1 /* Common code for 32 and 64-bit NUMA */ 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/string.h> 5 #include <linux/init.h> 6 #include <linux/bootmem.h> 7 #include <linux/memblock.h> 8 #include <linux/mmzone.h> 9 #include <linux/ctype.h> 10 #include <linux/module.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 15 #include <asm/e820.h> 16 #include <asm/proto.h> 17 #include <asm/dma.h> 18 #include <asm/acpi.h> 19 #include <asm/amd_nb.h> 20 21 #include "numa_internal.h" 22 23 int __initdata numa_off; 24 nodemask_t numa_nodes_parsed __initdata; 25 26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 27 EXPORT_SYMBOL(node_data); 28 29 static struct numa_meminfo numa_meminfo 30 #ifndef CONFIG_MEMORY_HOTPLUG 31 __initdata 32 #endif 33 ; 34 35 static int numa_distance_cnt; 36 static u8 *numa_distance; 37 38 static __init int numa_setup(char *opt) 39 { 40 if (!opt) 41 return -EINVAL; 42 if (!strncmp(opt, "off", 3)) 43 numa_off = 1; 44 #ifdef CONFIG_NUMA_EMU 45 if (!strncmp(opt, "fake=", 5)) 46 numa_emu_cmdline(opt + 5); 47 #endif 48 #ifdef CONFIG_ACPI_NUMA 49 if (!strncmp(opt, "noacpi", 6)) 50 acpi_numa = -1; 51 #endif 52 return 0; 53 } 54 early_param("numa", numa_setup); 55 56 /* 57 * apicid, cpu, node mappings 58 */ 59 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 60 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 61 }; 62 63 int __cpuinit numa_cpu_node(int cpu) 64 { 65 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 66 67 if (apicid != BAD_APICID) 68 return __apicid_to_node[apicid]; 69 return NUMA_NO_NODE; 70 } 71 72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 73 EXPORT_SYMBOL(node_to_cpumask_map); 74 75 /* 76 * Map cpu index to node index 77 */ 78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 80 81 void numa_set_node(int cpu, int node) 82 { 83 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 84 85 /* early setting, no percpu area yet */ 86 if (cpu_to_node_map) { 87 cpu_to_node_map[cpu] = node; 88 return; 89 } 90 91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 92 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 93 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 94 dump_stack(); 95 return; 96 } 97 #endif 98 per_cpu(x86_cpu_to_node_map, cpu) = node; 99 100 set_cpu_numa_node(cpu, node); 101 } 102 103 void numa_clear_node(int cpu) 104 { 105 numa_set_node(cpu, NUMA_NO_NODE); 106 } 107 108 /* 109 * Allocate node_to_cpumask_map based on number of available nodes 110 * Requires node_possible_map to be valid. 111 * 112 * Note: cpumask_of_node() is not valid until after this is done. 113 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 114 */ 115 void __init setup_node_to_cpumask_map(void) 116 { 117 unsigned int node, num = 0; 118 119 /* setup nr_node_ids if not done yet */ 120 if (nr_node_ids == MAX_NUMNODES) { 121 for_each_node_mask(node, node_possible_map) 122 num = node; 123 nr_node_ids = num + 1; 124 } 125 126 /* allocate the map */ 127 for (node = 0; node < nr_node_ids; node++) 128 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 129 130 /* cpumask_of_node() will now work */ 131 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids); 132 } 133 134 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 135 struct numa_meminfo *mi) 136 { 137 /* ignore zero length blks */ 138 if (start == end) 139 return 0; 140 141 /* whine about and ignore invalid blks */ 142 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 143 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 144 nid, start, end - 1); 145 return 0; 146 } 147 148 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 149 pr_err("NUMA: too many memblk ranges\n"); 150 return -EINVAL; 151 } 152 153 