xref: /openbmc/linux/arch/x86/mm/numa.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/init.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14 
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
19 
20 #include "numa_internal.h"
21 
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
24 
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
27 
28 static struct numa_meminfo numa_meminfo
29 #ifndef CONFIG_MEMORY_HOTPLUG
30 __initdata
31 #endif
32 ;
33 
34 static int numa_distance_cnt;
35 static u8 *numa_distance;
36 
37 static __init int numa_setup(char *opt)
38 {
39 	if (!opt)
40 		return -EINVAL;
41 	if (!strncmp(opt, "off", 3))
42 		numa_off = 1;
43 #ifdef CONFIG_NUMA_EMU
44 	if (!strncmp(opt, "fake=", 5))
45 		numa_emu_cmdline(opt + 5);
46 #endif
47 #ifdef CONFIG_ACPI_NUMA
48 	if (!strncmp(opt, "noacpi", 6))
49 		acpi_numa = -1;
50 #endif
51 	return 0;
52 }
53 early_param("numa", numa_setup);
54 
55 /*
56  * apicid, cpu, node mappings
57  */
58 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
59 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
60 };
61 
62 int numa_cpu_node(int cpu)
63 {
64 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
65 
66 	if (apicid != BAD_APICID)
67 		return __apicid_to_node[apicid];
68 	return NUMA_NO_NODE;
69 }
70 
71 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
72 EXPORT_SYMBOL(node_to_cpumask_map);
73 
74 /*
75  * Map cpu index to node index
76  */
77 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
78 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
79 
80 void numa_set_node(int cpu, int node)
81 {
82 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
83 
84 	/* early setting, no percpu area yet */
85 	if (cpu_to_node_map) {
86 		cpu_to_node_map[cpu] = node;
87 		return;
88 	}
89 
90 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
91 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
92 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
93 		dump_stack();
94 		return;
95 	}
96 #endif
97 	per_cpu(x86_cpu_to_node_map, cpu) = node;
98 
99 	set_cpu_numa_node(cpu, node);
100 }
101 
102 void numa_clear_node(int cpu)
103 {
104 	numa_set_node(cpu, NUMA_NO_NODE);
105 }
106 
107 /*
108  * Allocate node_to_cpumask_map based on number of available nodes
109  * Requires node_possible_map to be valid.
110  *
111  * Note: cpumask_of_node() is not valid until after this is done.
112  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
113  */
114 void __init setup_node_to_cpumask_map(void)
115 {
116 	unsigned int node;
117 
118 	/* setup nr_node_ids if not done yet */
119 	if (nr_node_ids == MAX_NUMNODES)
120 		setup_nr_node_ids();
121 
122 	/* allocate the map */
123 	for (node = 0; node < nr_node_ids; node++)
124 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
125 
126 	/* cpumask_of_node() will now work */
127 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
128 }
129 
130 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
131 				     struct numa_meminfo *mi)
132 {
133 	/* ignore zero length blks */
134 	if (start == end)
135 		return 0;
136 
137 	/* whine about and ignore invalid blks */
138 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
139 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
140 			nid, start, end - 1);
141 		return 0;
142 	}
143 
144 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
145 		pr_err("too many memblk ranges\n");
146 		return -EINVAL;
147 	}
148 
149 	mi->blk[mi->nr_blks].start = start;
150 	mi->blk[mi->nr_blks].end = end;
151 	mi->blk[mi->nr_blks].nid = nid;
152 	mi->nr_blks++;
153 	return 0;
154 }
155 
156 /**
157  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
158  * @idx: Index of memblk to remove
159  * @mi: numa_meminfo to remove memblk from
160  *
161  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
162  * decrementing @mi->nr_blks.
163  */
164 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
165 {
166 	mi->nr_blks--;
167 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
168 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
169 }
170 
171 /**
172  * numa_add_memblk - Add one numa_memblk to numa_meminfo
173  * @nid: NUMA node ID of the new memblk
174  * @start: Start address of the new memblk
175  * @end: End address of the new memblk
176  *
177  * Add a new memblk to the default numa_meminfo.
178  *
179  * RETURNS:
180  * 0 on success, -errno on failure.
