xref: /openbmc/linux/arch/x86/mm/numa.c (revision e2f1cf25)
1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/string.h>
5 #include <linux/init.h>
6 #include <linux/bootmem.h>
7 #include <linux/memblock.h>
8 #include <linux/mmzone.h>
9 #include <linux/ctype.h>
10 #include <linux/module.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14 
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/acpi.h>
19 #include <asm/amd_nb.h>
20 
21 #include "numa_internal.h"
22 
23 int __initdata numa_off;
24 nodemask_t numa_nodes_parsed __initdata;
25 
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
28 
29 static struct numa_meminfo numa_meminfo
30 #ifndef CONFIG_MEMORY_HOTPLUG
31 __initdata
32 #endif
33 ;
34 
35 static int numa_distance_cnt;
36 static u8 *numa_distance;
37 
38 static __init int numa_setup(char *opt)
39 {
40 	if (!opt)
41 		return -EINVAL;
42 	if (!strncmp(opt, "off", 3))
43 		numa_off = 1;
44 #ifdef CONFIG_NUMA_EMU
45 	if (!strncmp(opt, "fake=", 5))
46 		numa_emu_cmdline(opt + 5);
47 #endif
48 #ifdef CONFIG_ACPI_NUMA
49 	if (!strncmp(opt, "noacpi", 6))
50 		acpi_numa = -1;
51 #endif
52 	return 0;
53 }
54 early_param("numa", numa_setup);
55 
56 /*
57  * apicid, cpu, node mappings
58  */
59 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
60 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61 };
62 
63 int numa_cpu_node(int cpu)
64 {
65 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
66 
67 	if (apicid != BAD_APICID)
68 		return __apicid_to_node[apicid];
69 	return NUMA_NO_NODE;
70 }
71 
72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73 EXPORT_SYMBOL(node_to_cpumask_map);
74 
75 /*
76  * Map cpu index to node index
77  */
78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
80 
81 void numa_set_node(int cpu, int node)
82 {
83 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
84 
85 	/* early setting, no percpu area yet */
86 	if (cpu_to_node_map) {
87 		cpu_to_node_map[cpu] = node;
88 		return;
89 	}
90 
91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
92 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
93 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
94 		dump_stack();
95 		return;
96 	}
97 #endif
98 	per_cpu(x86_cpu_to_node_map, cpu) = node;
99 
100 	set_cpu_numa_node(cpu, node);
101 }
102 
103 void numa_clear_node(int cpu)
104 {
105 	numa_set_node(cpu, NUMA_NO_NODE);
106 }
107 
108 /*
109  * Allocate node_to_cpumask_map based on number of available nodes
110  * Requires node_possible_map to be valid.
111  *
112  * Note: cpumask_of_node() is not valid until after this is done.
113  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114  */
115 void __init setup_node_to_cpumask_map(void)
116 {
117 	unsigned int node;
118 
119 	/* setup nr_node_ids if not done yet */
120 	if (nr_node_ids == MAX_NUMNODES)
121 		setup_nr_node_ids();
122 
123 	/* allocate the map */
124 	for (node = 0; node < nr_node_ids; node++)
125 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126 
127 	/* cpumask_of_node() will now work */
128 	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 }
130 
131 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132 				     struct numa_meminfo *mi)
133 {
134 	/* ignore zero length blks */
135 	if (start == end)
136 		return 0;
137 
138 	/* whine about and ignore invalid blks */
139 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140 		pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141 			   nid, start, end - 1);
142 		return 0;
143 	}
144 
145 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146 		pr_err("NUMA: too many memblk ranges\n");
147 		return -EINVAL;
148 	}
149 
150 	mi->blk[mi->nr_blks].start = start;
151 	mi->blk[mi->nr_blks].end = end;
152 	mi->blk[mi->nr_blks].nid = nid;
153 	mi->nr_blks++;
154 	return 0;
155 }
156 
157 /**
158  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159  * @idx: Index of memblk to remove
160  * @mi: numa_meminfo to remove memblk from
161  *
162  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163  * decrementing @mi->nr_blks.
164  */
165 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166 {
167 	mi->nr_blks--;
168 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
169 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
170 }
171 
172 /**
173  * numa_add_memblk - Add one numa_memblk to numa_meminfo
174  * @nid: NUMA node ID of the new memblk
175  * @start: Start address of the new memblk
176  * @end: End address of the new memblk
177  *
178  * Add a new memblk to the default numa_meminfo.