mi->blk[mi->nr_blks].start = start; 154 mi->blk[mi->nr_blks].end = end; 155 mi->blk[mi->nr_blks].nid = nid; 156 mi->nr_blks++; 157 return 0; 158 } 159 160 /** 161 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 162 * @idx: Index of memblk to remove 163 * @mi: numa_meminfo to remove memblk from 164 * 165 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 166 * decrementing @mi->nr_blks. 167 */ 168 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 169 { 170 mi->nr_blks--; 171 memmove(&mi->blk[idx], &mi->blk[idx + 1], 172 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 173 } 174 175 /** 176 * numa_add_memblk - Add one numa_memblk to numa_meminfo 177 * @nid: NUMA node ID of the new memblk 178 * @start: Start address of the new memblk 179 * @end: End address of the new memblk 180 * 181 * Add a new memblk to the default numa_meminfo. 182 * 183 * RETURNS: 184 * 0 on success, -errno on failure. 185 */ 186 int __init numa_add_memblk(int nid, u64 start, u64 end) 187 { 188 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 189 } 190 191 /* Initialize NODE_DATA for a node on the local memory */ 192 static void __init setup_node_data(int nid, u64 start, u64 end) 193 { 194 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 195 u64 nd_pa; 196 void *nd; 197 int tnid; 198 199 /* 200 * Don't confuse VM with a node that doesn't have the 201 * minimum amount of memory: 202 */ 203 if (end && (end - start) < NODE_MIN_SIZE) 204 return; 205 206 start = roundup(start, ZONE_ALIGN); 207 208 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 209 nid, start, end - 1); 210 211 /* 212 * Allocate node data. Try node-local memory and then any node. 213 * Never allocate in DMA zone. 214 */ 215 nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid); 216 if (!nd_pa) { 217 pr_err("Cannot find %zu bytes in node %d\n", 218 nd_size, nid); 219 return; 220 } 221 nd = __va(nd_pa); 222 223 /* report and initialize */ 224 printk(KERN_INFO " NODE_DATA [mem %#010Lx-%#010Lx]\n", 225 nd_pa, nd_pa + nd_size - 1); 226 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 227 if (tnid != nid) 228 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 229 230 node_data[nid] = nd; 231 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 232 NODE_DATA(nid)->node_id = nid; 233 NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT; 234 NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT; 235 236 node_set_online(nid); 237 } 238 239 /** 240 * numa_cleanup_meminfo - Cleanup a numa_meminfo 241 * @mi: numa_meminfo to clean up 242 * 243 * Sanitize @mi by merging and removing unncessary memblks. Also check for 244 * conflicts and clear unused memblks. 245 * 246 * RETURNS: 247 * 0 on success, -errno on failure. 248 */ 249 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 250 { 251 const u64 low = 0; 252 const u64 high = PFN_PHYS(max_pfn); 253 int i, j, k; 254 255 /* first, trim all entries */ 256 for (i = 0; i < mi->nr_blks; i++) { 257 struct numa_memblk *bi = &mi->blk[i]; 258 259 /* make sure all blocks are inside the limits */ 260 bi->start = max(bi->start, low); 261 bi->end = min(bi->end, high); 262 263 /* and there's no empty block */ 264 if (bi->start >= bi->end) 265 numa_remove_memblk_from(i--, mi); 266 } 267 268 /* merge neighboring / overlapping entries */ 269 for (i = 0; i < mi->nr_blks; i++) { 270 struct numa_memblk *bi = &mi->blk[i]; 271 272 for (j = i + 1; j < mi->nr_blks; j++) { 273 struct numa_memblk *bj = &mi->blk[j]; 274 u64 start, end; 275 276 /* 277 * See whether there are overlapping blocks. Whine 278 * about but allow overlaps of the same nid. They 279 * will be merged below. 