1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Common code for 32 and 64-bit NUMA */ 3 #include <linux/acpi.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/string.h> 7 #include <linux/init.h> 8 #include <linux/memblock.h> 9 #include <linux/mmzone.h> 10 #include <linux/ctype.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 #include <linux/sort.h> 15 16 #include <asm/e820/api.h> 17 #include <asm/proto.h> 18 #include <asm/dma.h> 19 #include <asm/amd_nb.h> 20 21 #include "numa_internal.h" 22 23 int numa_off; 24 nodemask_t numa_nodes_parsed __initdata; 25 26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 27 EXPORT_SYMBOL(node_data); 28 29 static struct numa_meminfo numa_meminfo __initdata_or_meminfo; 30 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; 31 32 static int numa_distance_cnt; 33 static u8 *numa_distance; 34 35 static __init int numa_setup(char *opt) 36 { 37 if (!opt) 38 return -EINVAL; 39 if (!strncmp(opt, "off", 3)) 40 numa_off = 1; 41 if (!strncmp(opt, "fake=", 5)) 42 return numa_emu_cmdline(opt + 5); 43 if (!strncmp(opt, "noacpi", 6)) 44 disable_srat(); 45 if (!strncmp(opt, "nohmat", 6)) 46 disable_hmat(); 47 return 0; 48 } 49 early_param("numa", numa_setup); 50 51 /* 52 * apicid, cpu, node mappings 53 */ 54 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 55 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 56 }; 57 58 int numa_cpu_node(int cpu) 59 { 60 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 61 62 if (apicid != BAD_APICID) 63 return __apicid_to_node[apicid]; 64 return NUMA_NO_NODE; 65 } 66 67 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 68 EXPORT_SYMBOL(node_to_cpumask_map); 69 70 /* 71 * Map cpu index to node index 72 */ 73 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 74 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 75 76 void numa_set_node(int cpu, int node) 77 { 78 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 79 80 /* early setting, no percpu area yet */ 81 if (cpu_to_node_map) { 82 cpu_to_node_map[cpu] = node; 83 return; 84 } 85 86 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 87 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 88 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 89 dump_stack(); 90 return; 91 } 92 #endif 93 per_cpu(x86_cpu_to_node_map, cpu) = node; 94 95 set_cpu_numa_node(cpu, node); 96 } 97 98 void numa_clear_node(int cpu) 99 { 100 numa_set_node(cpu, NUMA_NO_NODE); 101 } 102 103 /* 104 * Allocate node_to_cpumask_map based on number of available nodes 105 * Requires node_possible_map to be valid. 106 * 107 * Note: cpumask_of_node() is not valid until after this is done. 108 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 109 */ 110 void __init setup_node_to_cpumask_map(void) 111 { 112 unsigned int node; 113 114 /* setup nr_node_ids if not done yet */ 115 if (nr_node_ids == MAX_NUMNODES) 116 setup_nr_node_ids(); 117 118 /* allocate the map */ 119 for (node = 0; node < nr_node_ids; node++) 120 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 121 122 /* cpumask_of_node() will now work */ 123 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 124 } 125 126 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 127 struct numa_meminfo *mi) 128 { 129 /* ignore zero length blks */ 130 if (start == end) 131 return 0; 132 133 /* whine about and ignore invalid blks */ 134 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 135 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 136 nid, start, end - 1); 137 return 0; 138 } 139 140 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 141 pr_err("too many memblk ranges\n"); 142 return -EINVAL; 143 } 144 145 mi->blk[mi->nr_blks].start = start; 146 mi->blk[mi->nr_blks].end = end; 147 mi->blk[mi->nr_blks].nid = nid; 148 mi->nr_blks++; 149 return 0; 150 } 151 152 /** 153 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 154 * @idx: Index of memblk to remove 155 * @mi: numa_meminfo to remove memblk from 156 * 157 