181  */
182 int __init numa_add_memblk(int nid, u64 start, u64 end)
183 {
184 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
185 }
186 
187 /* Allocate NODE_DATA for a node on the local memory */
188 static void __init alloc_node_data(int nid)
189 {
190 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
191 	u64 nd_pa;
192 	void *nd;
193 	int tnid;
194 
195 	/*
196 	 * Allocate node data.  Try node-local memory and then any node.
197 	 * Never allocate in DMA zone.
198 	 */
199 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
200 	if (!nd_pa) {
201 		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
202 		       nd_size, nid);
203 		return;
204 	}
205 	nd = __va(nd_pa);
206 
207 	/* report and initialize */
208 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
209 	       nd_pa, nd_pa + nd_size - 1);
210 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
211 	if (tnid != nid)
212 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
213 
214 	node_data[nid] = nd;
215 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
216 
217 	node_set_online(nid);
218 }
219 
220 /**
221  * numa_cleanup_meminfo - Cleanup a numa_meminfo
222  * @mi: numa_meminfo to clean up
223  *
224  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
225  * conflicts and clear unused memblks.
226  *
227  * RETURNS:
228  * 0 on success, -errno on failure.
229  */
230 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
231 {
232 	const u64 low = 0;
233 	const u64 high = PFN_PHYS(max_pfn);
234 	int i, j, k;
235 
236 	/* first, trim all entries */
237 	for (i = 0; i < mi->nr_blks; i++) {
238 		struct numa_memblk *bi = &mi->blk[i];
239 
240 		/* make sure all blocks are inside the limits */
241 		bi->start = max(bi->start, low);
242 		bi->end = min(bi->end, high);
243 
244 		/* and there's no empty or non-exist block */
245 		if (bi->start >= bi->end ||
246 		    !memblock_overlaps_region(&memblock.memory,
247 			bi->start, bi->end - bi->start))
248 			numa_remove_memblk_from(i--, mi);
249 	}
250 
251 	/* merge neighboring / overlapping entries */
252 	for (i = 0; i < mi->nr_blks; i++) {
253 		struct numa_memblk *bi = &mi->blk[i];
254 
255 		for (j = i + 1; j < mi->nr_blks; j++) {
256 			struct numa_memblk *bj = &mi->blk[j];
257 			u64 start, end;
258 
259 			/*
260 			 * See whether there are overlapping blocks.  Whine
261 			 * about but allow overlaps of the same nid.  They
262 			 * will be merged below.
263 			 */
264 			if (bi->end > bj->start && bi->start < bj->end) {
265 				if (bi->nid != bj->nid) {
266 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
267 					       bi->nid, bi->start, bi->end - 1,
268 					       bj->nid, bj->start, bj->end - 1);
269 					return -EINVAL;
270 				}
271 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
272 					bi->nid, bi->start, bi->end - 1,
273 					bj->start, bj->end - 1);
274 			}
275 
276 			/*
277 			 * Join together blocks on the same node, holes
278 			 * between which don't overlap with memory on other
279 			 * nodes.
280 			 */
281 			if (bi->nid != bj->nid)
282 				continue;
283 			start = min(bi->start, bj->start);
284 			end = max(bi->end, bj->end);
285 			for (k = 0; k < mi->nr_blks; k++) {
286 				struct numa_memblk *bk = &mi->blk[k];
287 
288 				if (bi->nid == bk->nid)
289 					continue;
290 				if (start < bk->end && end > bk->start)
291 					break;
292 			}
293 			if (k < mi->nr_blks)
294 				continue;
295 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
296 			       bi->nid, bi->start, bi->end - 1, bj->start,
297 			       bj->end - 1, start, end - 1);
298 			bi->start = start;
299 			bi->end = end;
300 			numa_remove_memblk_from(j--, mi);
301 		}
302 	}
303 
304 	/* clear unused ones */
305 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
306 		mi->blk[i].start = mi->blk[i].end = 0;
307 		mi->blk[i].nid = NUMA_NO_NODE;
308 	}
309 
310 	return 0;
311 }
312 
313 /*
314  * Set nodes, which have memory in @mi, in *@nodemask.
315  */
316 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
317 					      const struct numa_meminfo *mi)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
322 		if (mi->blk[i].start != mi->blk[i].end &&
323 		    mi->blk[i].nid != NUMA_NO_NODE)
324 			node_set(mi->blk[i].nid, *nodemask);
325 }
326 
327 /**
328  * numa_reset_distance - Reset NUMA distance table
329  *
330  * The current table is freed.  The next numa_set_distance() call will
331  * create a new one.