179  *
180  * RETURNS:
181  * 0 on success, -errno on failure.
182  */
183 int __init numa_add_memblk(int nid, u64 start, u64 end)
184 {
185 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186 }
187 
188 /* Allocate NODE_DATA for a node on the local memory */
189 static void __init alloc_node_data(int nid)
190 {
191 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192 	u64 nd_pa;
193 	void *nd;
194 	int tnid;
195 
196 	/*
197 	 * Allocate node data.  Try node-local memory and then any node.
198 	 * Never allocate in DMA zone.
199 	 */
200 	nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
201 	if (!nd_pa) {
202 		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
203 					      MEMBLOCK_ALLOC_ACCESSIBLE);
204 		if (!nd_pa) {
205 			pr_err("Cannot find %zu bytes in node %d\n",
206 			       nd_size, nid);
207 			return;
208 		}
209 	}
210 	nd = __va(nd_pa);
211 
212 	/* report and initialize */
213 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
214 	       nd_pa, nd_pa + nd_size - 1);
215 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
216 	if (tnid != nid)
217 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
218 
219 	node_data[nid] = nd;
220 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
221 
222 	node_set_online(nid);
223 }
224 
225 /**
226  * numa_cleanup_meminfo - Cleanup a numa_meminfo
227  * @mi: numa_meminfo to clean up
228  *
229  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
230  * conflicts and clear unused memblks.
231  *
232  * RETURNS:
233  * 0 on success, -errno on failure.
234  */
235 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
236 {
237 	const u64 low = 0;
238 	const u64 high = PFN_PHYS(max_pfn);
239 	int i, j, k;
240 
241 	/* first, trim all entries */
242 	for (i = 0; i < mi->nr_blks; i++) {
243 		struct numa_memblk *bi = &mi->blk[i];
244 
245 		/* make sure all blocks are inside the limits */
246 		bi->start = max(bi->start, low);
247 		bi->end = min(bi->end, high);
248 
249 		/* and there's no empty block */
250 		if (bi->start >= bi->end)
251 			numa_remove_memblk_from(i--, mi);
252 	}
253 
254 	/* merge neighboring / overlapping entries */
255 	for (i = 0; i < mi->nr_blks; i++) {
256 		struct numa_memblk *bi = &mi->blk[i];
257 
258 		for (j = i + 1; j < mi->nr_blks; j++) {
259 			struct numa_memblk *bj = &mi->blk[j];
260 			u64 start, end;
261 
262 			/*
263 			 * See whether there are overlapping blocks.  Whine
264 			 * about but allow overlaps of the same nid.  They
265 			 * will be merged below.
266 			 */
267 			if (bi->end > bj->start && bi->start < bj->end) {
268 				if (bi->nid != bj->nid) {
269 					pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
270 					       bi->nid, bi->start, bi->end - 1,
271 					       bj->nid, bj->start, bj->end - 1);
272 					return -EINVAL;
273 				}
274 				pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
275 					   bi->nid, bi->start, bi->end - 1,
276 					   bj->start, bj->end - 1);
277 			}
278 
279 			/*
280 			 * Join together blocks on the same node, holes
281 			 * between which don't overlap with memory on other
282 			 * nodes.
283 			 */
284 			if (bi->nid != bj->nid)
285 				continue;
286 			start = min(bi->start, bj->start);
287 			end = max(bi->end, bj->end);
288 			for (k = 0; k < mi->nr_blks; k++) {
289 				struct numa_memblk *bk = &mi->blk[k];
290 
291 				if (bi->nid == bk->nid)
292 					continue;
293 				if (start < bk->end && end > bk->start)
294 					break;
295 			}
296 			if (k < mi->nr_blks)
297 				continue;
298 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
299 			       bi->nid, bi->start, bi->end - 1, bj->start,
300 			       bj->end - 1, start, end - 1);
301 			bi->start = start;
302 			bi->end = end;
303 			numa_remove_memblk_from(j--, mi);
304 		}
305 	}
306 
307 	/* clear unused ones */
308 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
309 		mi->blk[i].start = mi->blk[i].end = 0;
310 		mi->blk[i].nid = NUMA_NO_NODE;
311 	}
312 
313 	return 0;
314 }
315 
316 /*
317  * Set nodes, which have memory in @mi, in *@nodemask.
