xref: /openbmc/linux/arch/x86/mm/numa.c (revision 2645d8d0)
1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/acpi.h>
3 #include <linux/kernel.h>
4 #include <linux/mm.h>
5 #include <linux/string.h>
6 #include <linux/init.h>
7 #include <linux/memblock.h>
8 #include <linux/mmzone.h>
9 #include <linux/ctype.h>
10 #include <linux/nodemask.h>
11 #include <linux/sched.h>
12 #include <linux/topology.h>
13 
14 #include <asm/e820/api.h>
15 #include <asm/proto.h>
16 #include <asm/dma.h>
17 #include <asm/amd_nb.h>
18 
19 #include "numa_internal.h"
20 
21 int numa_off;
22 nodemask_t numa_nodes_parsed __initdata;
23 
24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
25 EXPORT_SYMBOL(node_data);
26 
27 static struct numa_meminfo numa_meminfo
28 #ifndef CONFIG_MEMORY_HOTPLUG
29 __initdata
30 #endif
31 ;
32 
33 static int numa_distance_cnt;
34 static u8 *numa_distance;
35 
36 static __init int numa_setup(char *opt)
37 {
38 	if (!opt)
39 		return -EINVAL;
40 	if (!strncmp(opt, "off", 3))
41 		numa_off = 1;
42 #ifdef CONFIG_NUMA_EMU
43 	if (!strncmp(opt, "fake=", 5))
44 		numa_emu_cmdline(opt + 5);
45 #endif
46 #ifdef CONFIG_ACPI_NUMA
47 	if (!strncmp(opt, "noacpi", 6))
48 		acpi_numa = -1;
49 #endif
50 	return 0;
51 }
52 early_param("numa", numa_setup);
53 
54 /*
55  * apicid, cpu, node mappings
56  */
57 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
58 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
59 };
60 
61 int numa_cpu_node(int cpu)
62 {
63 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
64 
65 	if (apicid != BAD_APICID)
66 		return __apicid_to_node[apicid];
67 	return NUMA_NO_NODE;
68 }
69 
70 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
71 EXPORT_SYMBOL(node_to_cpumask_map);
72 
73 /*
74  * Map cpu index to node index
75  */
76 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
77 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
78 
79 void numa_set_node(int cpu, int node)
80 {
81 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
82 
83 	/* early setting, no percpu area yet */
84 	if (cpu_to_node_map) {
85 		cpu_to_node_map[cpu] = node;
86 		return;
87 	}
88 
89 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
90 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
91 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
92 		dump_stack();
93 		return;
94 	}
95 #endif
96 	per_cpu(x86_cpu_to_node_map, cpu) = node;
97 
98 	set_cpu_numa_node(cpu, node);
99 }
100 
101 void numa_clear_node(int cpu)
102 {
103 	numa_set_node(cpu, NUMA_NO_NODE);
104 }
105 
106 /*
107  * Allocate node_to_cpumask_map based on number of available nodes
108  * Requires node_possible_map to be valid.
109  *
110  * Note: cpumask_of_node() is not valid until after this is done.
111  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
112  */
113 void __init setup_node_to_cpumask_map(void)
114 {
115 	unsigned int node;
116 
117 	/* setup nr_node_ids if not done yet */
118 	if (nr_node_ids == MAX_NUMNODES)
119 		setup_nr_node_ids();
120 
121 	/* allocate the map */
122 	for (node = 0; node < nr_node_ids; node++)
123 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
124 
125 	/* cpumask_of_node() will now work */
126 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
127 }
128 
129 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
130 				     struct numa_meminfo *mi)
131 {
132 	/* ignore zero length blks */
133 	if (start == end)
134 		return 0;
135 
136 	/* whine about and ignore invalid blks */
137 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
138 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
139 			nid, start, end - 1);
140 		return 0;
141 	}
142 
143 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
144 		pr_err("too many memblk ranges\n");
145 		return -EINVAL;
146 	}
147 
148 	mi->blk[mi->nr_blks].start = start;
149 	mi->blk[mi->nr_blks].end = end;
150 	mi->blk[mi->nr_blks].nid = nid;
151 	mi->nr_blks++;
152 	return 0;
153 }
154 
155 /**
156  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
157  * @idx: Index of memblk to remove
158  * @mi: numa_meminfo to remove memblk from
159  *
160  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
161  * decrementing @mi->nr_blks.
