1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Common code for 32 and 64-bit NUMA */ 3 #include <linux/acpi.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/string.h> 7 #include <linux/init.h> 8 #include <linux/memblock.h> 9 #include <linux/mmzone.h> 10 #include <linux/ctype.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/proto.h> 17 #include <asm/dma.h> 18 #include <asm/amd_nb.h> 19 20 #include "numa_internal.h" 21 22 int numa_off; 23 nodemask_t numa_nodes_parsed __initdata; 24 25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 26 EXPORT_SYMBOL(node_data); 27 28 static struct numa_meminfo numa_meminfo 29 #ifndef CONFIG_MEMORY_HOTPLUG 30 __initdata 31 #endif 32 ; 33 34 static int numa_distance_cnt; 35 static u8 *numa_distance; 36 37 static __init int numa_setup(char *opt) 38 { 39 if (!opt) 40 return -EINVAL; 41 if (!strncmp(opt, "off", 3)) 42 numa_off = 1; 43 #ifdef CONFIG_NUMA_EMU 44 if (!strncmp(opt, "fake=", 5)) 45 numa_emu_cmdline(opt + 5); 46 #endif 47 #ifdef CONFIG_ACPI_NUMA 48 if (!strncmp(opt, "noacpi", 6)) 49 acpi_numa = -1; 50 #endif 51 return 0; 52 } 53 early_param("numa", numa_setup); 54 55 /* 56 * apicid, cpu, node mappings 57 */ 58 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 59 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 60 }; 61 62 int numa_cpu_node(int cpu) 63 { 64 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 65 66 if (apicid != BAD_APICID) 67 return __apicid_to_node[apicid]; 68 return NUMA_NO_NODE; 69 } 70 71 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 72 EXPORT_SYMBOL(node_to_cpumask_map); 73 74 /* 75 * Map cpu index to node index 76 */ 77 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 78 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 79 80 void numa_set_node(int cpu, int node) 81 { 82 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 83 84 /* early setting, no percpu area yet */ 85 if (cpu_to_node_map) { 86 cpu_to_node_map[cpu] = node; 87 return; 88 } 89 90 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 91 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 92 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 93 dump_stack(); 94 return; 95 } 96 #endif 97 per_cpu(x86_cpu_to_node_map, cpu) = node; 98 99 set_cpu_numa_node(cpu, node); 100 } 101 102 void numa_clear_node(int cpu) 103 { 104 numa_set_node(cpu, NUMA_NO_NODE); 105 } 106 107 /* 108 * Allocate node_to_cpumask_map based on number of available nodes 109 * Requires node_possible_map to be valid. 110 * 111 * Note: cpumask_of_node() is not valid until after this is done. 112 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 113 */ 114 void __init setup_node_to_cpumask_map(void) 115 { 116 unsigned int node; 117 118 /* setup nr_node_ids if not done yet */ 119 if (nr_node_ids == MAX_NUMNODES) 120 setup_nr_node_ids(); 121 122 /* allocate the map */ 123 for (node = 0; node < nr_node_ids; node++) 124 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 125 126 /* cpumask_of_node() will now work */ 127 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 128 } 129 130 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 131 struct numa_meminfo *mi) 132 { 133 /* ignore zero length blks */ 134 if (start == end) 135 return 0; 136 137 /* whine about and ignore invalid blks */ 138 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 139 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 140 nid, start, end - 1); 141 return 0; 142 } 143 144 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 145 pr_err("too many memblk ranges\n"); 146 return -EINVAL; 147 } 148 149 mi->blk[mi->nr_blks].start = start; 150 mi->blk[mi->nr_blks].end = end; 151 mi->blk[mi->nr_blks].nid = nid; 152 mi->nr_blks++; 153 return 0; 154 } 155 156 /** 157 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 158 * @idx: Index of memblk to remove 159 * @mi: numa_meminfo to remove memblk from 160 * 161 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 162 * decrementing @mi->nr_blks. 163 */ 164 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 165 { 166 mi->nr_blks--; 167 memmove(&mi->blk[idx], &mi->blk[idx + 1], 168 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 169 } 170 171 /** 172 * numa_add_memblk - Add one numa_memblk to numa_meminfo 173 * @nid: NUMA node ID of the new memblk 174 * @start: Start address of the new memblk 175 * @end: End address of the new memblk 176 * 177 * Add a new memblk to the default numa_meminfo. 