318  */
319 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
320 					      const struct numa_meminfo *mi)
321 {
322 	int i;
323 
324 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
325 		if (mi->blk[i].start != mi->blk[i].end &&
326 		    mi->blk[i].nid != NUMA_NO_NODE)
327 			node_set(mi->blk[i].nid, *nodemask);
328 }
329 
330 /**
331  * numa_reset_distance - Reset NUMA distance table
332  *
333  * The current table is freed.  The next numa_set_distance() call will
334  * create a new one.
335  */
336 void __init numa_reset_distance(void)
337 {
338 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
339 
340 	/* numa_distance could be 1LU marking allocation failure, test cnt */
341 	if (numa_distance_cnt)
342 		memblock_free(__pa(numa_distance), size);
343 	numa_distance_cnt = 0;
344 	numa_distance = NULL;	/* enable table creation */
345 }
346 
347 static int __init numa_alloc_distance(void)
348 {
349 	nodemask_t nodes_parsed;
350 	size_t size;
351 	int i, j, cnt = 0;
352 	u64 phys;
353 
354 	/* size the new table and allocate it */
355 	nodes_parsed = numa_nodes_parsed;
356 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
357 
358 	for_each_node_mask(i, nodes_parsed)
359 		cnt = i;
360 	cnt++;
361 	size = cnt * cnt * sizeof(numa_distance[0]);
362 
363 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
364 				      size, PAGE_SIZE);
365 	if (!phys) {
366 		pr_warning("NUMA: Warning: can't allocate distance table!\n");
367 		/* don't retry until explicitly reset */
368 		numa_distance = (void *)1LU;
369 		return -ENOMEM;
370 	}
371 	memblock_reserve(phys, size);
372 
373 	numa_distance = __va(phys);
374 	numa_distance_cnt = cnt;
375 
376 	/* fill with the default distances */
377 	for (i = 0; i < cnt; i++)
378 		for (j = 0; j < cnt; j++)
379 			numa_distance[i * cnt + j] = i == j ?
380 				LOCAL_DISTANCE : REMOTE_DISTANCE;
381 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
382 
383 	return 0;
384 }
385 
386 /**
387  * numa_set_distance - Set NUMA distance from one NUMA to another
388  * @from: the 'from' node to set distance
389  * @to: the 'to'  node to set distance
390  * @distance: NUMA distance
391  *
392  * Set the distance from node @from to @to to @distance.  If distance table
393  * doesn't exist, one which is large enough to accommodate all the currently
394  * known nodes will be created.
395  *
396  * If such table cannot be allocated, a warning is printed and further
397  * calls are ignored until the distance table is reset with
398  * numa_reset_distance().
399  *
400  * If @from or @to is higher than the highest known node or lower than zero
401  * at the time of table creation or @distance doesn't make sense, the call
402  * is ignored.
403  * This is to allow simplification of specific NUMA config implementations.
404  */
405 void __init numa_set_distance(int from, int to, int distance)
406 {
407 	if (!numa_distance && numa_alloc_distance() < 0)
408 		return;
409 
410 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
411 			from < 0 || to < 0) {
412 		pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
413 			    from, to, distance);
414 		return;
415 	}
416 
417 	if ((u8)distance != distance ||
418 	    (from == to && distance != LOCAL_DISTANCE)) {
419 		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
420 			     from, to, distance);
421 		return;
422 	}
423 
424 	numa_distance[from * numa_distance_cnt + to] = distance;
425 }
426 
427 int __node_distance(int from, int to)
428 {
429 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
430 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
431 	return numa_distance[from * numa_distance_cnt + to];
432 }
433 EXPORT_SYMBOL(__node_distance);
434 
435 /*
436  * Sanity check to catch more bad NUMA configurations (they are amazingly
437  * common).  Make sure the nodes cover all memory.
