xref: /openbmc/linux/arch/x86/mm/numa.c (revision 33a03aad)
1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/string.h>
5 #include <linux/init.h>
6 #include <linux/bootmem.h>
7 #include <linux/memblock.h>
8 #include <linux/mmzone.h>
9 #include <linux/ctype.h>
10 #include <linux/module.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14 
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/acpi.h>
19 #include <asm/amd_nb.h>
20 
21 #include "numa_internal.h"
22 
23 int __initdata numa_off;
24 nodemask_t numa_nodes_parsed __initdata;
25 
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
28 
29 static struct numa_meminfo numa_meminfo
30 #ifndef CONFIG_MEMORY_HOTPLUG
31 __initdata
32 #endif
33 ;
34 
35 static int numa_distance_cnt;
36 static u8 *numa_distance;
37 
38 static __init int numa_setup(char *opt)
39 {
40 	if (!opt)
41 		return -EINVAL;
42 	if (!strncmp(opt, "off", 3))
43 		numa_off = 1;
44 #ifdef CONFIG_NUMA_EMU
45 	if (!strncmp(opt, "fake=", 5))
46 		numa_emu_cmdline(opt + 5);
47 #endif
48 #ifdef CONFIG_ACPI_NUMA
49 	if (!strncmp(opt, "noacpi", 6))
50 		acpi_numa = -1;
51 #endif
52 	return 0;
53 }
54 early_param("numa", numa_setup);
55 
56 /*
57  * apicid, cpu, node mappings
58  */
59 s16 __apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
60 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61 };
62 
63 int __cpuinit numa_cpu_node(int cpu)
64 {
65 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
66 
67 	if (apicid != BAD_APICID)
68 		return __apicid_to_node[apicid];
69 	return NUMA_NO_NODE;
70 }
71 
72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73 EXPORT_SYMBOL(node_to_cpumask_map);
74 
75 /*
76  * Map cpu index to node index
77  */
78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
80 
81 void __cpuinit numa_set_node(int cpu, int node)
82 {
83 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
84 
85 	/* early setting, no percpu area yet */
86 	if (cpu_to_node_map) {
87 		cpu_to_node_map[cpu] = node;
88 		return;
89 	}
90 
91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
92 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
93 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
94 		dump_stack();
95 		return;
96 	}
97 #endif
98 	per_cpu(x86_cpu_to_node_map, cpu) = node;
99 
100 	if (node != NUMA_NO_NODE)
101 		set_cpu_numa_node(cpu, node);
102 }
103 
104 void __cpuinit numa_clear_node(int cpu)
105 {
106 	numa_set_node(cpu, NUMA_NO_NODE);
107 }
108 
109 /*
110  * Allocate node_to_cpumask_map based on number of available nodes
111  * Requires node_possible_map to be valid.
112  *
113  * Note: cpumask_of_node() is not valid until after this is done.
114  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
115  */
116 void __init setup_node_to_cpumask_map(void)
117 {
118 	unsigned int node, num = 0;
119 
120 	/* setup nr_node_ids if not done yet */
121 	if (nr_node_ids == MAX_NUMNODES) {
122 		for_each_node_mask(node, node_possible_map)
123 			num = node;
124 		nr_node_ids = num + 1;
125 	}
126 
127 	/* allocate the map */
128 	for (node = 0; node < nr_node_ids; node++)
129 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
130 
131 	/* cpumask_of_node() will now work */
132 	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
133 }
134 
135 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
136 				     struct numa_meminfo *mi)
137 {
138 	/* ignore zero length blks */
139 	if (start == end)
140 		return 0;
141 
142 	/* whine about and ignore invalid blks */
143 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
144 		pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
145 			   nid, start, end - 1);
146 		return 0;
147 	}
148 
149 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
150 		pr_err("NUMA: too many memblk ranges\n");
151 		return -EINVAL;
152 	}
153 
154 	mi->blk[mi->nr_blks].start = start;
155 	mi->blk[mi->nr_blks].end = end;
156 	mi->blk[mi->nr_blks].nid = nid;
157 	mi->nr_blks++;
158 	return 0;
159 }
160 
161 /**
162  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
163  * @idx: Index of memblk to remove
164  * @mi: numa_meminfo to remove memblk from
165  *
166  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
167  * decrementing @mi->nr_blks.