280 */ 281 if (bi->end > bj->start && bi->start < bj->end) { 282 if (bi->nid != bj->nid) { 283 pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 284 bi->nid, bi->start, bi->end - 1, 285 bj->nid, bj->start, bj->end - 1); 286 return -EINVAL; 287 } 288 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 289 bi->nid, bi->start, bi->end - 1, 290 bj->start, bj->end - 1); 291 } 292 293 /* 294 * Join together blocks on the same node, holes 295 * between which don't overlap with memory on other 296 * nodes. 297 */ 298 if (bi->nid != bj->nid) 299 continue; 300 start = min(bi->start, bj->start); 301 end = max(bi->end, bj->end); 302 for (k = 0; k < mi->nr_blks; k++) { 303 struct numa_memblk *bk = &mi->blk[k]; 304 305 if (bi->nid == bk->nid) 306 continue; 307 if (start < bk->end && end > bk->start) 308 break; 309 } 310 if (k < mi->nr_blks) 311 continue; 312 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 313 bi->nid, bi->start, bi->end - 1, bj->start, 314 bj->end - 1, start, end - 1); 315 bi->start = start; 316 bi->end = end; 317 numa_remove_memblk_from(j--, mi); 318 } 319 } 320 321 /* clear unused ones */ 322 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 323 mi->blk[i].start = mi->blk[i].end = 0; 324 mi->blk[i].nid = NUMA_NO_NODE; 325 } 326 327 return 0; 328 } 329 330 /* 331 * Set nodes, which have memory in @mi, in *@nodemask. 332 */ 333 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 334 const struct numa_meminfo *mi) 335 { 336 int i; 337 338 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 339 if (mi->blk[i].start != mi->blk[i].end && 340 mi->blk[i].nid != NUMA_NO_NODE) 341 node_set(mi->blk[i].nid, *nodemask); 342 } 343 344 /** 345 * numa_reset_distance - Reset NUMA distance table 346 * 347 * The current table is freed. The next numa_set_distance() call will 348 * create a new one. 349 */ 350 void __init numa_reset_distance(void) 351 { 352 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 353 354 /* numa_distance could be 1LU marking allocation failure, test cnt */ 355 if (numa_distance_cnt) 356 memblock_free(__pa(numa_distance), size); 357 numa_distance_cnt = 0; 358 numa_distance = NULL; /* enable table creation */ 359 } 360 361 static int __init numa_alloc_distance(void) 362 { 363 nodemask_t nodes_parsed; 364 size_t size; 365 int i, j, cnt = 0; 366 u64 phys; 367 368 /* size the new table and allocate it */ 369 nodes_parsed = numa_nodes_parsed; 370 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 371 372 for_each_node_mask(i, nodes_parsed) 373 cnt = i; 374 cnt++; 375 size = cnt * cnt * sizeof(numa_distance[0]); 376 377 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 378 size, PAGE_SIZE); 379 if (!phys) { 380 pr_warning("NUMA: Warning: can't allocate distance table!\n"); 381 /* don't retry until explicitly reset */ 382 numa_distance = (void *)1LU; 383 return -ENOMEM; 384 } 385 memblock_reserve(phys, size); 386 387 numa_distance = __va(phys); 388 numa_distance_cnt = cnt; 389 390 /* fill with the default distances */ 391 for (i = 0; i < cnt; i++) 392 for (j = 0; j < cnt; j++) 393 numa_distance[i * cnt + j] = i == j ? 394 LOCAL_DISTANCE : REMOTE_DISTANCE; 395 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 396 397 return 0; 398 } 399 400 /** 401 * numa_set_distance - Set NUMA distance from one NUMA to another 402 * @from: the 'from' node to set distance 403 * @to: the 'to' node to set distance 404 * @distance: NUMA distance 405 * 406 * Set the distance from node @from to @to to @distance. If distance table 407 * doesn't exist, one which is large enough to accommodate all the currently 408 * known nodes will be created. 409 * 410 * If such table cannot be allocated, a warning is printed and further 411 * calls are ignored until the distance table is reset with 412 * numa_reset_distance(). 