178 * 179 * RETURNS: 180 * 0 on success, -errno on failure. 181 */ 182 int __init numa_add_memblk(int nid, u64 start, u64 end) 183 { 184 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 185 } 186 187 /* Allocate NODE_DATA for a node on the local memory */ 188 static void __init alloc_node_data(int nid) 189 { 190 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 191 u64 nd_pa; 192 void *nd; 193 int tnid; 194 195 /* 196 * Allocate node data. Try node-local memory and then any node. 197 * Never allocate in DMA zone. 198 */ 199 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 200 if (!nd_pa) { 201 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", 202 nd_size, nid); 203 return; 204 } 205 nd = __va(nd_pa); 206 207 /* report and initialize */ 208 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 209 nd_pa, nd_pa + nd_size - 1); 210 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 211 if (tnid != nid) 212 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 213 214 node_data[nid] = nd; 215 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 216 217 node_set_online(nid); 218 } 219 220 /** 221 * numa_cleanup_meminfo - Cleanup a numa_meminfo 222 * @mi: numa_meminfo to clean up 223 * 224 * Sanitize @mi by merging and removing unnecessary memblks. Also check for 225 * conflicts and clear unused memblks. 226 * 227 * RETURNS: 228 * 0 on success, -errno on failure. 229 */ 230 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 231 { 232 const u64 low = 0; 233 const u64 high = PFN_PHYS(max_pfn); 234 int i, j, k; 235 236 /* first, trim all entries */ 237 for (i = 0; i < mi->nr_blks; i++) { 238 struct numa_memblk *bi = &mi->blk[i]; 239 240 /* make sure all blocks are inside the limits */ 241 bi->start = max(bi->start, low); 242 bi->end = min(bi->end, high); 243 244 /* and there's no empty or non-exist block */ 245 if (bi->start >= bi->end || 246 !memblock_overlaps_region(&memblock.memory, 247 bi->start, bi->end - bi->start)) 248 numa_remove_memblk_from(i--, mi); 249 } 250 251 /* merge neighboring / overlapping entries */ 252 for (i = 0; i < mi->nr_blks; i++) { 253 struct numa_memblk *bi = &mi->blk[i]; 254 255 for (j = i + 1; j < mi->nr_blks; j++) { 256 struct numa_memblk *bj = &mi->blk[j]; 257 u64 start, end; 258 259 /* 260 * See whether there are overlapping blocks. Whine 261 * about but allow overlaps of the same nid. They 262 * will be merged below. 263 */ 264 if (bi->end > bj->start && bi->start < bj->end) { 265 if (bi->nid != bj->nid) { 266 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 267 bi->nid, bi->start, bi->end - 1, 268 bj->nid, bj->start, bj->end - 1); 269 return -EINVAL; 270 } 271 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 272 bi->nid, bi->start, bi->end - 1, 273 bj->start, bj->end - 1); 274 } 275 276 /* 277 * Join together blocks on the same node, holes 278 * between which don't overlap with memory on other 279 * nodes. 280 */ 281 if (bi->nid != bj->nid) 282 continue; 283 start = min(bi->start, bj->start); 284 end = max(bi->end, bj->end); 285 for (k = 0; k < mi->nr_blks; k++) { 286 struct numa_memblk *bk = &mi->blk[k]; 287 288 if (bi->nid == bk->nid) 289 continue; 290 if (start < bk->end && end > bk->start) 291 break; 292 } 293 if (k < mi->nr_blks) 294 continue; 295 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 296 bi->nid, bi->start, bi->end - 1, bj->start, 297 bj->end - 1, start, end - 1); 298 bi->start = start; 299 bi->end = end; 300 numa_remove_memblk_from(j--, mi); 301 } 302 } 303 304 /* clear unused ones */ 305 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 306 mi->blk[i].start = mi->blk[i].end = 0; 307 mi->blk[i].nid = NUMA_NO_NODE; 308 } 309 310 return 0; 311 } 312 313 /* 314 * Set nodes, which have memory in @mi, in *@nodemask. 