168  */
169 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
170 {
171 	mi->nr_blks--;
172 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
173 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
174 }
175 
176 /**
177  * numa_add_memblk - Add one numa_memblk to numa_meminfo
178  * @nid: NUMA node ID of the new memblk
179  * @start: Start address of the new memblk
180  * @end: End address of the new memblk
181  *
182  * Add a new memblk to the default numa_meminfo.
183  *
184  * RETURNS:
185  * 0 on success, -errno on failure.
186  */
187 int __init numa_add_memblk(int nid, u64 start, u64 end)
188 {
189 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
190 }
191 
192 /* Initialize NODE_DATA for a node on the local memory */
193 static void __init setup_node_data(int nid, u64 start, u64 end)
194 {
195 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
196 	bool remapped = false;
197 	u64 nd_pa;
198 	void *nd;
199 	int tnid;
200 
201 	/*
202 	 * Don't confuse VM with a node that doesn't have the
203 	 * minimum amount of memory:
204 	 */
205 	if (end && (end - start) < NODE_MIN_SIZE)
206 		return;
207 
208 	/* initialize remap allocator before aligning to ZONE_ALIGN */
209 	init_alloc_remap(nid, start, end);
210 
211 	start = roundup(start, ZONE_ALIGN);
212 
213 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
214 	       nid, start, end - 1);
215 
216 	/*
217 	 * Allocate node data.  Try remap allocator first, node-local
218 	 * memory and then any node.  Never allocate in DMA zone.
219 	 */
220 	nd = alloc_remap(nid, nd_size);
221 	if (nd) {
222 		nd_pa = __pa(nd);
223 		remapped = true;
224 	} else {
225 		nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
226 		if (!nd_pa) {
227 			pr_err("Cannot find %zu bytes in node %d\n",
228 			       nd_size, nid);
229 			return;
230 		}
231 		nd = __va(nd_pa);
232 	}
233 
234 	/* report and initialize */
235 	printk(KERN_INFO "  NODE_DATA [mem %#010Lx-%#010Lx]%s\n",
236 	       nd_pa, nd_pa + nd_size - 1, remapped ? " (remapped)" : "");
237 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
238 	if (!remapped && tnid != nid)
239 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
240 
241 	node_data[nid] = nd;
242 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
243 	NODE_DATA(nid)->node_id = nid;
244 	NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT;
245 	NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT;
246 
247 	node_set_online(nid);
248 }
249 
250 /**
251  * numa_cleanup_meminfo - Cleanup a numa_meminfo
252  * @mi: numa_meminfo to clean up
253  *
254  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
255  * conflicts and clear unused memblks.
256  *
257  * RETURNS:
258  * 0 on success, -errno on failure.
259  */
260 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
261 {
262 	const u64 low = 0;
263 	const u64 high = PFN_PHYS(max_pfn);
264 	int i, j, k;
265 
266 	/* first, trim all entries */
267 	for (i = 0; i < mi->nr_blks; i++) {
268 		struct numa_memblk *bi = &mi->blk[i];
269 
270 		/* make sure all blocks are inside the limits */
271 		bi->start = max(bi->start, low);
272 		bi->end = min(bi->end, high);
273 
274 		/* and there's no empty block */
275 		if (bi->start >= bi->end)
276 			numa_remove_memblk_from(i--, mi);
277 	}
278 
279 	/* merge neighboring / overlapping entries */
280 	for (i = 0; i < mi->nr_blks; i++) {
281 		struct numa_memblk *bi = &mi->blk[i];
282 
283 		for (j = i + 1; j < mi->nr_blks; j++) {
284 			struct numa_memblk *bj = &mi->blk[j];
285 			u64 start, end;
286 
287 			/*
288 			 * See whether there are overlapping blocks.  Whine
289 			 * about but allow overlaps of the same nid.  They
290 			 * will be merged below.