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 158 * decrementing @mi->nr_blks. 159 */ 160 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 161 { 162 mi->nr_blks--; 163 memmove(&mi->blk[idx], &mi->blk[idx + 1], 164 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 165 } 166 167 /** 168 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another 169 * @dst: numa_meminfo to append block to 170 * @idx: Index of memblk to remove 171 * @src: numa_meminfo to remove memblk from 172 */ 173 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, 174 struct numa_meminfo *src) 175 { 176 dst->blk[dst->nr_blks++] = src->blk[idx]; 177 numa_remove_memblk_from(idx, src); 178 } 179 180 /** 181 * numa_add_memblk - Add one numa_memblk to numa_meminfo 182 * @nid: NUMA node ID of the new memblk 183 * @start: Start address of the new memblk 184 * @end: End address of the new memblk 185 * 186 * Add a new memblk to the default numa_meminfo. 187 * 188 * RETURNS: 189 * 0 on success, -errno on failure. 190 */ 191 int __init numa_add_memblk(int nid, u64 start, u64 end) 192 { 193 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 194 } 195 196 /* Allocate NODE_DATA for a node on the local memory */ 197 static void __init alloc_node_data(int nid) 198 { 199 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 200 u64 nd_pa; 201 void *nd; 202 int tnid; 203 204 /* 205 * Allocate node data. Try node-local memory and then any node. 206 * Never allocate in DMA zone. 207 */ 208 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 209 if (!nd_pa) { 210 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", 211 nd_size, nid); 212 return; 213 } 214 nd = __va(nd_pa); 215 216 /* report and initialize */ 217 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 218 nd_pa, nd_pa + nd_size - 1); 219 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 220 if (tnid != nid) 221 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 222 223 node_data[nid] = nd; 224 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 225 226 node_set_online(nid); 227 } 228 229 /** 230 * numa_cleanup_meminfo - Cleanup a numa_meminfo 231 * @mi: numa_meminfo to clean up 232 * 233 * Sanitize @mi by merging and removing unnecessary memblks. Also check for 234 * conflicts and clear unused memblks. 235 * 236 * RETURNS: 237 * 0 on success, -errno on failure. 238 */ 239 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 240 { 241 const u64 low = 0; 242 const u64 high = PFN_PHYS(max_pfn); 243 int i, j, k; 244 245 /* first, trim all entries */ 246 for (i = 0; i < mi->nr_blks; i++) { 247 struct numa_memblk *bi = &mi->blk[i]; 248 249 /* move / save reserved memory ranges */ 250 if (!memblock_overlaps_region(&memblock.memory, 251 bi->start, bi->end - bi->start)) { 252 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); 253 continue; 254 } 255 256 /* make sure all non-reserved blocks are inside the limits */ 257 bi->start = max(bi->start, low); 258 259 /* preserve info for non-RAM areas above 'max_pfn': */ 260 if (bi->end > high) { 261 numa_add_memblk_to(bi->nid, high, bi->end, 262 &numa_reserved_meminfo); 263 bi->end = high; 264 } 265 266 /* and there's no empty block */ 267 if (bi->start >= bi->end) 268 numa_remove_memblk_from(i--, mi); 269 } 270 271 /* merge neighboring / overlapping entries */ 272 for (i = 0; i < mi->nr_blks; i++) { 273 struct numa_memblk *bi = &mi->blk[i]; 274 275 for (j = i + 1; j < mi->nr_blks; j++) { 276 struct numa_memblk *bj = &mi->blk[j]; 277 u64 start, end; 278 279 /* 280 * See whether there are overlapping blocks. Whine 281 * about but allow overlaps of the same nid. They 282 * will be merged below. 283 */ 284 if (bi->end > bj->start && bi->start < bj->end) { 285 if (bi->nid != bj->nid) { 286 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 287 bi->nid, bi->start, bi->end - 1, 288 bj->nid, bj->start, bj->end - 1); 289 return -EINVAL; 290 } 291 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 292 bi->nid, bi->start, bi->end - 1, 293 bj->start, bj->end - 1); 294 } 295 296 /* 297 * Join together blocks on the same node, holes 298 * between which don't overlap with memory on other 299 * nodes. 