315 */ 316 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 317 const struct numa_meminfo *mi) 318 { 319 int i; 320 321 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 322 if (mi->blk[i].start != mi->blk[i].end && 323 mi->blk[i].nid != NUMA_NO_NODE) 324 node_set(mi->blk[i].nid, *nodemask); 325 } 326 327 /** 328 * numa_reset_distance - Reset NUMA distance table 329 * 330 * The current table is freed. The next numa_set_distance() call will 331 * create a new one. 332 */ 333 void __init numa_reset_distance(void) 334 { 335 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 336 337 /* numa_distance could be 1LU marking allocation failure, test cnt */ 338 if (numa_distance_cnt) 339 memblock_free(__pa(numa_distance), size); 340 numa_distance_cnt = 0; 341 numa_distance = NULL; /* enable table creation */ 342 } 343 344 static int __init numa_alloc_distance(void) 345 { 346 nodemask_t nodes_parsed; 347 size_t size; 348 int i, j, cnt = 0; 349 u64 phys; 350 351 /* size the new table and allocate it */ 352 nodes_parsed = numa_nodes_parsed; 353 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 354 355 for_each_node_mask(i, nodes_parsed) 356 cnt = i; 357 cnt++; 358 size = cnt * cnt * sizeof(numa_distance[0]); 359 360 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 361 size, PAGE_SIZE); 362 if (!phys) { 363 pr_warn("Warning: can't allocate distance table!\n"); 364 /* don't retry until explicitly reset */ 365 numa_distance = (void *)1LU; 366 return -ENOMEM; 367 } 368 memblock_reserve(phys, size); 369 370 numa_distance = __va(phys); 371 numa_distance_cnt = cnt; 372 373 /* fill with the default distances */ 374 for (i = 0; i < cnt; i++) 375 for (j = 0; j < cnt; j++) 376 numa_distance[i * cnt + j] = i == j ? 377 LOCAL_DISTANCE : REMOTE_DISTANCE; 378 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 379 380 return 0; 381 } 382 383 /** 384 * numa_set_distance - Set NUMA distance from one NUMA to another 385 * @from: the 'from' node to set distance 386 * @to: the 'to' node to set distance 387 * @distance: NUMA distance 388 * 389 * Set the distance from node @from to @to to @distance. If distance table 390 * doesn't exist, one which is large enough to accommodate all the currently 391 * known nodes will be created. 392 * 393 * If such table cannot be allocated, a warning is printed and further 394 * calls are ignored until the distance table is reset with 395 * numa_reset_distance(). 396 * 397 * If @from or @to is higher than the highest known node or lower than zero 398 * at the time of table creation or @distance doesn't make sense, the call 399 * is ignored. 400 * This is to allow simplification of specific NUMA config implementations. 401 */ 402 void __init numa_set_distance(int from, int to, int distance) 403 { 404 if (!numa_distance && numa_alloc_distance() < 0) 405 return; 406 407 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 408 from < 0 || to < 0) { 409 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 410 from, to, distance); 411 return; 412 } 413 414 if ((u8)distance != distance || 415 (from == to && distance != LOCAL_DISTANCE)) { 416 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 417 from, to, distance); 418 return; 419 } 420 421 numa_distance[from * numa_distance_cnt + to] = distance; 422 } 423 424 int __node_distance(int from, int to) 425 { 426 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 427 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 428 return numa_distance[from * numa_distance_cnt + to]; 429 } 430 EXPORT_SYMBOL(__node_distance); 431 432 /* 433 * Sanity check to catch more bad NUMA configurations (they are amazingly 434 * common). Make sure the nodes cover all memory. 435 */ 436 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 437 { 438 u64 numaram, e820ram; 439 int i; 440 441 numaram = 0; 442 for (i = 0; i < mi->nr_blks; i++) { 443 u64 s = mi->blk[i].start >> PAGE_SHIFT; 444 u64 e = mi->blk[i].end >> PAGE_SHIFT; 445 numaram += e - s; 446 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 447 if ((s64)numaram < 0) 448 numaram = 0; 449 } 450 451 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 452 453 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 454 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 455 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 456 (numaram << PAGE_SHIFT) >> 20, 457 (e820ram << PAGE_SHIFT) >> 20); 458 return false; 459 } 460 return true; 461 } 462 463 /* 464 * Mark all currently memblock-reserved physical memory (which covers the 465 * kernel's own memory ranges) as hot-unswappable. 