438  */
439 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
440 {
441 	u64 numaram, e820ram;
442 	int i;
443 
444 	numaram = 0;
445 	for (i = 0; i < mi->nr_blks; i++) {
446 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
447 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
448 		numaram += e - s;
449 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
450 		if ((s64)numaram < 0)
451 			numaram = 0;
452 	}
453 
454 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
455 
456 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
457 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
458 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
459 		       (numaram << PAGE_SHIFT) >> 20,
460 		       (e820ram << PAGE_SHIFT) >> 20);
461 		return false;
462 	}
463 	return true;
464 }
465 
466 static void __init numa_clear_kernel_node_hotplug(void)
467 {
468 	int i, nid;
469 	nodemask_t numa_kernel_nodes = NODE_MASK_NONE;
470 	unsigned long start, end;
471 	struct memblock_region *r;
472 
473 	/*
474 	 * At this time, all memory regions reserved by memblock are
475 	 * used by the kernel. Set the nid in memblock.reserved will
476 	 * mark out all the nodes the kernel resides in.
477 	 */
478 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
479 		struct numa_memblk *mb = &numa_meminfo.blk[i];
480 
481 		memblock_set_node(mb->start, mb->end - mb->start,
482 				  &memblock.reserved, mb->nid);
483 	}
484 
485 	/*
486 	 * Mark all kernel nodes.
487 	 *
488 	 * When booting with mem=nn[kMG] or in a kdump kernel, numa_meminfo
489 	 * may not include all the memblock.reserved memory ranges because
490 	 * trim_snb_memory() reserves specific pages for Sandy Bridge graphics.
491 	 */
492 	for_each_memblock(reserved, r)
493 		if (r->nid != MAX_NUMNODES)
494 			node_set(r->nid, numa_kernel_nodes);
495 
496 	/* Clear MEMBLOCK_HOTPLUG flag for memory in kernel nodes. */
497 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
498 		nid = numa_meminfo.blk[i].nid;
499 		if (!node_isset(nid, numa_kernel_nodes))
500 			continue;
501 
502 		start = numa_meminfo.blk[i].start;
503 		end = numa_meminfo.blk[i].end;
504 
505 		memblock_clear_hotplug(start, end - start);
506 	}
507 }
508 
509 static int __init numa_register_memblks(struct numa_meminfo *mi)
510 {
511 	unsigned long uninitialized_var(pfn_align);
512 	int i, nid;
513 
514 	/* Account for nodes with cpus and no memory */
515 	node_possible_map = numa_nodes_parsed;
516 	numa_nodemask_from_meminfo(&node_possible_map, mi);
517 	if (WARN_ON(nodes_empty(node_possible_map)))
518 		return -EINVAL;
519 
520 	for (i = 0; i < mi->nr_blks; i++) {
521 		struct numa_memblk *mb = &mi->blk[i];
522 		memblock_set_node(mb->start, mb->end - mb->start,
523 				  &memblock.memory, mb->nid);
524 	}
525 
526 	/*
527 	 * At very early time, the kernel have to use some memory such as
528 	 * loading the kernel image. We cannot prevent this anyway. So any
529 	 * node the kernel resides in should be un-hotpluggable.
530 	 *
531 	 * And when we come here, alloc node data won't fail.
532 	 */
533 	numa_clear_kernel_node_hotplug();
534 
535 	/*
536 	 * If sections array is gonna be used for pfn -> nid mapping, check
537 	 * whether its granularity is fine enough.
538 	 */
539 #ifdef NODE_NOT_IN_PAGE_FLAGS
540 	pfn_align = node_map_pfn_alignment();
541 	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
542 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
543 		       PFN_PHYS(pfn_align) >> 20,
544 		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
545 		return -EINVAL;
546 	}
547 #endif
548 	if (!numa_meminfo_cover_memory(mi))
549 		return -EINVAL;
550 
551 	/* Finally register nodes. */
552 	for_each_node_mask(nid, node_possible_map) {
553 		u64 start = PFN_PHYS(max_pfn);
554 		u64 end = 0;
555 
556 		for (i = 0; i < mi->nr_blks; i++) {
557 			if (nid != mi->blk[i].nid)
558 				continue;
559 			start = min(mi->blk[i].start, start);
560 			end = max(mi->blk[i].end, end);
561 		}
562 
563 		if (start >= end)
564 			continue;
565 
566 		/*
567 		 * Don't confuse VM with a node that doesn't have the
568 		 * minimum amount of memory:
569 		 */
570 		if (end && (end - start) < NODE_MIN_SIZE)
571 			continue;
572 
573 		alloc_node_data(nid);
574 	}
575 
576 	/* Dump memblock with node info and return. */
577 	memblock_dump_all();
578 	return 0;
579 }
580 
581 /*
582  * There are unfortunately some poorly designed mainboards around that
583  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
584  * mapping. To avoid this fill in the mapping for all possible CPUs,
585  * as the number of CPUs is not known yet. We round robin the existing
586  * nodes.
