 250 bi->start, bi->end - bi->start)) { 251 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); 252 continue; 253 } 254 255 /* make sure all non-reserved blocks are inside the limits */ 256 bi->start = max(bi->start, low); 257 258 /* preserve info for non-RAM areas above 'max_pfn': */ 259 if (bi->end > high) { 260 numa_add_memblk_to(bi->nid, high, bi->end, 261 &numa_reserved_meminfo); 262 bi->end = high; 263 } 264 265 /* and there's no empty block */ 266 if (bi->start >= bi->end) 267 numa_remove_memblk_from(i--, mi); 268 } 269 270 /* merge neighboring / overlapping entries */ 271 for (i = 0; i < mi->nr_blks; i++) { 272 struct numa_memblk *bi = &mi->blk[i]; 273 274 for (j = i + 1; j < mi->nr_blks; j++) { 275 struct numa_memblk *bj = &mi->blk[j]; 276 u64 start, end; 277 278 /* 279 * See whether there are overlapping blocks. Whine 280 * about but allow overlaps of the same nid. They 281 * will be merged below. 282 */ 283 if (bi->end > bj->start && bi->start < bj->end) { 284 if (bi->nid != bj->nid) { 285 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 286 bi->nid, bi->start, bi->end - 1, 287 bj->nid, bj->start, bj->end - 1); 288 return -EINVAL; 289 } 290 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 291 bi->nid, bi->start, bi->end - 1, 292 bj->start, bj->end - 1); 293 } 294 295 /* 296 * Join together blocks on the same node, holes 297 * between which don't overlap with memory on other 298 * nodes. 299 */ 300 if (bi->nid != bj->nid) 301 continue; 302 start = min(bi->start, bj->start); 303 end = max(bi->end, bj->end); 304 for (k = 0; k < mi->nr_blks; k++) { 305 struct numa_memblk *bk = &mi->blk[k]; 306 307 if (bi->nid == bk->nid) 308 continue; 309 if (start < bk->end && end > bk->start) 310 break; 311 } 312 if (k < mi->nr_blks) 313 continue; 314 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 315 bi->nid, bi->start, bi->end - 1, bj->start, 316 bj->end - 1, start, end - 1); 317 bi->start = start; 318 bi->end = end; 319 numa_remove_memblk_from(j--, mi); 320 } 321 } 322 323 /* clear unused ones */ 324 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 325 mi->blk[i].start = mi->blk[i].end = 0; 326 mi->blk[i].nid = NUMA_NO_NODE; 327 } 328 329 return 0; 330 } 331 332 /* 333 * Set nodes, which have memory in @mi, in *@nodemask. 334 */ 335 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 336 const struct numa_meminfo *mi) 337 { 338 int i; 339 340 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 341 if (mi->blk[i].start != mi->blk[i].end && 342 mi->blk[i].nid != NUMA_NO_NODE) 343 node_set(mi->blk[i].nid, *nodemask); 344 } 345 346 /** 347 * numa_reset_distance - Reset NUMA distance table 348 * 349 * The current table is freed. The next numa_set_distance() call will 350 * create a new one. 351 */ 352 void __init numa_reset_distance(void) 353 { 354 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 355 356 /* numa_distance could be 1LU marking allocation failure, test cnt */ 357 if (numa_distance_cnt) 358 memblock_free(numa_distance, size); 359 numa_distance_cnt = 0; 360 numa_distance = NULL; /* enable table creation */ 361 } 362 363 static int __init numa_alloc_distance(void) 364 { 365 nodemask_t nodes_parsed; 366 size_t size; 367 int i, j, cnt = 0; 368 u64 phys; 369 370 /* size the new table and allocate it */ 371 nodes_parsed = numa_nodes_parsed; 372 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 373 374 for_each_node_mask(i, nodes_parsed) 375 cnt = i; 376 cnt++; 377 size = cnt * cnt * sizeof(numa_distance[0]); 378 379 phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0, 380 PFN_PHYS(max_pfn_mapped)); 381 if (!phys) { 382 pr_warn("Warning: can't allocate distance table!\n"); 383 /* don't retry until explicitly reset */ 384 numa_distance = (void *)1LU; 385 return -ENOMEM; 386 } 387 388 numa_distance = __va(phys); 389 numa_distance_cnt = cnt; 390 391 /* fill with the default distances */ 392 for (i = 0; i < cnt; i++) 393 for (j = 0; j < cnt; j++) 394 numa_distance[i * cnt + j] = i == j ? 