300 */ 301 if (bi->nid != bj->nid) 302 continue; 303 start = min(bi->start, bj->start); 304 end = max(bi->end, bj->end); 305 for (k = 0; k < mi->nr_blks; k++) { 306 struct numa_memblk *bk = &mi->blk[k]; 307 308 if (bi->nid == bk->nid) 309 continue; 310 if (start < bk->end && end > bk->start) 311 break; 312 } 313 if (k < mi->nr_blks) 314 continue; 315 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 316 bi->nid, bi->start, bi->end - 1, bj->start, 317 bj->end - 1, start, end - 1); 318 bi->start = start; 319 bi->end = end; 320 numa_remove_memblk_from(j--, mi); 321 } 322 } 323 324 /* clear unused ones */ 325 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 326 mi->blk[i].start = mi->blk[i].end = 0; 327 mi->blk[i].nid = NUMA_NO_NODE; 328 } 329 330 return 0; 331 } 332 333 /* 334 * Set nodes, which have memory in @mi, in *@nodemask. 335 */ 336 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 337 const struct numa_meminfo *mi) 338 { 339 int i; 340 341 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 342 if (mi->blk[i].start != mi->blk[i].end && 343 mi->blk[i].nid != NUMA_NO_NODE) 344 node_set(mi->blk[i].nid, *nodemask); 345 } 346 347 /** 348 * numa_reset_distance - Reset NUMA distance table 349 * 350 * The current table is freed. The next numa_set_distance() call will 351 * create a new one. 352 */ 353 void __init numa_reset_distance(void) 354 { 355 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 356 357 /* numa_distance could be 1LU marking allocation failure, test cnt */ 358 if (numa_distance_cnt) 359 memblock_free(numa_distance, size); 360 numa_distance_cnt = 0; 361 numa_distance = NULL; /* enable table creation */ 362 } 363 364 static int __init numa_alloc_distance(void) 365 { 366 nodemask_t nodes_parsed; 367 size_t size; 368 int i, j, cnt = 0; 369 u64 phys; 370 371 /* size the new table and allocate it */ 372 nodes_parsed = numa_nodes_parsed; 373 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 374 375 for_each_node_mask(i, nodes_parsed) 376 cnt = i; 377 cnt++; 378 size = cnt * cnt * sizeof(numa_distance[0]); 379 380 phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0, 381 PFN_PHYS(max_pfn_mapped)); 382 if (!phys) { 383 pr_warn("Warning: can't allocate distance table!\n"); 384 /* don't retry until explicitly reset */ 385 numa_distance = (void *)1LU; 386 return -ENOMEM; 387 } 388 389 numa_distance = __va(phys); 390 numa_distance_cnt = cnt; 391 392 /* fill with the default distances */ 393 for (i = 0; i < cnt; i++) 394 for (j = 0; j < cnt; j++) 395 numa_distance[i * cnt + j] = i == j ? 396 LOCAL_DISTANCE : REMOTE_DISTANCE; 397 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 398 399 return 0; 400 } 401 402 /** 403 * numa_set_distance - Set NUMA distance from one NUMA to another 404 * @from: the 'from' node to set distance 405 * @to: the 'to' node to set distance 406 * @distance: NUMA distance 407 * 408 * Set the distance from node @from to @to to @distance. If distance table 409 * doesn't exist, one which is large enough to accommodate all the currently 410 * known nodes will be created. 411 * 412 * If such table cannot be allocated, a warning is printed and further 413 * calls are ignored until the distance table is reset with 414 * numa_reset_distance(). 415 * 416 * If @from or @to is higher than the highest known node or lower than zero 417 * at the time of table creation or @distance doesn't make sense, the call 418 * is ignored. 419 * This is to allow simplification of specific NUMA config implementations. 