587  */
588 static void __init numa_init_array(void)
589 {
590 	int rr, i;
591 
592 	rr = first_node(node_online_map);
593 	for (i = 0; i < nr_cpu_ids; i++) {
594 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
595 			continue;
596 		numa_set_node(i, rr);
597 		rr = next_node(rr, node_online_map);
598 		if (rr == MAX_NUMNODES)
599 			rr = first_node(node_online_map);
600 	}
601 }
602 
603 static int __init numa_init(int (*init_func)(void))
604 {
605 	int i;
606 	int ret;
607 
608 	for (i = 0; i < MAX_LOCAL_APIC; i++)
609 		set_apicid_to_node(i, NUMA_NO_NODE);
610 
611 	nodes_clear(numa_nodes_parsed);
612 	nodes_clear(node_possible_map);
613 	nodes_clear(node_online_map);
614 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
615 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
616 				  MAX_NUMNODES));
617 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
618 				  MAX_NUMNODES));
619 	/* In case that parsing SRAT failed. */
620 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
621 	numa_reset_distance();
622 
623 	ret = init_func();
624 	if (ret < 0)
625 		return ret;
626 
627 	/*
628 	 * We reset memblock back to the top-down direction
629 	 * here because if we configured ACPI_NUMA, we have
630 	 * parsed SRAT in init_func(). It is ok to have the
631 	 * reset here even if we did't configure ACPI_NUMA
632 	 * or acpi numa init fails and fallbacks to dummy
633 	 * numa init.
634 	 */
635 	memblock_set_bottom_up(false);
636 
637 	ret = numa_cleanup_meminfo(&numa_meminfo);
638 	if (ret < 0)
639 		return ret;
640 
641 	numa_emulation(&numa_meminfo, numa_distance_cnt);
642 
643 	ret = numa_register_memblks(&numa_meminfo);
644 	if (ret < 0)
645 		return ret;
646 
647 	for (i = 0; i < nr_cpu_ids; i++) {
648 		int nid = early_cpu_to_node(i);
649 
650 		if (nid == NUMA_NO_NODE)
651 			continue;
652 		if (!node_online(nid))
653 			numa_clear_node(i);
654 	}
655 	numa_init_array();
656 
657 	return 0;
658 }
659 
660 /**
661  * dummy_numa_init - Fallback dummy NUMA init
662  *
663  * Used if there's no underlying NUMA architecture, NUMA initialization
664  * fails, or NUMA is disabled on the command line.
665  *
666  * Must online at least one node and add memory blocks that cover all
667  * allowed memory.  This function must not fail.
668  */
669 static int __init dummy_numa_init(void)
670 {
671 	printk(KERN_INFO "%s\n",
672 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
673 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
674 	       0LLU, PFN_PHYS(max_pfn) - 1);
675 
676 	node_set(0, numa_nodes_parsed);
677 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
678 
679 	return 0;
680 }
681 
682 /**
683  * x86_numa_init - Initialize NUMA
684  *
685  * Try each configured NUMA initialization method until one succeeds.  The
686  * last fallback is dummy single node config encomapssing whole memory and
687  * never fails.
688  */
689 void __init x86_numa_init(void)
690 {
691 	if (!numa_off) {
692 #ifdef CONFIG_ACPI_NUMA
693 		if (!numa_init(x86_acpi_numa_init))
694 			return;
695 #endif
696 #ifdef CONFIG_AMD_NUMA
697 		if (!numa_init(amd_numa_init))
698 			return;
699 #endif
700 	}
701 
702 	numa_init(dummy_numa_init);
703 }
704 
705 static __init int find_near_online_node(int node)
706 {
707 	int n, val;
708 	int min_val = INT_MAX;
709 	int best_node = -1;
710 
711 	for_each_online_node(n) {
712 		val = node_distance(node, n);
713 
714 		if (val < min_val) {
715 			min_val = val;
716 			best_node = n;
717 		}
718 	}
719 
720 	return best_node;
721 }
722 
723 /*
724  * Setup early cpu_to_node.
725  *
726  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
727  * and apicid_to_node[] tables have valid entries for a CPU.