413 * 414 * If @from or @to is higher than the highest known node or lower than zero 415 * at the time of table creation or @distance doesn't make sense, the call 416 * is ignored. 417 * This is to allow simplification of specific NUMA config implementations. 418 */ 419 void __init numa_set_distance(int from, int to, int distance) 420 { 421 if (!numa_distance && numa_alloc_distance() < 0) 422 return; 423 424 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 425 from < 0 || to < 0) { 426 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 427 from, to, distance); 428 return; 429 } 430 431 if ((u8)distance != distance || 432 (from == to && distance != LOCAL_DISTANCE)) { 433 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 434 from, to, distance); 435 return; 436 } 437 438 numa_distance[from * numa_distance_cnt + to] = distance; 439 } 440 441 int __node_distance(int from, int to) 442 { 443 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 444 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 445 return numa_distance[from * numa_distance_cnt + to]; 446 } 447 EXPORT_SYMBOL(__node_distance); 448 449 /* 450 * Sanity check to catch more bad NUMA configurations (they are amazingly 451 * common). Make sure the nodes cover all memory. 452 */ 453 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 454 { 455 u64 numaram, e820ram; 456 int i; 457 458 numaram = 0; 459 for (i = 0; i < mi->nr_blks; i++) { 460 u64 s = mi->blk[i].start >> PAGE_SHIFT; 461 u64 e = mi->blk[i].end >> PAGE_SHIFT; 462 numaram += e - s; 463 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 464 if ((s64)numaram < 0) 465 numaram = 0; 466 } 467 468 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 469 470 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 471 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 472 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 473 (numaram << PAGE_SHIFT) >> 20, 474 (e820ram << PAGE_SHIFT) >> 20); 475 return false; 476 } 477 return true; 478 } 479 480 static int __init numa_register_memblks(struct numa_meminfo *mi) 481 { 482 unsigned long uninitialized_var(pfn_align); 483 int i, nid; 484 485 /* Account for nodes with cpus and no memory */ 486 node_possible_map = numa_nodes_parsed; 487 numa_nodemask_from_meminfo(&node_possible_map, mi); 488 if (WARN_ON(nodes_empty(node_possible_map))) 489 return -EINVAL; 490 491 for (i = 0; i < mi->nr_blks; i++) { 492 struct numa_memblk *mb = &mi->blk[i]; 493 memblock_set_node(mb->start, mb->end - mb->start, mb->nid); 494 } 495 496 /* 497 * If sections array is gonna be used for pfn -> nid mapping, check 498 * whether its granularity is fine enough. 499 */ 500 #ifdef NODE_NOT_IN_PAGE_FLAGS 501 pfn_align = node_map_pfn_alignment(); 502 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 503 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 504 PFN_PHYS(pfn_align) >> 20, 505 PFN_PHYS(PAGES_PER_SECTION) >> 20); 506 return -EINVAL; 507 } 508 #endif 509 if (!numa_meminfo_cover_memory(mi)) 510 return -EINVAL; 511 512 /* Finally register nodes. */ 513 for_each_node_mask(nid, node_possible_map) { 514 u64 start = PFN_PHYS(max_pfn); 515 u64 end = 0; 516 517 for (i = 0; i < mi->nr_blks; i++) { 518 if (nid != mi->blk[i].nid) 519 continue; 520 start = min(mi->blk[i].start, start); 521 end = max(mi->blk[i].end, end); 522 } 523 524 if (start < end) 525 setup_node_data(nid, start, end); 526 } 527 528 /* Dump memblock with node info and return. */ 529 memblock_dump_all(); 530 return 0; 531 } 532 533 /* 534 * There are unfortunately some poorly designed mainboards around that 535 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 536 * mapping. To avoid this fill in the mapping for all possible CPUs, 537 * as the number of CPUs is not known yet. We round robin the existing 538 * nodes. 