420 */ 421 void __init numa_set_distance(int from, int to, int distance) 422 { 423 if (!numa_distance && numa_alloc_distance() < 0) 424 return; 425 426 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 427 from < 0 || to < 0) { 428 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 429 from, to, distance); 430 return; 431 } 432 433 if ((u8)distance != distance || 434 (from == to && distance != LOCAL_DISTANCE)) { 435 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 436 from, to, distance); 437 return; 438 } 439 440 numa_distance[from * numa_distance_cnt + to] = distance; 441 } 442 443 int __node_distance(int from, int to) 444 { 445 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 446 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 447 return numa_distance[from * numa_distance_cnt + to]; 448 } 449 EXPORT_SYMBOL(__node_distance); 450 451 /* 452 * Mark all currently memblock-reserved physical memory (which covers the 453 * kernel's own memory ranges) as hot-unswappable. 454 */ 455 static void __init numa_clear_kernel_node_hotplug(void) 456 { 457 nodemask_t reserved_nodemask = NODE_MASK_NONE; 458 struct memblock_region *mb_region; 459 int i; 460 461 /* 462 * We have to do some preprocessing of memblock regions, to 463 * make them suitable for reservation. 464 * 465 * At this time, all memory regions reserved by memblock are 466 * used by the kernel, but those regions are not split up 467 * along node boundaries yet, and don't necessarily have their 468 * node ID set yet either. 469 * 470 * So iterate over all memory known to the x86 architecture, 471 * and use those ranges to set the nid in memblock.reserved. 472 * This will split up the memblock regions along node 473 * boundaries and will set the node IDs as well. 474 */ 475 for (i = 0; i < numa_meminfo.nr_blks; i++) { 476 struct numa_memblk *mb = numa_meminfo.blk + i; 477 int ret; 478 479 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); 480 WARN_ON_ONCE(ret); 481 } 482 483 /* 484 * Now go over all reserved memblock regions, to construct a 485 * node mask of all kernel reserved memory areas. 486 * 487 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, 488 * numa_meminfo might not include all memblock.reserved 489 * memory ranges, because quirks such as trim_snb_memory() 490 * reserve specific pages for Sandy Bridge graphics. ] 491 */ 492 for_each_reserved_mem_region(mb_region) { 493 int nid = memblock_get_region_node(mb_region); 494 495 if (nid != NUMA_NO_NODE) 496 node_set(nid, reserved_nodemask); 497 } 498 499 /* 500 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory 501 * belonging to the reserved node mask. 502 * 503 * Note that this will include memory regions that reside 504 * on nodes that contain kernel memory - entire nodes 505 * become hot-unpluggable: 506 */ 507 for (i = 0; i < numa_meminfo.nr_blks; i++) { 508 struct numa_memblk *mb = numa_meminfo.blk + i; 509 510 if (!node_isset(mb->nid, reserved_nodemask)) 511 continue; 512 513 memblock_clear_hotplug(mb->start, mb->end - mb->start); 514 } 515 } 516 517 static int __init numa_register_memblks(struct numa_meminfo *mi) 518 { 519 int i, nid; 520 521 /* Account for nodes with cpus and no memory */ 522 node_possible_map = numa_nodes_parsed; 523 numa_nodemask_from_meminfo(&node_possible_map, mi); 524 if (WARN_ON(nodes_empty(node_possible_map))) 525 return -EINVAL; 526 527 for (i = 0; i < mi->nr_blks; i++) { 528 struct numa_memblk *mb = &mi->blk[i]; 529 memblock_set_node(mb->start, mb->end - mb->start, 530 &memblock.memory, mb->nid); 531 } 532 533 /* 534 * At very early time, the kernel have to use some memory such as 535 * loading the kernel image. We cannot prevent this anyway. So any 536 * node the kernel resides in should be un-hotpluggable. 537 * 538 * And when we come here, alloc node data won't fail. 539 */ 540 numa_clear_kernel_node_hotplug(); 541 542 /* 543 * If sections array is gonna be used for pfn -> nid mapping, check 544 * whether its granularity is fine enough. 