291 			 */
292 			if (bi->end > bj->start && bi->start < bj->end) {
293 				if (bi->nid != bj->nid) {
294 					pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
295 					       bi->nid, bi->start, bi->end - 1,
296 					       bj->nid, bj->start, bj->end - 1);
297 					return -EINVAL;
298 				}
299 				pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
300 					   bi->nid, bi->start, bi->end - 1,
301 					   bj->start, bj->end - 1);
302 			}
303 
304 			/*
305 			 * Join together blocks on the same node, holes
306 			 * between which don't overlap with memory on other
307 			 * nodes.
308 			 */
309 			if (bi->nid != bj->nid)
310 				continue;
311 			start = min(bi->start, bj->start);
312 			end = max(bi->end, bj->end);
313 			for (k = 0; k < mi->nr_blks; k++) {
314 				struct numa_memblk *bk = &mi->blk[k];
315 
316 				if (bi->nid == bk->nid)
317 					continue;
318 				if (start < bk->end && end > bk->start)
319 					break;
320 			}
321 			if (k < mi->nr_blks)
322 				continue;
323 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
324 			       bi->nid, bi->start, bi->end - 1, bj->start,
325 			       bj->end - 1, start, end - 1);
326 			bi->start = start;
327 			bi->end = end;
328 			numa_remove_memblk_from(j--, mi);
329 		}
330 	}
331 
332 	/* clear unused ones */
333 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
334 		mi->blk[i].start = mi->blk[i].end = 0;
335 		mi->blk[i].nid = NUMA_NO_NODE;
336 	}
337 
338 	return 0;
339 }
340 
341 /*
342  * Set nodes, which have memory in @mi, in *@nodemask.
343  */
344 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
345 					      const struct numa_meminfo *mi)
346 {
347 	int i;
348 
349 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
350 		if (mi->blk[i].start != mi->blk[i].end &&
351 		    mi->blk[i].nid != NUMA_NO_NODE)
352 			node_set(mi->blk[i].nid, *nodemask);
353 }
354 
355 /**
356  * numa_reset_distance - Reset NUMA distance table
357  *
358  * The current table is freed.  The next numa_set_distance() call will
359  * create a new one.
360  */
361 void __init numa_reset_distance(void)
362 {
363 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
364 
365 	/* numa_distance could be 1LU marking allocation failure, test cnt */
366 	if (numa_distance_cnt)
367 		memblock_free(__pa(numa_distance), size);
368 	numa_distance_cnt = 0;
369 	numa_distance = NULL;	/* enable table creation */
370 }
371 
372 static int __init numa_alloc_distance(void)
373 {
374 	nodemask_t nodes_parsed;
375 	size_t size;
376 	int i, j, cnt = 0;
377 	u64 phys;
378 
379 	/* size the new table and allocate it */
380 	nodes_parsed = numa_nodes_parsed;
381 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
382 
383 	for_each_node_mask(i, nodes_parsed)
384 		cnt = i;
385 	cnt++;
386 	size = cnt * cnt * sizeof(numa_distance[0]);
387 
388 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
389 				      size, PAGE_SIZE);
390 	if (!phys) {
391 		pr_warning("NUMA: Warning: can't allocate distance table!\n");
392 		/* don't retry until explicitly reset */
393 		numa_distance = (void *)1LU;
394 		return -ENOMEM;
395 	}
396 	memblock_reserve(phys, size);
397 
398 	numa_distance = __va(phys);
399 	numa_distance_cnt = cnt;
400 
401 	/* fill with the default distances */
402 	for (i = 0; i < cnt; i++)
403 		for (j = 0; j < cnt; j++)
404 			numa_distance[i * cnt + j] = i == j ?
405 				LOCAL_DISTANCE : REMOTE_DISTANCE;
406 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
407 
408 	return 0;
409 }
410 
411 /**
412  * numa_set_distance - Set NUMA distance from one NUMA to another
413  * @from: the 'from' node to set distance
414  * @to: the 'to'  node to set distance
415  * @distance: NUMA distance
416  *
417  * Set the distance from node @from to @to to @distance.  If distance table
418  * doesn't exist, one which is large enough to accommodate all the currently
419  * known nodes will be created.