395 LOCAL_DISTANCE : REMOTE_DISTANCE; 396 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 397 398 return 0; 399 } 400 401 /** 402 * numa_set_distance - Set NUMA distance from one NUMA to another 403 * @from: the 'from' node to set distance 404 * @to: the 'to' node to set distance 405 * @distance: NUMA distance 406 * 407 * Set the distance from node @from to @to to @distance. If distance table 408 * doesn't exist, one which is large enough to accommodate all the currently 409 * known nodes will be created. 410 * 411 * If such table cannot be allocated, a warning is printed and further 412 * calls are ignored until the distance table is reset with 413 * numa_reset_distance(). 414 * 415 * If @from or @to is higher than the highest known node or lower than zero 416 * at the time of table creation or @distance doesn't make sense, the call 417 * is ignored. 418 * This is to allow simplification of specific NUMA config implementations. 419 */ 420 void __init numa_set_distance(int from, int to, int distance) 421 { 422 if (!numa_distance && numa_alloc_distance() < 0) 423 return; 424 425 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 426 from < 0 || to < 0) { 427 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 428 from, to, distance); 429 return; 430 } 431 432 if ((u8)distance != distance || 433 (from == to && distance != LOCAL_DISTANCE)) { 434 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 435 from, to, distance); 436 return; 437 } 438 439 numa_distance[from * numa_distance_cnt + to] = distance; 440 } 441 442 int __node_distance(int from, int to) 443 { 444 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 445 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 446 return numa_distance[from * numa_distance_cnt + to]; 447 } 448 EXPORT_SYMBOL(__node_distance); 449 450 /* 451 * Sanity check to catch more bad NUMA configurations (they are amazingly 452 * common). Make sure the nodes cover all memory. 453 */ 454 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 455 { 456 u64 numaram, e820ram; 457 int i; 458 459 numaram = 0; 460 for (i = 0; i < mi->nr_blks; i++) { 461 u64 s = mi->blk[i].start >> PAGE_SHIFT; 462 u64 e = mi->blk[i].end >> PAGE_SHIFT; 463 numaram += e - s; 464 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 465 if ((s64)numaram < 0) 466 numaram = 0; 467 } 468 469 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 470 471 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 472 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 473 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 474 (numaram << PAGE_SHIFT) >> 20, 475 (e820ram << PAGE_SHIFT) >> 20); 476 return false; 477 } 478 return true; 479 } 480 481 /* 482 * Mark all currently memblock-reserved physical memory (which covers the 483 * kernel's own memory ranges) as hot-unswappable. 484 */ 485 static void __init numa_clear_kernel_node_hotplug(void) 486 { 487 nodemask_t reserved_nodemask = NODE_MASK_NONE; 488 struct memblock_region *mb_region; 489 int i; 490 491 /* 492 * We have to do some preprocessing of memblock regions, to 493 * make them suitable for reservation. 494 * 495 * At this time, all memory regions reserved by memblock are 496 * used by the kernel, but those regions are not split up 497 * along node boundaries yet, and don't necessarily have their 498 * node ID set yet either. 499 * 500 * So iterate over all memory known to the x86 architecture, 501 * and use those ranges to set the nid in memblock.reserved. 502 * This will split up the memblock regions along node 503 * boundaries and will set the node IDs as well. 504 */ 505 for (i = 0; i < numa_meminfo.nr_blks; i++) { 506 struct numa_memblk *mb = numa_meminfo.blk + i; 507 int ret; 508 509 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); 510 WARN_ON_ONCE(ret); 511 } 512 513 /* 514 * Now go over all reserved memblock regions, to construct a 515 * node mask of all kernel reserved memory areas. 