728  * This means we skip cpu_to_node[] initialisation for NUMA
729  * emulation and faking node case (when running a kernel compiled
730  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
731  * is already initialized in a round robin manner at numa_init_array,
732  * prior to this call, and this initialization is good enough
733  * for the fake NUMA cases.
734  *
735  * Called before the per_cpu areas are setup.
736  */
737 void __init init_cpu_to_node(void)
738 {
739 	int cpu;
740 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
741 
742 	BUG_ON(cpu_to_apicid == NULL);
743 
744 	for_each_possible_cpu(cpu) {
745 		int node = numa_cpu_node(cpu);
746 
747 		if (node == NUMA_NO_NODE)
748 			continue;
749 		if (!node_online(node))
750 			node = find_near_online_node(node);
751 		numa_set_node(cpu, node);
752 	}
753 }
754 
755 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
756 
757 # ifndef CONFIG_NUMA_EMU
758 void numa_add_cpu(int cpu)
759 {
760 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
761 }
762 
763 void numa_remove_cpu(int cpu)
764 {
765 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
766 }
767 # endif	/* !CONFIG_NUMA_EMU */
768 
769 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
770 
771 int __cpu_to_node(int cpu)
772 {
773 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
774 		printk(KERN_WARNING
775 			"cpu_to_node(%d): usage too early!\n", cpu);
776 		dump_stack();
777 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
778 	}
779 	return per_cpu(x86_cpu_to_node_map, cpu);
780 }
781 EXPORT_SYMBOL(__cpu_to_node);
782 
783 /*
784  * Same function as cpu_to_node() but used if called before the
785  * per_cpu areas are setup.
786  */
787 int early_cpu_to_node(int cpu)
788 {
789 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
790 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
791 
792 	if (!cpu_possible(cpu)) {
793 		printk(KERN_WARNING
794 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
795 		dump_stack();
796 		return NUMA_NO_NODE;
797 	}
798 	return per_cpu(x86_cpu_to_node_map, cpu);
799 }
800 
801 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
802 {
803 	struct cpumask *mask;
804 
805 	if (node == NUMA_NO_NODE) {
806 		/* early_cpu_to_node() already emits a warning and trace */
807 		return;
808 	}
809 	mask = node_to_cpumask_map[node];
810 	if (!mask) {
811 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
812 		dump_stack();
813 		return;
814 	}
815 
816 	if (enable)
817 		cpumask_set_cpu(cpu, mask);
818 	else
819 		cpumask_clear_cpu(cpu, mask);
820 
821 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
822 		enable ? "numa_add_cpu" : "numa_remove_cpu",
823 		cpu, node, cpumask_pr_args(mask));
824 	return;
825 }
826 
827 # ifndef CONFIG_NUMA_EMU
828 static void numa_set_cpumask(int cpu, bool enable)
829 {
830 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
831 }
832 
833 void numa_add_cpu(int cpu)
834 {
835 	numa_set_cpumask(cpu, true);
836 }
837 
838 void numa_remove_cpu(int cpu)
839 {
840 	numa_set_cpumask(cpu, false);
841 }
842 # endif	/* !CONFIG_NUMA_EMU */
843 
844 /*
845  * Returns a pointer to the bitmask of CPUs on Node 'node'.
846  */
847 const struct cpumask *cpumask_of_node(int node)
848 {
849 	if (node >= nr_node_ids) {
850 		printk(KERN_WARNING
851 			"cpumask_of_node(%d): node > nr_node_ids(%d)\n",
852 			node, nr_node_ids);
853 		dump_stack();
854 		return cpu_none_mask;
855 	}
856 	if (node_to_cpumask_map[node] == NULL) {
857 		printk(KERN_WARNING
858 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
859 			node);
860 		dump_stack();
861 		return cpu_online_mask;
862 	}
863 	return node_to_cpumask_map[node];
864 }
865 EXPORT_SYMBOL(cpumask_of_node);
866 
867 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
868 
869 #ifdef CONFIG_MEMORY_HOTPLUG
870 int memory_add_physaddr_to_nid(u64 start)
871 {
872 	struct numa_meminfo *mi = &numa_meminfo;
873 	int nid = mi->blk[0].nid;
874 	int i;
875 
876 	for (i = 0; i < mi->nr_blks; i++)
877 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
878 			nid = mi->blk[i].nid;
879 	return nid;
880 }
881 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
882 #endif
883