332  */
333 void __init numa_reset_distance(void)
334 {
335 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
336 
337 	/* numa_distance could be 1LU marking allocation failure, test cnt */
338 	if (numa_distance_cnt)
339 		memblock_free(__pa(numa_distance), size);
340 	numa_distance_cnt = 0;
341 	numa_distance = NULL;	/* enable table creation */
342 }
343 
344 static int __init numa_alloc_distance(void)
345 {
346 	nodemask_t nodes_parsed;
347 	size_t size;
348 	int i, j, cnt = 0;
349 	u64 phys;
350 
351 	/* size the new table and allocate it */
352 	nodes_parsed = numa_nodes_parsed;
353 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
354 
355 	for_each_node_mask(i, nodes_parsed)
356 		cnt = i;
357 	cnt++;
358 	size = cnt * cnt * sizeof(numa_distance[0]);
359 
360 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
361 				      size, PAGE_SIZE);
362 	if (!phys) {
363 		pr_warn("Warning: can't allocate distance table!\n");
364 		/* don't retry until explicitly reset */
365 		numa_distance = (void *)1LU;
366 		return -ENOMEM;
367 	}
368 	memblock_reserve(phys, size);
369 
370 	numa_distance = __va(phys);
371 	numa_distance_cnt = cnt;
372 
373 	/* fill with the default distances */
374 	for (i = 0; i < cnt; i++)
375 		for (j = 0; j < cnt; j++)
376 			numa_distance[i * cnt + j] = i == j ?
377 				LOCAL_DISTANCE : REMOTE_DISTANCE;
378 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
379 
380 	return 0;
381 }
382 
383 /**
384  * numa_set_distance - Set NUMA distance from one NUMA to another
385  * @from: the 'from' node to set distance
386  * @to: the 'to'  node to set distance
387  * @distance: NUMA distance
388  *
389  * Set the distance from node @from to @to to @distance.  If distance table
390  * doesn't exist, one which is large enough to accommodate all the currently
391  * known nodes will be created.
392  *
393  * If such table cannot be allocated, a warning is printed and further
394  * calls are ignored until the distance table is reset with
395  * numa_reset_distance().
396  *
397  * If @from or @to is higher than the highest known node or lower than zero
398  * at the time of table creation or @distance doesn't make sense, the call
399  * is ignored.
400  * This is to allow simplification of specific NUMA config implementations.
401  */
402 void __init numa_set_distance(int from, int to, int distance)
403 {
404 	if (!numa_distance && numa_alloc_distance() < 0)
405 		return;
406 
407 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
408 			from < 0 || to < 0) {
409 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
410 			     from, to, distance);
411 		return;
412 	}
413 
414 	if ((u8)distance != distance ||
415 	    (from == to && distance != LOCAL_DISTANCE)) {
416 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
417 			     from, to, distance);
418 		return;
419 	}
420 
421 	numa_distance[from * numa_distance_cnt + to] = distance;
422 }
423 
424 int __node_distance(int from, int to)
425 {
426 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
427 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
428 	return numa_distance[from * numa_distance_cnt + to];
429 }
430 EXPORT_SYMBOL(__node_distance);
431 
432 /*
433  * Sanity check to catch more bad NUMA configurations (they are amazingly
434  * common).  Make sure the nodes cover all memory.
435  */
436 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
437 {
438 	u64 numaram, e820ram;
439 	int i;
440 
441 	numaram = 0;
442 	for (i = 0; i < mi->nr_blks; i++) {
443 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
444 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
445 		numaram += e - s;
446 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
447 		if ((s64)numaram < 0)
448 			numaram = 0;
449 	}
450 
451 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
452 
453 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
454 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
455 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
456 		       (numaram << PAGE_SHIFT) >> 20,
457 		       (e820ram << PAGE_SHIFT) >> 20);
458 		return false;
459 	}
460 	return true;
461 }
462 
463 /*
464  * Mark all currently memblock-reserved physical memory (which covers the
465  * kernel's own memory ranges) as hot-unswappable.
466  */
467 static void __init numa_clear_kernel_node_hotplug(void)
468 {
469 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
470 	struct memblock_region *mb_region;
471 	int i;
472 
473 	/*
474 	 * We have to do some preprocessing of memblock regions, to
475 	 * make them suitable for reservation.