420  *
421  * If such table cannot be allocated, a warning is printed and further
422  * calls are ignored until the distance table is reset with
423  * numa_reset_distance().
424  *
425  * If @from or @to is higher than the highest known node or lower than zero
426  * at the time of table creation or @distance doesn't make sense, the call
427  * is ignored.
428  * This is to allow simplification of specific NUMA config implementations.
429  */
430 void __init numa_set_distance(int from, int to, int distance)
431 {
432 	if (!numa_distance && numa_alloc_distance() < 0)
433 		return;
434 
435 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
436 			from < 0 || to < 0) {
437 		pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
438 			    from, to, distance);
439 		return;
440 	}
441 
442 	if ((u8)distance != distance ||
443 	    (from == to && distance != LOCAL_DISTANCE)) {
444 		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
445 			     from, to, distance);
446 		return;
447 	}
448 
449 	numa_distance[from * numa_distance_cnt + to] = distance;
450 }
451 
452 int __node_distance(int from, int to)
453 {
454 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
455 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
456 	return numa_distance[from * numa_distance_cnt + to];
457 }
458 EXPORT_SYMBOL(__node_distance);
459 
460 /*
461  * Sanity check to catch more bad NUMA configurations (they are amazingly
462  * common).  Make sure the nodes cover all memory.
463  */
464 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
465 {
466 	u64 numaram, e820ram;
467 	int i;
468 
469 	numaram = 0;
470 	for (i = 0; i < mi->nr_blks; i++) {
471 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
472 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
473 		numaram += e - s;
474 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
475 		if ((s64)numaram < 0)
476 			numaram = 0;
477 	}
478 
479 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
480 
481 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
482 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
483 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
484 		       (numaram << PAGE_SHIFT) >> 20,
485 		       (e820ram << PAGE_SHIFT) >> 20);
486 		return false;
487 	}
488 	return true;
489 }
490 
491 static int __init numa_register_memblks(struct numa_meminfo *mi)
492 {
493 	unsigned long uninitialized_var(pfn_align);
494 	int i, nid;
495 
496 	/* Account for nodes with cpus and no memory */
497 	node_possible_map = numa_nodes_parsed;
498 	numa_nodemask_from_meminfo(&node_possible_map, mi);
499 	if (WARN_ON(nodes_empty(node_possible_map)))
500 		return -EINVAL;
501 
502 	for (i = 0; i < mi->nr_blks; i++) {
503 		struct numa_memblk *mb = &mi->blk[i];
504 		memblock_set_node(mb->start, mb->end - mb->start, mb->nid);
505 	}
506 
507 	/*
508 	 * If sections array is gonna be used for pfn -> nid mapping, check
509 	 * whether its granularity is fine enough.
510 	 */
511 #ifdef NODE_NOT_IN_PAGE_FLAGS
512 	pfn_align = node_map_pfn_alignment();
513 	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
514 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
515 		       PFN_PHYS(pfn_align) >> 20,
516 		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
517 		return -EINVAL;
518 	}
519 #endif
520 	if (!numa_meminfo_cover_memory(mi))
521 		return -EINVAL;
522 
523 	/* Finally register nodes. */
524 	for_each_node_mask(nid, node_possible_map) {
525 		u64 start = PFN_PHYS(max_pfn);
526 		u64 end = 0;
527 
528 		for (i = 0; i < mi->nr_blks; i++) {
529 			if (nid != mi->blk[i].nid)
530 				continue;
531 			start = min(mi->blk[i].start, start);
532 			end = max(mi->blk[i].end, end);
533 		}
534 
535 		if (start < end)
536 			setup_node_data(nid, start, end);
537 	}
538 
539 	/* Dump memblock with node info and return. */
540 	memblock_dump_all();
541 	return 0;
542 }
543 
544 /*
545  * There are unfortunately some poorly designed mainboards around that
546  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
547  * mapping. To avoid this fill in the mapping for all possible CPUs,
548  * as the number of CPUs is not known yet. We round robin the existing
549  * nodes.