545 */ 546 if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { 547 unsigned long pfn_align = node_map_pfn_alignment(); 548 549 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 550 pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 551 PFN_PHYS(pfn_align) >> 20, 552 PFN_PHYS(PAGES_PER_SECTION) >> 20); 553 return -EINVAL; 554 } 555 } 556 557 if (!memblock_validate_numa_coverage(SZ_1M)) 558 return -EINVAL; 559 560 /* Finally register nodes. */ 561 for_each_node_mask(nid, node_possible_map) { 562 u64 start = PFN_PHYS(max_pfn); 563 u64 end = 0; 564 565 for (i = 0; i < mi->nr_blks; i++) { 566 if (nid != mi->blk[i].nid) 567 continue; 568 start = min(mi->blk[i].start, start); 569 end = max(mi->blk[i].end, end); 570 } 571 572 if (start >= end) 573 continue; 574 575 alloc_node_data(nid); 576 } 577 578 /* Dump memblock with node info and return. */ 579 memblock_dump_all(); 580 return 0; 581 } 582 583 /* 584 * There are unfortunately some poorly designed mainboards around that 585 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 586 * mapping. To avoid this fill in the mapping for all possible CPUs, 587 * as the number of CPUs is not known yet. We round robin the existing 588 * nodes. 589 */ 590 static void __init numa_init_array(void) 591 { 592 int rr, i; 593 594 rr = first_node(node_online_map); 595 for (i = 0; i < nr_cpu_ids; i++) { 596 if (early_cpu_to_node(i) != NUMA_NO_NODE) 597 continue; 598 numa_set_node(i, rr); 599 rr = next_node_in(rr, node_online_map); 600 } 601 } 602 603 static int __init numa_init(int (*init_func)(void)) 604 { 605 int i; 606 int ret; 607 608 for (i = 0; i < MAX_LOCAL_APIC; i++) 609 set_apicid_to_node(i, NUMA_NO_NODE); 610 611 nodes_clear(numa_nodes_parsed); 612 nodes_clear(node_possible_map); 613 nodes_clear(node_online_map); 614 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 615 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 616 NUMA_NO_NODE)); 617 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 618 NUMA_NO_NODE)); 619 /* In case that parsing SRAT failed. */ 620 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 621 numa_reset_distance(); 622 623 ret = init_func(); 624 if (ret < 0) 625 return ret; 626 627 /* 628 * We reset memblock back to the top-down direction 629 * here because if we configured ACPI_NUMA, we have 630 * parsed SRAT in init_func(). It is ok to have the 631 * reset here even if we did't configure ACPI_NUMA 632 * or acpi numa init fails and fallbacks to dummy 633 * numa init. 634 */ 635 memblock_set_bottom_up(false); 636 637 ret = numa_cleanup_meminfo(&numa_meminfo); 638 if (ret < 0) 639 return ret; 640 641 numa_emulation(&numa_meminfo, numa_distance_cnt); 642 643 ret = numa_register_memblks(&numa_meminfo); 644 if (ret < 0) 645 return ret; 646 647 for (i = 0; i < nr_cpu_ids; i++) { 648 int nid = early_cpu_to_node(i); 649 650 if (nid == NUMA_NO_NODE) 651 continue; 652 if (!node_online(nid)) 653 numa_clear_node(i); 654 } 655 numa_init_array(); 656 657 return 0; 658 } 659 660 /** 661 * dummy_numa_init - Fallback dummy NUMA init 662 * 663 * Used if there's no underlying NUMA architecture, NUMA initialization 664 * fails, or NUMA is disabled on the command line. 665 * 666 * Must online at least one node and add memory blocks that cover all 667 * allowed memory. This function must not fail. 668 */ 669 static int __init dummy_numa_init(void) 670 { 671 printk(KERN_INFO "%s\n", 672 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 673 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 674 0LLU, PFN_PHYS(max_pfn) - 1); 675 676 node_set(0, numa_nodes_parsed); 677 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 678 679 return 0; 680 } 681 682 /** 683 * x86_numa_init - Initialize NUMA 684 * 685 * Try each configured NUMA initialization method until one succeeds. The 686 * last fallback is dummy single node config encompassing whole memory and 687 * never fails. 688 */ 689 void __init x86_numa_init(void) 690 { 691 if (!numa_off) { 692 #ifdef CONFIG_ACPI_NUMA 693 if (!numa_init(x86_acpi_numa_init)) 694 return; 695 #endif 696 #ifdef CONFIG_AMD_NUMA 697 if (!numa_init(amd_numa_init)) 698 return; 699 #endif 700 } 701 702 numa_init(dummy_numa_init); 703 } 704 705 706 /* 707 * A node may exist which has one or more Generic Initiators but no CPUs and no 708 * memory. 