476 	 *
477 	 * At this time, all memory regions reserved by memblock are
478 	 * used by the kernel, but those regions are not split up
479 	 * along node boundaries yet, and don't necessarily have their
480 	 * node ID set yet either.
481 	 *
482 	 * So iterate over all memory known to the x86 architecture,
483 	 * and use those ranges to set the nid in memblock.reserved.
484 	 * This will split up the memblock regions along node
485 	 * boundaries and will set the node IDs as well.
486 	 */
487 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
488 		struct numa_memblk *mb = numa_meminfo.blk + i;
489 		int ret;
490 
491 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
492 		WARN_ON_ONCE(ret);
493 	}
494 
495 	/*
496 	 * Now go over all reserved memblock regions, to construct a
497 	 * node mask of all kernel reserved memory areas.
498 	 *
499 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
500 	 *   numa_meminfo might not include all memblock.reserved
501 	 *   memory ranges, because quirks such as trim_snb_memory()
502 	 *   reserve specific pages for Sandy Bridge graphics. ]
503 	 */
504 	for_each_memblock(reserved, mb_region) {
505 		if (mb_region->nid != MAX_NUMNODES)
506 			node_set(mb_region->nid, reserved_nodemask);
507 	}
508 
509 	/*
510 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
511 	 * belonging to the reserved node mask.
512 	 *
513 	 * Note that this will include memory regions that reside
514 	 * on nodes that contain kernel memory - entire nodes
515 	 * become hot-unpluggable:
516 	 */
517 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
518 		struct numa_memblk *mb = numa_meminfo.blk + i;
519 
520 		if (!node_isset(mb->nid, reserved_nodemask))
521 			continue;
522 
523 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
524 	}
525 }
526 
527 static int __init numa_register_memblks(struct numa_meminfo *mi)
528 {
529 	unsigned long uninitialized_var(pfn_align);
530 	int i, nid;
531 
532 	/* Account for nodes with cpus and no memory */
533 	node_possible_map = numa_nodes_parsed;
534 	numa_nodemask_from_meminfo(&node_possible_map, mi);
535 	if (WARN_ON(nodes_empty(node_possible_map)))
536 		return -EINVAL;
537 
538 	for (i = 0; i < mi->nr_blks; i++) {
539 		struct numa_memblk *mb = &mi->blk[i];
540 		memblock_set_node(mb->start, mb->end - mb->start,
541 				  &memblock.memory, mb->nid);
542 	}
543 
544 	/*
545 	 * At very early time, the kernel have to use some memory such as
546 	 * loading the kernel image. We cannot prevent this anyway. So any
547 	 * node the kernel resides in should be un-hotpluggable.
548 	 *
549 	 * And when we come here, alloc node data won't fail.
550 	 */
551 	numa_clear_kernel_node_hotplug();
552 
553 	/*
554 	 * If sections array is gonna be used for pfn -> nid mapping, check
555 	 * whether its granularity is fine enough.
556 	 */
557 #ifdef NODE_NOT_IN_PAGE_FLAGS
558 	pfn_align = node_map_pfn_alignment();
559 	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
560 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
561 		       PFN_PHYS(pfn_align) >> 20,
562 		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
563 		return -EINVAL;
564 	}
565 #endif
566 	if (!numa_meminfo_cover_memory(mi))
567 		return -EINVAL;
568 
569 	/* Finally register nodes. */
570 	for_each_node_mask(nid, node_possible_map) {
571 		u64 start = PFN_PHYS(max_pfn);
572 		u64 end = 0;
573 
574 		for (i = 0; i < mi->nr_blks; i++) {
575 			if (nid != mi->blk[i].nid)
576 				continue;
577 			start = min(mi->blk[i].start, start);
578 			end = max(mi->blk[i].end, end);
579 		}
580 
581 		if (start >= end)
582 			continue;
583 
584 		/*
585 		 * Don't confuse VM with a node that doesn't have the
586 		 * minimum amount of memory:
587 		 */
588 		if (end && (end - start) < NODE_MIN_SIZE)
589 			continue;
590 
591 		alloc_node_data(nid);
592 	}
593 
594 	/* Dump memblock with node info and return. */
595 	memblock_dump_all();
596 	return 0;
597 }
598 
599 /*
600  * There are unfortunately some poorly designed mainboards around that
601  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
602  * mapping. To avoid this fill in the mapping for all possible CPUs,
603  * as the number of CPUs is not known yet. We round robin the existing
604  * nodes.