516 * 517 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, 518 * numa_meminfo might not include all memblock.reserved 519 * memory ranges, because quirks such as trim_snb_memory() 520 * reserve specific pages for Sandy Bridge graphics. ] 521 */ 522 for_each_reserved_mem_region(mb_region) { 523 int nid = memblock_get_region_node(mb_region); 524 525 if (nid != MAX_NUMNODES) 526 node_set(nid, reserved_nodemask); 527 } 528 529 /* 530 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory 531 * belonging to the reserved node mask. 532 * 533 * Note that this will include memory regions that reside 534 * on nodes that contain kernel memory - entire nodes 535 * become hot-unpluggable: 536 */ 537 for (i = 0; i < numa_meminfo.nr_blks; i++) { 538 struct numa_memblk *mb = numa_meminfo.blk + i; 539 540 if (!node_isset(mb->nid, reserved_nodemask)) 541 continue; 542 543 memblock_clear_hotplug(mb->start, mb->end - mb->start); 544 } 545 } 546 547 static int __init numa_register_memblks(struct numa_meminfo *mi) 548 { 549 int i, nid; 550 551 /* Account for nodes with cpus and no memory */ 552 node_possible_map = numa_nodes_parsed; 553 numa_nodemask_from_meminfo(&node_possible_map, mi); 554 if (WARN_ON(nodes_empty(node_possible_map))) 555 return -EINVAL; 556 557 for (i = 0; i < mi->nr_blks; i++) { 558 struct numa_memblk *mb = &mi->blk[i]; 559 memblock_set_node(mb->start, mb->end - mb->start, 560 &memblock.memory, mb->nid); 561 } 562 563 /* 564 * At very early time, the kernel have to use some memory such as 565 * loading the kernel image. We cannot prevent this anyway. So any 566 * node the kernel resides in should be un-hotpluggable. 567 * 568 * And when we come here, alloc node data won't fail. 569 */ 570 numa_clear_kernel_node_hotplug(); 571 572 /* 573 * If sections array is gonna be used for pfn -> nid mapping, check 574 * whether its granularity is fine enough. 575 */ 576 if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { 577 unsigned long pfn_align = node_map_pfn_alignment(); 578 579 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 580 pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 581 PFN_PHYS(pfn_align) >> 20, 582 PFN_PHYS(PAGES_PER_SECTION) >> 20); 583 return -EINVAL; 584 } 585 } 586 if (!numa_meminfo_cover_memory(mi)) 587 return -EINVAL; 588 589 /* Finally register nodes. */ 590 for_each_node_mask(nid, node_possible_map) { 591 u64 start = PFN_PHYS(max_pfn); 592 u64 end = 0; 593 594 for (i = 0; i < mi->nr_blks; i++) { 595 if (nid != mi->blk[i].nid) 596 continue; 597 start = min(mi->blk[i].start, start); 598 end = max(mi->blk[i].end, end); 599 } 600 601 if (start >= end) 602 continue; 603 604 /* 605 * Don't confuse VM with a node that doesn't have the 606 * minimum amount of memory: 607 */ 608 if (end && (end - start) < NODE_MIN_SIZE) 609 continue; 610 611 alloc_node_data(nid); 612 } 613 614 /* Dump memblock with node info and return. */ 615 memblock_dump_all(); 616 return 0; 617 } 618 619 /* 620 * There are unfortunately some poorly designed mainboards around that 621 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 622 * mapping. To avoid this fill in the mapping for all possible CPUs, 623 * as the number of CPUs is not known yet. We round robin the existing 624 * nodes. 625 */ 626 static void __init numa_init_array(void) 627 { 628 int rr, i; 629 630 rr = first_node(node_online_map); 631 for (i = 0; i < nr_cpu_ids; i++) { 632 if (early_cpu_to_node(i) != NUMA_NO_NODE) 633 continue; 634 numa_set_node(i, rr); 635 rr = next_node_in(rr, node_online_map); 636 } 637 } 638 639 static int __init numa_init(int (*init_func)(void)) 640 { 641 int i; 642 int ret; 643 644 for (i = 0; i < MAX_LOCAL_APIC; i++) 645 set_apicid_to_node(i, NUMA_NO_NODE); 646 647 nodes_clear(numa_nodes_parsed); 648 nodes_clear(node_possible_map); 649 nodes_clear(node_online_map); 650 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 651 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 652 MAX_NUMNODES)); 653 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 654 MAX_NUMNODES)); 655 /* In case that parsing SRAT failed. */ 656 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 657 numa_reset_distance(); 658 659 ret = init_func(); 660 if (ret < 0) 661 return ret; 662 663 /* 664 * We reset memblock back to the top-down direction 665 * here because if we configured ACPI_NUMA, we have 666 * parsed SRAT in init_func(). It is ok to have the 667 * reset here even if we did't configure ACPI_NUMA 668 * or acpi numa init fails and fallbacks to dummy 669 * numa init. 670 */ 671 memblock_set_bottom_up(false); 672 673 ret = numa_cleanup_meminfo(&numa_meminfo); 674 if (ret < 0) 675 return ret; 676 677 numa_emulation(&numa_meminfo, numa_distance_cnt); 678 679 ret = numa_register_memblks(&numa_meminfo); 680 if (ret < 0) 681 return ret; 682 683 for (i = 0; i < nr_cpu_ids; i++) { 684 int nid = early_cpu_to_node(i); 685 686 if (nid == NUMA_NO_NODE) 687 continue; 688 if (!node_online(nid)) 689 numa_clear_node(i); 690 } 691 numa_init_array(); 692 693 return 0; 694 } 695 696 /** 697 * dummy_numa_init - Fallback dummy NUMA init 698 * 699 * Used if there's no underlying NUMA architecture, NUMA initialization 700 * fails, or NUMA is disabled on the command line. 701 * 702 * Must online at least one node and add memory blocks that cover all 703 * allowed memory. This function must not fail. 704 */ 705 static int __init dummy_numa_init(void) 706 { 707 printk(KERN_INFO "%s\n", 708 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 709 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 710 0LLU, PFN_PHYS(max_pfn) - 1); 711 712 node_set(0, numa_nodes_parsed); 713 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 714 715 return 0; 716 } 717 718 /** 719 * x86_numa_init - Initialize NUMA 720 * 721 * Try each configured NUMA initialization method until one succeeds. The 722 * last fallback is dummy single node config encompassing whole memory and 723 * never fails. 724 */ 725 void __init x86_numa_init(void) 726 { 727 if (!numa_off) { 728 #ifdef CONFIG_ACPI_NUMA 729 if (!numa_init(x86_acpi_numa_init)) 730 return; 731 #endif 732 #ifdef CONFIG_AMD_NUMA 733 if (!numa_init(amd_numa_init)) 734 return; 735 #endif 736 } 737 738 numa_init(dummy_numa_init); 739 } 740 741 742 /* 743 * A node may exist which has one or more Generic Initiators but no CPUs and no 744 * memory. 745 * 746 * This function must be called after init_cpu_to_node(), to ensure that any 747 * memoryless CPU nodes have already been brought online, and before the 748 * node_data[nid] is needed for zone list setup in build_all_zonelists(). 749 * 750 * When this function is called, any nodes containing either memory and/or CPUs 751 * will already be online and there is no need to do anything extra, even if 752 * they also contain one or more Generic Initiators. 753 */ 754 void __init init_gi_nodes(void) 755 { 756 int nid; 757 758 /* 759 * Exclude this node from 760 * bringup_nonboot_cpus 761 * cpu_up 762 * __try_online_node 763 * register_one_node 764 * because node_subsys is not initialized yet. 765 * TODO remove dependency on node_online 766 */ 767 for_each_node_state(nid, N_GENERIC_INITIATOR) 768 if (!node_online(nid)) 769 node_set_online(nid); 770 } 771 772 /* 773 * Setup early cpu_to_node. 774 * 775 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 776 * and apicid_to_node[] tables have valid entries for a CPU. 777 * This means we skip cpu_to_node[] initialisation for NUMA 778 * emulation and faking node case (when running a kernel compiled 779 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 780 * is already initialized in a round robin manner at numa_init_array, 781 * prior to this call, and this initialization is good enough 782 * for the fake NUMA cases. 783 * 784 * Called before the per_cpu areas are setup. 