162  */
163 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
164 {
165 	mi->nr_blks--;
166 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
167 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
168 }
169 
170 /**
171  * numa_add_memblk - Add one numa_memblk to numa_meminfo
172  * @nid: NUMA node ID of the new memblk
173  * @start: Start address of the new memblk
174  * @end: End address of the new memblk
175  *
176  * Add a new memblk to the default numa_meminfo.
177  *
178  * RETURNS:
179  * 0 on success, -errno on failure.
180  */
181 int __init numa_add_memblk(int nid, u64 start, u64 end)
182 {
183 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
184 }
185 
186 /* Allocate NODE_DATA for a node on the local memory */
187 static void __init alloc_node_data(int nid)
188 {
189 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
190 	u64 nd_pa;
191 	void *nd;
192 	int tnid;
193 
194 	/*
195 	 * Allocate node data.  Try node-local memory and then any node.
196 	 * Never allocate in DMA zone.
197 	 */
198 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
199 	if (!nd_pa) {
200 		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
201 		       nd_size, nid);
202 		return;
203 	}
204 	nd = __va(nd_pa);
205 
206 	/* report and initialize */
207 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
208 	       nd_pa, nd_pa + nd_size - 1);
209 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
210 	if (tnid != nid)
211 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
212 
213 	node_data[nid] = nd;
214 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
215 
216 	node_set_online(nid);
217 }
218 
219 /**
220  * numa_cleanup_meminfo - Cleanup a numa_meminfo
221  * @mi: numa_meminfo to clean up
222  *
223  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
224  * conflicts and clear unused memblks.
225  *
226  * RETURNS:
227  * 0 on success, -errno on failure.
228  */
229 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
230 {
231 	const u64 low = 0;
232 	const u64 high = PFN_PHYS(max_pfn);
233 	int i, j, k;
234 
235 	/* first, trim all entries */
236 	for (i = 0; i < mi->nr_blks; i++) {
237 		struct numa_memblk *bi = &mi->blk[i];
238 
239 		/* make sure all blocks are inside the limits */
240 		bi->start = max(bi->start, low);
241 		bi->end = min(bi->end, high);
242 
243 		/* and there's no empty or non-exist block */
244 		if (bi->start >= bi->end ||
245 		    !memblock_overlaps_region(&memblock.memory,
246 			bi->start, bi->end - bi->start))
247 			numa_remove_memblk_from(i--, mi);
248 	}
249 
250 	/* merge neighboring / overlapping entries */
251 	for (i = 0; i < mi->nr_blks; i++) {
252 		struct numa_memblk *bi = &mi->blk[i];
253 
254 		for (j = i + 1; j < mi->nr_blks; j++) {
255 			struct numa_memblk *bj = &mi->blk[j];
256 			u64 start, end;
257 
258 			/*
259 			 * See whether there are overlapping blocks.  Whine
260 			 * about but allow overlaps of the same nid.  They
261 			 * will be merged below.
262 			 */
263 			if (bi->end > bj->start && bi->start < bj->end) {
264 				if (bi->nid != bj->nid) {
265 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
266 					       bi->nid, bi->start, bi->end - 1,
267 					       bj->nid, bj->start, bj->end - 1);
268 					return -EINVAL;
269 				}
270 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
271 					bi->nid, bi->start, bi->end - 1,
272 					bj->start, bj->end - 1);
273 			}
274 
275 			/*
276 			 * Join together blocks on the same node, holes
277 			 * between which don't overlap with memory on other
278 			 * nodes.
279 			 */
280 			if (bi->nid != bj->nid)
281 				continue;
282 			start = min(bi->start, bj->start);
283 			end = max(bi->end, bj->end);
284 			for (k = 0; k < mi->nr_blks; k++) {
285 				struct numa_memblk *bk = &mi->blk[k];
286 
287 				if (bi->nid == bk->nid)
288 					continue;
289 				if (start < bk->end && end > bk->start)
290 					break;
291 			}
292 			if (k < mi->nr_blks)
293 				continue;
294 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
295 			       bi->nid, bi->start, bi->end - 1, bj->start,
296 			       bj->end - 1, start, end - 1);
297 			bi->start = start;
298 			bi->end = end;
299 			numa_remove_memblk_from(j--, mi);
300 		}
301 	}
302 
303 	/* clear unused ones */
304 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
305 		mi->blk[i].start = mi->blk[i].end = 0;
306 		mi->blk[i].nid = NUMA_NO_NODE;
307 	}
308 
309 	return 0;
310 }
311 
312 /*
313  * Set nodes, which have memory in @mi, in *@nodemask.