605  */
606 static void __init numa_init_array(void)
607 {
608 	int rr, i;
609 
610 	rr = first_node(node_online_map);
611 	for (i = 0; i < nr_cpu_ids; i++) {
612 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
613 			continue;
614 		numa_set_node(i, rr);
615 		rr = next_node_in(rr, node_online_map);
616 	}
617 }
618 
619 static int __init numa_init(int (*init_func)(void))
620 {
621 	int i;
622 	int ret;
623 
624 	for (i = 0; i < MAX_LOCAL_APIC; i++)
625 		set_apicid_to_node(i, NUMA_NO_NODE);
626 
627 	nodes_clear(numa_nodes_parsed);
628 	nodes_clear(node_possible_map);
629 	nodes_clear(node_online_map);
630 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
631 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
632 				  MAX_NUMNODES));
633 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
634 				  MAX_NUMNODES));
635 	/* In case that parsing SRAT failed. */
636 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
637 	numa_reset_distance();
638 
639 	ret = init_func();
640 	if (ret < 0)
641 		return ret;
642 
643 	/*
644 	 * We reset memblock back to the top-down direction
645 	 * here because if we configured ACPI_NUMA, we have
646 	 * parsed SRAT in init_func(). It is ok to have the
647 	 * reset here even if we did't configure ACPI_NUMA
648 	 * or acpi numa init fails and fallbacks to dummy
649 	 * numa init.
650 	 */
651 	memblock_set_bottom_up(false);
652 
653 	ret = numa_cleanup_meminfo(&numa_meminfo);
654 	if (ret < 0)
655 		return ret;
656 
657 	numa_emulation(&numa_meminfo, numa_distance_cnt);
658 
659 	ret = numa_register_memblks(&numa_meminfo);
660 	if (ret < 0)
661 		return ret;
662 
663 	for (i = 0; i < nr_cpu_ids; i++) {
664 		int nid = early_cpu_to_node(i);
665 
666 		if (nid == NUMA_NO_NODE)
667 			continue;
668 		if (!node_online(nid))
669 			numa_clear_node(i);
670 	}
671 	numa_init_array();
672 
673 	return 0;
674 }
675 
676 /**
677  * dummy_numa_init - Fallback dummy NUMA init
678  *
679  * Used if there's no underlying NUMA architecture, NUMA initialization
680  * fails, or NUMA is disabled on the command line.
681  *
682  * Must online at least one node and add memory blocks that cover all
683  * allowed memory.  This function must not fail.
684  */
685 static int __init dummy_numa_init(void)
686 {
687 	printk(KERN_INFO "%s\n",
688 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
689 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
690 	       0LLU, PFN_PHYS(max_pfn) - 1);
691 
692 	node_set(0, numa_nodes_parsed);
693 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
694 
695 	return 0;
696 }
697 
698 /**
699  * x86_numa_init - Initialize NUMA
700  *
701  * Try each configured NUMA initialization method until one succeeds.  The
702  * last fallback is dummy single node config encompassing whole memory and
703  * never fails.
704  */
705 void __init x86_numa_init(void)
706 {
707 	if (!numa_off) {
708 #ifdef CONFIG_ACPI_NUMA
709 		if (!numa_init(x86_acpi_numa_init))
710 			return;
711 #endif
712 #ifdef CONFIG_AMD_NUMA
713 		if (!numa_init(amd_numa_init))
714 			return;
715 #endif
716 	}
717 
718 	numa_init(dummy_numa_init);
719 }
720 
721 static void __init init_memory_less_node(int nid)
722 {
723 	unsigned long zones_size[MAX_NR_ZONES] = {0};
724 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
725 
726 	/* Allocate and initialize node data. Memory-less node is now online.*/
727 	alloc_node_data(nid);
728 	free_area_init_node(nid, zones_size, 0, zholes_size);
729 
730 	/*
731 	 * All zonelists will be built later in start_kernel() after per cpu
732 	 * areas are initialized.
733 	 */
734 }
735 
736 /*
737  * Setup early cpu_to_node.
738  *
739  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
740  * and apicid_to_node[] tables have valid entries for a CPU.