709 * 710 * This function must be called after init_cpu_to_node(), to ensure that any 711 * memoryless CPU nodes have already been brought online, and before the 712 * node_data[nid] is needed for zone list setup in build_all_zonelists(). 713 * 714 * When this function is called, any nodes containing either memory and/or CPUs 715 * will already be online and there is no need to do anything extra, even if 716 * they also contain one or more Generic Initiators. 717 */ 718 void __init init_gi_nodes(void) 719 { 720 int nid; 721 722 /* 723 * Exclude this node from 724 * bringup_nonboot_cpus 725 * cpu_up 726 * __try_online_node 727 * register_one_node 728 * because node_subsys is not initialized yet. 729 * TODO remove dependency on node_online 730 */ 731 for_each_node_state(nid, N_GENERIC_INITIATOR) 732 if (!node_online(nid)) 733 node_set_online(nid); 734 } 735 736 /* 737 * Setup early cpu_to_node. 738 * 739 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 740 * and apicid_to_node[] tables have valid entries for a CPU. 741 * This means we skip cpu_to_node[] initialisation for NUMA 742 * emulation and faking node case (when running a kernel compiled 743 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 744 * is already initialized in a round robin manner at numa_init_array, 745 * prior to this call, and this initialization is good enough 746 * for the fake NUMA cases. 747 * 748 * Called before the per_cpu areas are setup. 749 */ 750 void __init init_cpu_to_node(void) 751 { 752 int cpu; 753 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 754 755 BUG_ON(cpu_to_apicid == NULL); 756 757 for_each_possible_cpu(cpu) { 758 int node = numa_cpu_node(cpu); 759 760 if (node == NUMA_NO_NODE) 761 continue; 762 763 /* 764 * Exclude this node from 765 * bringup_nonboot_cpus 766 * cpu_up 767 * __try_online_node 768 * register_one_node 769 * because node_subsys is not initialized yet. 770 * TODO remove dependency on node_online 771 */ 772 if (!node_online(node)) 773 node_set_online(node); 774 775 numa_set_node(cpu, node); 776 } 777 } 778 779 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 780 781 # ifndef CONFIG_NUMA_EMU 782 void numa_add_cpu(int cpu) 783 { 784 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 785 } 786 787 void numa_remove_cpu(int cpu) 788 { 789 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 790 } 791 # endif /* !CONFIG_NUMA_EMU */ 792 793 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 794 795 int __cpu_to_node(int cpu) 796 { 797 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 798 printk(KERN_WARNING 799 "cpu_to_node(%d): usage too early!\n", cpu); 800 dump_stack(); 801 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 802 } 803 return per_cpu(x86_cpu_to_node_map, cpu); 804 } 805 EXPORT_SYMBOL(__cpu_to_node); 806 807 /* 808 * Same function as cpu_to_node() but used if called before the 809 * per_cpu areas are setup. 810 */ 811 int early_cpu_to_node(int cpu) 812 { 813 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 814 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 815 816 if (!cpu_possible(cpu)) { 817 printk(KERN_WARNING 818 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 819 dump_stack(); 820 return NUMA_NO_NODE; 821 } 822 return per_cpu(x86_cpu_to_node_map, cpu); 823 } 824 825 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 826 { 827 struct cpumask *mask; 828 829 if (node == NUMA_NO_NODE) { 830 /* early_cpu_to_node() already emits a warning and trace */ 831 return; 832 } 833 mask = node_to_cpumask_map[node]; 834 if (!cpumask_available(mask)) { 835 pr_err("node_to_cpumask_map[%i] NULL\n", node); 836 dump_stack(); 837 return; 838 } 839 840 if (enable) 841 cpumask_set_cpu(cpu, mask); 842 else 843 cpumask_clear_cpu(cpu, mask); 844 845 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 846 enable ? "numa_add_cpu" : "numa_remove_cpu", 847 cpu, node, cpumask_pr_args(mask)); 848 return; 849 } 850 851 # ifndef CONFIG_NUMA_EMU 852 static void numa_set_cpumask(int cpu, bool enable) 853 { 854 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 855 } 856 857 void numa_add_cpu(int cpu) 858 { 859 numa_set_cpumask(cpu, true); 860 } 861 862 void numa_remove_cpu(int cpu) 863 { 864 numa_set_cpumask(cpu, false); 865 } 866 # endif /* !CONFIG_NUMA_EMU */ 867 868 /* 869 * Returns a pointer to the bitmask of CPUs on Node 'node'. 