539 */ 540 static void __init numa_init_array(void) 541 { 542 int rr, i; 543 544 rr = first_node(node_online_map); 545 for (i = 0; i < nr_cpu_ids; i++) { 546 if (early_cpu_to_node(i) != NUMA_NO_NODE) 547 continue; 548 numa_set_node(i, rr); 549 rr = next_node(rr, node_online_map); 550 if (rr == MAX_NUMNODES) 551 rr = first_node(node_online_map); 552 } 553 } 554 555 static int __init numa_init(int (*init_func)(void)) 556 { 557 int i; 558 int ret; 559 560 for (i = 0; i < MAX_LOCAL_APIC; i++) 561 set_apicid_to_node(i, NUMA_NO_NODE); 562 563 nodes_clear(numa_nodes_parsed); 564 nodes_clear(node_possible_map); 565 nodes_clear(node_online_map); 566 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 567 WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES)); 568 numa_reset_distance(); 569 570 ret = init_func(); 571 if (ret < 0) 572 return ret; 573 ret = numa_cleanup_meminfo(&numa_meminfo); 574 if (ret < 0) 575 return ret; 576 577 numa_emulation(&numa_meminfo, numa_distance_cnt); 578 579 ret = numa_register_memblks(&numa_meminfo); 580 if (ret < 0) 581 return ret; 582 583 for (i = 0; i < nr_cpu_ids; i++) { 584 int nid = early_cpu_to_node(i); 585 586 if (nid == NUMA_NO_NODE) 587 continue; 588 if (!node_online(nid)) 589 numa_clear_node(i); 590 } 591 numa_init_array(); 592 return 0; 593 } 594 595 /** 596 * dummy_numa_init - Fallback dummy NUMA init 597 * 598 * Used if there's no underlying NUMA architecture, NUMA initialization 599 * fails, or NUMA is disabled on the command line. 600 * 601 * Must online at least one node and add memory blocks that cover all 602 * allowed memory. This function must not fail. 603 */ 604 static int __init dummy_numa_init(void) 605 { 606 printk(KERN_INFO "%s\n", 607 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 608 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 609 0LLU, PFN_PHYS(max_pfn) - 1); 610 611 node_set(0, numa_nodes_parsed); 612 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 613 614 return 0; 615 } 616 617 /** 618 * x86_numa_init - Initialize NUMA 619 * 620 * Try each configured NUMA initialization method until one succeeds. The 621 * last fallback is dummy single node config encomapssing whole memory and 622 * never fails. 623 */ 624 void __init x86_numa_init(void) 625 { 626 if (!numa_off) { 627 #ifdef CONFIG_X86_NUMAQ 628 if (!numa_init(numaq_numa_init)) 629 return; 630 #endif 631 #ifdef CONFIG_ACPI_NUMA 632 if (!numa_init(x86_acpi_numa_init)) 633 return; 634 #endif 635 #ifdef CONFIG_AMD_NUMA 636 if (!numa_init(amd_numa_init)) 637 return; 638 #endif 639 } 640 641 numa_init(dummy_numa_init); 642 } 643 644 static __init int find_near_online_node(int node) 645 { 646 int n, val; 647 int min_val = INT_MAX; 648 int best_node = -1; 649 650 for_each_online_node(n) { 651 val = node_distance(node, n); 652 653 if (val < min_val) { 654 min_val = val; 655 best_node = n; 656 } 657 } 658 659 return best_node; 660 } 661 662 /* 663 * Setup early cpu_to_node. 664 * 665 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 666 * and apicid_to_node[] tables have valid entries for a CPU. 667 * This means we skip cpu_to_node[] initialisation for NUMA 668 * emulation and faking node case (when running a kernel compiled 669 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 670 * is already initialized in a round robin manner at numa_init_array, 671 * prior to this call, and this initialization is good enough 672 * for the fake NUMA cases. 673 * 674 * Called before the per_cpu areas are setup. 