550  */
551 static void __init numa_init_array(void)
552 {
553 	int rr, i;
554 
555 	rr = first_node(node_online_map);
556 	for (i = 0; i < nr_cpu_ids; i++) {
557 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
558 			continue;
559 		numa_set_node(i, rr);
560 		rr = next_node(rr, node_online_map);
561 		if (rr == MAX_NUMNODES)
562 			rr = first_node(node_online_map);
563 	}
564 }
565 
566 static int __init numa_init(int (*init_func)(void))
567 {
568 	int i;
569 	int ret;
570 
571 	for (i = 0; i < MAX_LOCAL_APIC; i++)
572 		set_apicid_to_node(i, NUMA_NO_NODE);
573 
574 	nodes_clear(numa_nodes_parsed);
575 	nodes_clear(node_possible_map);
576 	nodes_clear(node_online_map);
577 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
578 	WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES));
579 	numa_reset_distance();
580 
581 	ret = init_func();
582 	if (ret < 0)
583 		return ret;
584 	ret = numa_cleanup_meminfo(&numa_meminfo);
585 	if (ret < 0)
586 		return ret;
587 
588 	numa_emulation(&numa_meminfo, numa_distance_cnt);
589 
590 	ret = numa_register_memblks(&numa_meminfo);
591 	if (ret < 0)
592 		return ret;
593 
594 	for (i = 0; i < nr_cpu_ids; i++) {
595 		int nid = early_cpu_to_node(i);
596 
597 		if (nid == NUMA_NO_NODE)
598 			continue;
599 		if (!node_online(nid))
600 			numa_clear_node(i);
601 	}
602 	numa_init_array();
603 	return 0;
604 }
605 
606 /**
607  * dummy_numa_init - Fallback dummy NUMA init
608  *
609  * Used if there's no underlying NUMA architecture, NUMA initialization
610  * fails, or NUMA is disabled on the command line.
611  *
612  * Must online at least one node and add memory blocks that cover all
613  * allowed memory.  This function must not fail.
614  */
615 static int __init dummy_numa_init(void)
616 {
617 	printk(KERN_INFO "%s\n",
618 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
619 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
620 	       0LLU, PFN_PHYS(max_pfn) - 1);
621 
622 	node_set(0, numa_nodes_parsed);
623 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
624 
625 	return 0;
626 }
627 
628 /**
629  * x86_numa_init - Initialize NUMA
630  *
631  * Try each configured NUMA initialization method until one succeeds.  The
632  * last fallback is dummy single node config encomapssing whole memory and
633  * never fails.
634  */
635 void __init x86_numa_init(void)
636 {
637 	if (!numa_off) {
638 #ifdef CONFIG_X86_NUMAQ
639 		if (!numa_init(numaq_numa_init))
640 			return;
641 #endif
642 #ifdef CONFIG_ACPI_NUMA
643 		if (!numa_init(x86_acpi_numa_init))
644 			return;
645 #endif
646 #ifdef CONFIG_AMD_NUMA
647 		if (!numa_init(amd_numa_init))
648 			return;
649 #endif
650 	}
651 
652 	numa_init(dummy_numa_init);
653 }
654 
655 static __init int find_near_online_node(int node)
656 {
657 	int n, val;
658 	int min_val = INT_MAX;
659 	int best_node = -1;
660 
661 	for_each_online_node(n) {
662 		val = node_distance(node, n);
663 
664 		if (val < min_val) {
665 			min_val = val;
666 			best_node = n;
667 		}
668 	}
669 
670 	return best_node;
671 }
672 
673 /*
674  * Setup early cpu_to_node.
675  *
676  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
677  * and apicid_to_node[] tables have valid entries for a CPU.
678  * This means we skip cpu_to_node[] initialisation for NUMA
679  * emulation and faking node case (when running a kernel compiled
680  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
681  * is already initialized in a round robin manner at numa_init_array,
682  * prior to this call, and this initialization is good enough
683  * for the fake NUMA cases.
684  *
685  * Called before the per_cpu areas are setup.