870 */ 871 const struct cpumask *cpumask_of_node(int node) 872 { 873 if ((unsigned)node >= nr_node_ids) { 874 printk(KERN_WARNING 875 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", 876 node, nr_node_ids); 877 dump_stack(); 878 return cpu_none_mask; 879 } 880 if (!cpumask_available(node_to_cpumask_map[node])) { 881 printk(KERN_WARNING 882 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 883 node); 884 dump_stack(); 885 return cpu_online_mask; 886 } 887 return node_to_cpumask_map[node]; 888 } 889 EXPORT_SYMBOL(cpumask_of_node); 890 891 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 892 893 #ifdef CONFIG_NUMA_KEEP_MEMINFO 894 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) 895 { 896 int i; 897 898 for (i = 0; i < mi->nr_blks; i++) 899 if (mi->blk[i].start <= start && mi->blk[i].end > start) 900 return mi->blk[i].nid; 901 return NUMA_NO_NODE; 902 } 903 904 int phys_to_target_node(phys_addr_t start) 905 { 906 int nid = meminfo_to_nid(&numa_meminfo, start); 907 908 /* 909 * Prefer online nodes, but if reserved memory might be 910 * hot-added continue the search with reserved ranges. 911 */ 912 if (nid != NUMA_NO_NODE) 913 return nid; 914 915 return meminfo_to_nid(&numa_reserved_meminfo, start); 916 } 917 EXPORT_SYMBOL_GPL(phys_to_target_node); 918 919 int memory_add_physaddr_to_nid(u64 start) 920 { 921 int nid = meminfo_to_nid(&numa_meminfo, start); 922 923 if (nid == NUMA_NO_NODE) 924 nid = numa_meminfo.blk[0].nid; 925 return nid; 926 } 927 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 928 929 #endif 930 931 static int __init cmp_memblk(const void *a, const void *b) 932 { 933 const struct numa_memblk *ma = *(const struct numa_memblk **)a; 934 const struct numa_memblk *mb = *(const struct numa_memblk **)b; 935 936 return (ma->start > mb->start) - (ma->start < mb->start); 937 } 938 939 static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata; 940 941 /** 942 * numa_fill_memblks - Fill gaps in numa_meminfo memblks 943 * @start: address to begin fill 944 * @end: address to end fill 945 * 946 * Find and extend numa_meminfo memblks to cover the physical 947 * address range @start-@end 948 * 949 * RETURNS: 950 * 0 : Success 951 * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end 952 */ 953 954 int __init numa_fill_memblks(u64 start, u64 end) 955 { 956 struct numa_memblk **blk = &numa_memblk_list[0]; 957 struct numa_meminfo *mi = &numa_meminfo; 958 int count = 0; 959 u64 prev_end; 960 961 /* 962 * Create a list of pointers to numa_meminfo memblks that 963 * overlap start, end. The list is used to make in-place 964 * changes that fill out the numa_meminfo memblks. 965 */ 966 for (int i = 0; i < mi->nr_blks; i++) { 967 struct numa_memblk *bi = &mi->blk[i]; 968 969 if (memblock_addrs_overlap(start, end - start, bi->start, 970 bi->end - bi->start)) { 971 blk[count] = &mi->blk[i]; 972 count++; 973 } 974 } 975 if (!count) 976 return NUMA_NO_MEMBLK; 977 978 /* Sort the list of pointers in memblk->start order */ 979 sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL); 980 981 /* Make sure the first/last memblks include start/end */ 982 blk[0]->start = min(blk[0]->start, start); 983 blk[count - 1]->end = max(blk[count - 1]->end, end); 984 985 /* 986 * Fill any gaps by tracking the previous memblks 987 * end address and backfilling to it if needed. 988 */ 989 prev_end = blk[0]->end; 990 for (int i = 1; i < count; i++) { 991 struct numa_memblk *curr = blk[i]; 992 993 if (prev_end >= curr->start) { 994 if (prev_end < curr->end) 995 prev_end = curr->end; 996 } else { 997 curr->start = prev_end; 998 prev_end = curr->end; 999 } 1000 } 1001 return 0; 1002 } 1003