675 */ 676 void __init init_cpu_to_node(void) 677 { 678 int cpu; 679 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 680 681 BUG_ON(cpu_to_apicid == NULL); 682 683 for_each_possible_cpu(cpu) { 684 int node = numa_cpu_node(cpu); 685 686 if (node == NUMA_NO_NODE) 687 continue; 688 if (!node_online(node)) 689 node = find_near_online_node(node); 690 numa_set_node(cpu, node); 691 } 692 } 693 694 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 695 696 # ifndef CONFIG_NUMA_EMU 697 void __cpuinit numa_add_cpu(int cpu) 698 { 699 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 700 } 701 702 void __cpuinit numa_remove_cpu(int cpu) 703 { 704 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 705 } 706 # endif /* !CONFIG_NUMA_EMU */ 707 708 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 709 710 int __cpu_to_node(int cpu) 711 { 712 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 713 printk(KERN_WARNING 714 "cpu_to_node(%d): usage too early!\n", cpu); 715 dump_stack(); 716 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 717 } 718 return per_cpu(x86_cpu_to_node_map, cpu); 719 } 720 EXPORT_SYMBOL(__cpu_to_node); 721 722 /* 723 * Same function as cpu_to_node() but used if called before the 724 * per_cpu areas are setup. 725 */ 726 int early_cpu_to_node(int cpu) 727 { 728 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 729 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 730 731 if (!cpu_possible(cpu)) { 732 printk(KERN_WARNING 733 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 734 dump_stack(); 735 return NUMA_NO_NODE; 736 } 737 return per_cpu(x86_cpu_to_node_map, cpu); 738 } 739 740 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 741 { 742 struct cpumask *mask; 743 char buf[64]; 744 745 if (node == NUMA_NO_NODE) { 746 /* early_cpu_to_node() already emits a warning and trace */ 747 return; 748 } 749 mask = node_to_cpumask_map[node]; 750 if (!mask) { 751 pr_err("node_to_cpumask_map[%i] NULL\n", node); 752 dump_stack(); 753 return; 754 } 755 756 if (enable) 757 cpumask_set_cpu(cpu, mask); 758 else 759 cpumask_clear_cpu(cpu, mask); 760 761 cpulist_scnprintf(buf, sizeof(buf), mask); 762 printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", 763 enable ? "numa_add_cpu" : "numa_remove_cpu", 764 cpu, node, buf); 765 return; 766 } 767 768 # ifndef CONFIG_NUMA_EMU 769 static void __cpuinit numa_set_cpumask(int cpu, bool enable) 770 { 771 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 772 } 773 774 void __cpuinit numa_add_cpu(int cpu) 775 { 776 numa_set_cpumask(cpu, true); 777 } 778 779 void __cpuinit numa_remove_cpu(int cpu) 780 { 781 numa_set_cpumask(cpu, false); 782 } 783 # endif /* !CONFIG_NUMA_EMU */ 784 785 /* 786 * Returns a pointer to the bitmask of CPUs on Node 'node'. 787 */ 788 const struct cpumask *cpumask_of_node(int node) 789 { 790 if (node >= nr_node_ids) { 791 printk(KERN_WARNING 792 "cpumask_of_node(%d): node > nr_node_ids(%d)\n", 793 node, nr_node_ids); 794 dump_stack(); 795 return cpu_none_mask; 796 } 797 if (node_to_cpumask_map[node] == NULL) { 798 printk(KERN_WARNING 799 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 800 node); 801 dump_stack(); 802 return cpu_online_mask; 803 } 804 return node_to_cpumask_map[node]; 805 } 806 EXPORT_SYMBOL(cpumask_of_node); 807 808 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 809 810 #ifdef CONFIG_MEMORY_HOTPLUG 811 int memory_add_physaddr_to_nid(u64 start) 812 { 813 struct numa_meminfo *mi = &numa_meminfo; 814 int nid = mi->blk[0].nid; 815 int i; 816 817 for (i = 0; i < mi->nr_blks; i++) 818 if (mi->blk[i].start <= start && mi->blk[i].end > start) 819 nid = mi->blk[i].nid; 820 return nid; 821 } 822 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 823 #endif 824