466 */ 467 static void __init numa_clear_kernel_node_hotplug(void) 468 { 469 nodemask_t reserved_nodemask = NODE_MASK_NONE; 470 struct memblock_region *mb_region; 471 int i; 472 473 /* 474 * We have to do some preprocessing of memblock regions, to 475 * make them suitable for reservation. 476 * 477 * At this time, all memory regions reserved by memblock are 478 * used by the kernel, but those regions are not split up 479 * along node boundaries yet, and don't necessarily have their 480 * node ID set yet either. 481 * 482 * So iterate over all memory known to the x86 architecture, 483 * and use those ranges to set the nid in memblock.reserved. 484 * This will split up the memblock regions along node 485 * boundaries and will set the node IDs as well. 486 */ 487 for (i = 0; i < numa_meminfo.nr_blks; i++) { 488 struct numa_memblk *mb = numa_meminfo.blk + i; 489 int ret; 490 491 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); 492 WARN_ON_ONCE(ret); 493 } 494 495 /* 496 * Now go over all reserved memblock regions, to construct a 497 * node mask of all kernel reserved memory areas. 498 * 499 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, 500 * numa_meminfo might not include all memblock.reserved 501 * memory ranges, because quirks such as trim_snb_memory() 502 * reserve specific pages for Sandy Bridge graphics. ] 503 */ 504 for_each_memblock(reserved, mb_region) { 505 if (mb_region->nid != MAX_NUMNODES) 506 node_set(mb_region->nid, reserved_nodemask); 507 } 508 509 /* 510 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory 511 * belonging to the reserved node mask. 512 * 513 * Note that this will include memory regions that reside 514 * on nodes that contain kernel memory - entire nodes 515 * become hot-unpluggable: 516 */ 517 for (i = 0; i < numa_meminfo.nr_blks; i++) { 518 struct numa_memblk *mb = numa_meminfo.blk + i; 519 520 if (!node_isset(mb->nid, reserved_nodemask)) 521 continue; 522 523 memblock_clear_hotplug(mb->start, mb->end - mb->start); 524 } 525 } 526 527 static int __init numa_register_memblks(struct numa_meminfo *mi) 528 { 529 unsigned long uninitialized_var(pfn_align); 530 int i, nid; 531 532 /* Account for nodes with cpus and no memory */ 533 node_possible_map = numa_nodes_parsed; 534 numa_nodemask_from_meminfo(&node_possible_map, mi); 535 if (WARN_ON(nodes_empty(node_possible_map))) 536 return -EINVAL; 537 538 for (i = 0; i < mi->nr_blks; i++) { 539 struct numa_memblk *mb = &mi->blk[i]; 540 memblock_set_node(mb->start, mb->end - mb->start, 541 &memblock.memory, mb->nid); 542 } 543 544 /* 545 * At very early time, the kernel have to use some memory such as 546 * loading the kernel image. We cannot prevent this anyway. So any 547 * node the kernel resides in should be un-hotpluggable. 548 * 549 * And when we come here, alloc node data won't fail. 550 */ 551 numa_clear_kernel_node_hotplug(); 552 553 /* 554 * If sections array is gonna be used for pfn -> nid mapping, check 555 * whether its granularity is fine enough. 556 */ 557 #ifdef NODE_NOT_IN_PAGE_FLAGS 558 pfn_align = node_map_pfn_alignment(); 559 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 560 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 561 PFN_PHYS(pfn_align) >> 20, 562 PFN_PHYS(PAGES_PER_SECTION) >> 20); 563 return -EINVAL; 564 } 565 #endif 566 if (!numa_meminfo_cover_memory(mi)) 567 return -EINVAL; 568 569 /* Finally register nodes. */ 570 for_each_node_mask(nid, node_possible_map) { 571 u64 start = PFN_PHYS(max_pfn); 572 u64 end = 0; 573 574 for (i = 0; i < mi->nr_blks; i++) { 575 if (nid != mi->blk[i].nid) 576 continue; 577 start = min(mi->blk[i].start, start); 578 end = max(mi->blk[i].end, end); 579 } 580 581 if (start >= end) 582 continue; 583 584 /* 585 * Don't confuse VM with a node that doesn't have the 586 * minimum amount of memory: 587 */ 588 if (end && (end - start) < NODE_MIN_SIZE) 589 continue; 590 591 alloc_node_data(nid); 592 } 593 594 /* Dump memblock with node info and return. */ 595 memblock_dump_all(); 596 return 0; 597 } 598 599 /* 600 * There are unfortunately some poorly designed mainboards around that 601 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 602 * mapping. To avoid this fill in the mapping for all possible CPUs, 603 * as the number of CPUs is not known yet. We round robin the existing 604 * nodes. 