686  */
687 void __init init_cpu_to_node(void)
688 {
689 	int cpu;
690 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
691 
692 	BUG_ON(cpu_to_apicid == NULL);
693 
694 	for_each_possible_cpu(cpu) {
695 		int node = numa_cpu_node(cpu);
696 
697 		if (node == NUMA_NO_NODE)
698 			continue;
699 		if (!node_online(node))
700 			node = find_near_online_node(node);
701 		numa_set_node(cpu, node);
702 	}
703 }
704 
705 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
706 
707 # ifndef CONFIG_NUMA_EMU
708 void __cpuinit numa_add_cpu(int cpu)
709 {
710 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
711 }
712 
713 void __cpuinit numa_remove_cpu(int cpu)
714 {
715 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
716 }
717 # endif	/* !CONFIG_NUMA_EMU */
718 
719 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
720 
721 int __cpu_to_node(int cpu)
722 {
723 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
724 		printk(KERN_WARNING
725 			"cpu_to_node(%d): usage too early!\n", cpu);
726 		dump_stack();
727 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
728 	}
729 	return per_cpu(x86_cpu_to_node_map, cpu);
730 }
731 EXPORT_SYMBOL(__cpu_to_node);
732 
733 /*
734  * Same function as cpu_to_node() but used if called before the
735  * per_cpu areas are setup.
736  */
737 int early_cpu_to_node(int cpu)
738 {
739 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
740 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
741 
742 	if (!cpu_possible(cpu)) {
743 		printk(KERN_WARNING
744 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
745 		dump_stack();
746 		return NUMA_NO_NODE;
747 	}
748 	return per_cpu(x86_cpu_to_node_map, cpu);
749 }
750 
751 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
752 {
753 	struct cpumask *mask;
754 	char buf[64];
755 
756 	if (node == NUMA_NO_NODE) {
757 		/* early_cpu_to_node() already emits a warning and trace */
758 		return;
759 	}
760 	mask = node_to_cpumask_map[node];
761 	if (!mask) {
762 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
763 		dump_stack();
764 		return;
765 	}
766 
767 	if (enable)
768 		cpumask_set_cpu(cpu, mask);
769 	else
770 		cpumask_clear_cpu(cpu, mask);
771 
772 	cpulist_scnprintf(buf, sizeof(buf), mask);
773 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
774 		enable ? "numa_add_cpu" : "numa_remove_cpu",
775 		cpu, node, buf);
776 	return;
777 }
778 
779 # ifndef CONFIG_NUMA_EMU
780 static void __cpuinit numa_set_cpumask(int cpu, bool enable)
781 {
782 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
783 }
784 
785 void __cpuinit numa_add_cpu(int cpu)
786 {
787 	numa_set_cpumask(cpu, true);
788 }
789 
790 void __cpuinit numa_remove_cpu(int cpu)
791 {
792 	numa_set_cpumask(cpu, false);
793 }
794 # endif	/* !CONFIG_NUMA_EMU */
795 
796 /*
797  * Returns a pointer to the bitmask of CPUs on Node 'node'.
798  */
799 const struct cpumask *cpumask_of_node(int node)
800 {
801 	if (node >= nr_node_ids) {
802 		printk(KERN_WARNING
803 			"cpumask_of_node(%d): node > nr_node_ids(%d)\n",
804 			node, nr_node_ids);
805 		dump_stack();
806 		return cpu_none_mask;
807 	}
808 	if (node_to_cpumask_map[node] == NULL) {
809 		printk(KERN_WARNING
810 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
811 			node);
812 		dump_stack();
813 		return cpu_online_mask;
814 	}
815 	return node_to_cpumask_map[node];
816 }
817 EXPORT_SYMBOL(cpumask_of_node);
818 
819 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
820 
821 #ifdef CONFIG_MEMORY_HOTPLUG
822 int memory_add_physaddr_to_nid(u64 start)
823 {
824 	struct numa_meminfo *mi = &numa_meminfo;
825 	int nid = mi->blk[0].nid;
826 	int i;
827 
828 	for (i = 0; i < mi->nr_blks; i++)
829 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
830 			nid = mi->blk[i].nid;
831 	return nid;
832 }
833 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
834 #endif
835