785 */ 786 void __init init_cpu_to_node(void) 787 { 788 int cpu; 789 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 790 791 BUG_ON(cpu_to_apicid == NULL); 792 793 for_each_possible_cpu(cpu) { 794 int node = numa_cpu_node(cpu); 795 796 if (node == NUMA_NO_NODE) 797 continue; 798 799 /* 800 * Exclude this node from 801 * bringup_nonboot_cpus 802 * cpu_up 803 * __try_online_node 804 * register_one_node 805 * because node_subsys is not initialized yet. 806 * TODO remove dependency on node_online 807 */ 808 if (!node_online(node)) 809 node_set_online(node); 810 811 numa_set_node(cpu, node); 812 } 813 } 814 815 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 816 817 # ifndef CONFIG_NUMA_EMU 818 void numa_add_cpu(int cpu) 819 { 820 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 821 } 822 823 void numa_remove_cpu(int cpu) 824 { 825 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 826 } 827 # endif /* !CONFIG_NUMA_EMU */ 828 829 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 830 831 int __cpu_to_node(int cpu) 832 { 833 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 834 printk(KERN_WARNING 835 "cpu_to_node(%d): usage too early!\n", cpu); 836 dump_stack(); 837 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 838 } 839 return per_cpu(x86_cpu_to_node_map, cpu); 840 } 841 EXPORT_SYMBOL(__cpu_to_node); 842 843 /* 844 * Same function as cpu_to_node() but used if called before the 845 * per_cpu areas are setup. 846 */ 847 int early_cpu_to_node(int cpu) 848 { 849 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 850 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 851 852 if (!cpu_possible(cpu)) { 853 printk(KERN_WARNING 854 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 855 dump_stack(); 856 return NUMA_NO_NODE; 857 } 858 return per_cpu(x86_cpu_to_node_map, cpu); 859 } 860 861 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 862 { 863 struct cpumask *mask; 864 865 if (node == NUMA_NO_NODE) { 866 /* early_cpu_to_node() already emits a warning and trace */ 867 return; 868 } 869 mask = node_to_cpumask_map[node]; 870 if (!cpumask_available(mask)) { 871 pr_err("node_to_cpumask_map[%i] NULL\n", node); 872 dump_stack(); 873 return; 874 } 875 876 if (enable) 877 cpumask_set_cpu(cpu, mask); 878 else 879 cpumask_clear_cpu(cpu, mask); 880 881 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 882 enable ? "numa_add_cpu" : "numa_remove_cpu", 883 cpu, node, cpumask_pr_args(mask)); 884 return; 885 } 886 887 # ifndef CONFIG_NUMA_EMU 888 static void numa_set_cpumask(int cpu, bool enable) 889 { 890 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 891 } 892 893 void numa_add_cpu(int cpu) 894 { 895 numa_set_cpumask(cpu, true); 896 } 897 898 void numa_remove_cpu(int cpu) 899 { 900 numa_set_cpumask(cpu, false); 901 } 902 # endif /* !CONFIG_NUMA_EMU */ 903 904 /* 905 * Returns a pointer to the bitmask of CPUs on Node 'node'. 906 */ 907 const struct cpumask *cpumask_of_node(int node) 908 { 909 if ((unsigned)node >= nr_node_ids) { 910 printk(KERN_WARNING 911 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", 912 node, nr_node_ids); 913 dump_stack(); 914 return cpu_none_mask; 915 } 916 if (!cpumask_available(node_to_cpumask_map[node])) { 917 printk(KERN_WARNING 918 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 919 node); 920 dump_stack(); 921 return cpu_online_mask; 922 } 923 return node_to_cpumask_map[node]; 924 } 925 EXPORT_SYMBOL(cpumask_of_node); 926 927 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 928 929 #ifdef CONFIG_NUMA_KEEP_MEMINFO 930 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) 931 { 932 int i; 933 934 for (i = 0; i < mi->nr_blks; i++) 935 if (mi->blk[i].start <= start && mi->blk[i].end > start) 936 return mi->blk[i].nid; 937 return NUMA_NO_NODE; 938 } 939 940 int phys_to_target_node(phys_addr_t start) 941 { 942 int nid = meminfo_to_nid(&numa_meminfo, start); 943 944 /* 945 * Prefer online nodes, but if reserved memory might be 946 * hot-added continue the search with reserved ranges. 947 */ 948 if (nid != NUMA_NO_NODE) 949 return nid; 950 951 return meminfo_to_nid(&numa_reserved_meminfo, start); 952 } 953 EXPORT_SYMBOL_GPL(phys_to_target_node); 954 955 int memory_add_physaddr_to_nid(u64 start) 956 { 957 int nid = meminfo_to_nid(&numa_meminfo, start); 958 959 if (nid == NUMA_NO_NODE) 960 nid = numa_meminfo.blk[0].nid; 961 return nid; 962 } 963 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 964 #endif 965