605 */ 606 static void __init numa_init_array(void) 607 { 608 int rr, i; 609 610 rr = first_node(node_online_map); 611 for (i = 0; i < nr_cpu_ids; i++) { 612 if (early_cpu_to_node(i) != NUMA_NO_NODE) 613 continue; 614 numa_set_node(i, rr); 615 rr = next_node_in(rr, node_online_map); 616 } 617 } 618 619 static int __init numa_init(int (*init_func)(void)) 620 { 621 int i; 622 int ret; 623 624 for (i = 0; i < MAX_LOCAL_APIC; i++) 625 set_apicid_to_node(i, NUMA_NO_NODE); 626 627 nodes_clear(numa_nodes_parsed); 628 nodes_clear(node_possible_map); 629 nodes_clear(node_online_map); 630 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 631 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 632 MAX_NUMNODES)); 633 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 634 MAX_NUMNODES)); 635 /* In case that parsing SRAT failed. */ 636 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 637 numa_reset_distance(); 638 639 ret = init_func(); 640 if (ret < 0) 641 return ret; 642 643 /* 644 * We reset memblock back to the top-down direction 645 * here because if we configured ACPI_NUMA, we have 646 * parsed SRAT in init_func(). It is ok to have the 647 * reset here even if we did't configure ACPI_NUMA 648 * or acpi numa init fails and fallbacks to dummy 649 * numa init. 650 */ 651 memblock_set_bottom_up(false); 652 653 ret = numa_cleanup_meminfo(&numa_meminfo); 654 if (ret < 0) 655 return ret; 656 657 numa_emulation(&numa_meminfo, numa_distance_cnt); 658 659 ret = numa_register_memblks(&numa_meminfo); 660 if (ret < 0) 661 return ret; 662 663 for (i = 0; i < nr_cpu_ids; i++) { 664 int nid = early_cpu_to_node(i); 665 666 if (nid == NUMA_NO_NODE) 667 continue; 668 if (!node_online(nid)) 669 numa_clear_node(i); 670 } 671 numa_init_array(); 672 673 return 0; 674 } 675 676 /** 677 * dummy_numa_init - Fallback dummy NUMA init 678 * 679 * Used if there's no underlying NUMA architecture, NUMA initialization 680 * fails, or NUMA is disabled on the command line. 681 * 682 * Must online at least one node and add memory blocks that cover all 683 * allowed memory. This function must not fail. 684 */ 685 static int __init dummy_numa_init(void) 686 { 687 printk(KERN_INFO "%s\n", 688 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 689 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 690 0LLU, PFN_PHYS(max_pfn) - 1); 691 692 node_set(0, numa_nodes_parsed); 693 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 694 695 return 0; 696 } 697 698 /** 699 * x86_numa_init - Initialize NUMA 700 * 701 * Try each configured NUMA initialization method until one succeeds. The 702 * last fallback is dummy single node config encompassing whole memory and 703 * never fails. 704 */ 705 void __init x86_numa_init(void) 706 { 707 if (!numa_off) { 708 #ifdef CONFIG_ACPI_NUMA 709 if (!numa_init(x86_acpi_numa_init)) 710 return; 711 #endif 712 #ifdef CONFIG_AMD_NUMA 713 if (!numa_init(amd_numa_init)) 714 return; 715 #endif 716 } 717 718 numa_init(dummy_numa_init); 719 } 720 721 static void __init init_memory_less_node(int nid) 722 { 723 unsigned long zones_size[MAX_NR_ZONES] = {0}; 724 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 725 726 /* Allocate and initialize node data. Memory-less node is now online.*/ 727 alloc_node_data(nid); 728 free_area_init_node(nid, zones_size, 0, zholes_size); 729 730 /* 731 * All zonelists will be built later in start_kernel() after per cpu 732 * areas are initialized. 