741  * This means we skip cpu_to_node[] initialisation for NUMA
742  * emulation and faking node case (when running a kernel compiled
743  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
744  * is already initialized in a round robin manner at numa_init_array,
745  * prior to this call, and this initialization is good enough
746  * for the fake NUMA cases.
747  *
748  * Called before the per_cpu areas are setup.
749  */
750 void __init init_cpu_to_node(void)
751 {
752 	int cpu;
753 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
754 
755 	BUG_ON(cpu_to_apicid == NULL);
756 
757 	for_each_possible_cpu(cpu) {
758 		int node = numa_cpu_node(cpu);
759 
760 		if (node == NUMA_NO_NODE)
761 			continue;
762 
763 		if (!node_online(node))
764 			init_memory_less_node(node);
765 
766 		numa_set_node(cpu, node);
767 	}
768 }
769 
770 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
771 
772 # ifndef CONFIG_NUMA_EMU
773 void numa_add_cpu(int cpu)
774 {
775 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
776 }
777 
778 void numa_remove_cpu(int cpu)
779 {
780 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
781 }
782 # endif	/* !CONFIG_NUMA_EMU */
783 
784 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
785 
786 int __cpu_to_node(int cpu)
787 {
788 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
789 		printk(KERN_WARNING
790 			"cpu_to_node(%d): usage too early!\n", cpu);
791 		dump_stack();
792 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
793 	}
794 	return per_cpu(x86_cpu_to_node_map, cpu);
795 }
796 EXPORT_SYMBOL(__cpu_to_node);
797 
798 /*
799  * Same function as cpu_to_node() but used if called before the
800  * per_cpu areas are setup.
801  */
802 int early_cpu_to_node(int cpu)
803 {
804 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
805 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
806 
807 	if (!cpu_possible(cpu)) {
808 		printk(KERN_WARNING
809 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
810 		dump_stack();
811 		return NUMA_NO_NODE;
812 	}
813 	return per_cpu(x86_cpu_to_node_map, cpu);
814 }
815 
816 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
817 {
818 	struct cpumask *mask;
819 
820 	if (node == NUMA_NO_NODE) {
821 		/* early_cpu_to_node() already emits a warning and trace */
822 		return;
823 	}
824 	mask = node_to_cpumask_map[node];
825 	if (!mask) {
826 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
827 		dump_stack();
828 		return;
829 	}
830 
831 	if (enable)
832 		cpumask_set_cpu(cpu, mask);
833 	else
834 		cpumask_clear_cpu(cpu, mask);
835 
836 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
837 		enable ? "numa_add_cpu" : "numa_remove_cpu",
838 		cpu, node, cpumask_pr_args(mask));
839 	return;
840 }
841 
842 # ifndef CONFIG_NUMA_EMU
843 static void numa_set_cpumask(int cpu, bool enable)
844 {
845 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
846 }
847 
848 void numa_add_cpu(int cpu)
849 {
850 	numa_set_cpumask(cpu, true);
851 }
852 
853 void numa_remove_cpu(int cpu)
854 {
855 	numa_set_cpumask(cpu, false);
856 }
857 # endif	/* !CONFIG_NUMA_EMU */
858 
859 /*
860  * Returns a pointer to the bitmask of CPUs on Node 'node'.
861  */
862 const struct cpumask *cpumask_of_node(int node)
863 {
864 	if ((unsigned)node >= nr_node_ids) {
865 		printk(KERN_WARNING
866 			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
867 			node, nr_node_ids);
868 		dump_stack();
869 		return cpu_none_mask;
870 	}
871 	if (node_to_cpumask_map[node] == NULL) {
872 		printk(KERN_WARNING
873 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
874 			node);
875 		dump_stack();
876 		return cpu_online_mask;
877 	}
878 	return node_to_cpumask_map[node];
879 }
880 EXPORT_SYMBOL(cpumask_of_node);
881 
882 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
883 
884 #ifdef CONFIG_MEMORY_HOTPLUG
885 int memory_add_physaddr_to_nid(u64 start)
886 {
887 	struct numa_meminfo *mi = &numa_meminfo;
888 	int nid = mi->blk[0].nid;
889 	int i;
890 
891 	for (i = 0; i < mi->nr_blks; i++)
892 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
893 			nid = mi->blk[i].nid;
894 	return nid;
895 }
896 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
897 #endif
898