733 */ 734 } 735 736 /* 737 * Setup early cpu_to_node. 738 * 739 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 740 * and apicid_to_node[] tables have valid entries for a CPU. 741 * This means we skip cpu_to_node[] initialisation for NUMA 742 * emulation and faking node case (when running a kernel compiled 743 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 744 * is already initialized in a round robin manner at numa_init_array, 745 * prior to this call, and this initialization is good enough 746 * for the fake NUMA cases. 747 * 748 * Called before the per_cpu areas are setup. 749 */ 750 void __init init_cpu_to_node(void) 751 { 752 int cpu; 753 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 754 755 BUG_ON(cpu_to_apicid == NULL); 756 757 for_each_possible_cpu(cpu) { 758 int node = numa_cpu_node(cpu); 759 760 if (node == NUMA_NO_NODE) 761 continue; 762 763 if (!node_online(node)) 764 init_memory_less_node(node); 765 766 numa_set_node(cpu, node); 767 } 768 } 769 770 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 771 772 # ifndef CONFIG_NUMA_EMU 773 void numa_add_cpu(int cpu) 774 { 775 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 776 } 777 778 void numa_remove_cpu(int cpu) 779 { 780 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 781 } 782 # endif /* !CONFIG_NUMA_EMU */ 783 784 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 785 786 int __cpu_to_node(int cpu) 787 { 788 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 789 printk(KERN_WARNING 790 "cpu_to_node(%d): usage too early!\n", cpu); 791 dump_stack(); 792 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 793 } 794 return per_cpu(x86_cpu_to_node_map, cpu); 795 } 796 EXPORT_SYMBOL(__cpu_to_node); 797 798 /* 799 * Same function as cpu_to_node() but used if called before the 800 * per_cpu areas are setup. 801 */ 802 int early_cpu_to_node(int cpu) 803 { 804 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 805 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 806 807 if (!cpu_possible(cpu)) { 808 printk(KERN_WARNING 809 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 810 dump_stack(); 811 return NUMA_NO_NODE; 812 } 813 return per_cpu(x86_cpu_to_node_map, cpu); 814 } 815 816 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 817 { 818 struct cpumask *mask; 819 820 if (node == NUMA_NO_NODE) { 821 /* early_cpu_to_node() already emits a warning and trace */ 822 return; 823 } 824 mask = node_to_cpumask_map[node]; 825 if (!mask) { 826 pr_err("node_to_cpumask_map[%i] NULL\n", node); 827 dump_stack(); 828 return; 829 } 830 831 if (enable) 832 cpumask_set_cpu(cpu, mask); 833 else 834 cpumask_clear_cpu(cpu, mask); 835 836 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 837 enable ? "numa_add_cpu" : "numa_remove_cpu", 838 cpu, node, cpumask_pr_args(mask)); 839 return; 840 } 841 842 # ifndef CONFIG_NUMA_EMU 843 static void numa_set_cpumask(int cpu, bool enable) 844 { 845 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 846 } 847 848 void numa_add_cpu(int cpu) 849 { 850 numa_set_cpumask(cpu, true); 851 } 852 853 void numa_remove_cpu(int cpu) 854 { 855 numa_set_cpumask(cpu, false); 856 } 857 # endif /* !CONFIG_NUMA_EMU */ 858 859 /* 860 * Returns a pointer to the bitmask of CPUs on Node 'node'. 861 */ 862 const struct cpumask *cpumask_of_node(int node) 863 { 864 if ((unsigned)node >= nr_node_ids) { 865 printk(KERN_WARNING 866 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", 867 node, nr_node_ids); 868 dump_stack(); 869 return cpu_none_mask; 870 } 871 if (node_to_cpumask_map[node] == NULL) { 872 printk(KERN_WARNING 873 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 874 node); 875 dump_stack(); 876 return cpu_online_mask; 877 } 878 return node_to_cpumask_map[node]; 879 } 880 EXPORT_SYMBOL(cpumask_of_node); 881 882 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 883 884 #ifdef CONFIG_MEMORY_HOTPLUG 885 int memory_add_physaddr_to_nid(u64 start) 886 { 887 struct numa_meminfo *mi = &numa_meminfo; 888 int nid = mi->blk[0].nid; 889 int i; 890 891 for (i = 0; i < mi->nr_blks; i++) 892 if (mi->blk[i].start <= start && mi->blk[i].end > start) 893 nid = mi->blk[i].nid; 894 return nid; 895 } 896 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 897 #endif 898