314  */
315 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
316 					      const struct numa_meminfo *mi)
317 {
318 	int i;
319 
320 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
321 		if (mi->blk[i].start != mi->blk[i].end &&
322 		    mi->blk[i].nid != NUMA_NO_NODE)
323 			node_set(mi->blk[i].nid, *nodemask);
324 }
325 
326 /**
327  * numa_reset_distance - Reset NUMA distance table
328  *
329  * The current table is freed.  The next numa_set_distance() call will
330  * create a new one.
331  */
332 void __init numa_reset_distance(void)
333 {
334 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
335 
336 	/* numa_distance could be 1LU marking allocation failure, test cnt */
337 	if (numa_distance_cnt)
338 		memblock_free(__pa(numa_distance), size);
339 	numa_distance_cnt = 0;
340 	numa_distance = NULL;	/* enable table creation */
341 }
342 
343 static int __init numa_alloc_distance(void)
344 {
345 	nodemask_t nodes_parsed;
346 	size_t size;
347 	int i, j, cnt = 0;
348 	u64 phys;
349 
350 	/* size the new table and allocate it */
351 	nodes_parsed = numa_nodes_parsed;
352 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
353 
354 	for_each_node_mask(i, nodes_parsed)
355 		cnt = i;
356 	cnt++;
357 	size = cnt * cnt * sizeof(numa_distance[0]);
358 
359 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
360 				      size, PAGE_SIZE);
361 	if (!phys) {
362 		pr_warn("Warning: can't allocate distance table!\n");
363 		/* don't retry until explicitly reset */
364 		numa_distance = (void *)1LU;
365 		return -ENOMEM;
366 	}
367 	memblock_reserve(phys, size);
368 
369 	numa_distance = __va(phys);
370 	numa_distance_cnt = cnt;
371 
372 	/* fill with the default distances */
373 	for (i = 0; i < cnt; i++)
374 		for (j = 0; j < cnt; j++)
375 			numa_distance[i * cnt + j] = i == j ?
376 				LOCAL_DISTANCE : REMOTE_DISTANCE;
377 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
378 
379 	return 0;
380 }
381 
382 /**
383  * numa_set_distance - Set NUMA distance from one NUMA to another
384  * @from: the 'from' node to set distance
385  * @to: the 'to'  node to set distance
386  * @distance: NUMA distance
387  *
388  * Set the distance from node @from to @to to @distance.  If distance table
389  * doesn't exist, one which is large enough to accommodate all the currently
390  * known nodes will be created.
391  *
392  * If such table cannot be allocated, a warning is printed and further
393  * calls are ignored until the distance table is reset with
394  * numa_reset_distance().
395  *
396  * If @from or @to is higher than the highest known node or lower than zero
397  * at the time of table creation or @distance doesn't make sense, the call
398  * is ignored.
399  * This is to allow simplification of specific NUMA config implementations.
400  */
401 void __init numa_set_distance(int from, int to, int distance)
402 {
403 	if (!numa_distance && numa_alloc_distance() < 0)
404 		return;
405 
406 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
407 			from < 0 || to < 0) {
408 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
409 			     from, to, distance);
410 		return;
411 	}
412 
413 	if ((u8)distance != distance ||
414 	    (from == to && distance != LOCAL_DISTANCE)) {
415 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
416 			     from, to, distance);
417 		return;
418 	}
419 
420 	numa_distance[from * numa_distance_cnt + to] = distance;
421 }
422 
423 int __node_distance(int from, int to)
424 {
425 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
426 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
427 	return numa_distance[from * numa_distance_cnt + to];
428 }
429 EXPORT_SYMBOL(__node_distance);
430 
431 /*
432  * Sanity check to catch more bad NUMA configurations (they are amazingly
433  * common).  Make sure the nodes cover all memory.
434  */
435 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
436 {
437 	u64 numaram, e820ram;
438 	int i;
439 
440 	numaram = 0;
441 	for (i = 0; i < mi->nr_blks; i++) {
442 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
443 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
444 		numaram += e - s;
445 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
446 		if ((s64)numaram < 0)
447 			numaram = 0;
448 	}
449 
450 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
451 
452 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
453 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
454 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
455 		       (numaram << PAGE_SHIFT) >> 20,
456 		       (e820ram << PAGE_SHIFT) >> 20);
457 		return false;
458 	}
459 	return true;
460 }
461 
462 /*
463  * Mark all currently memblock-reserved physical memory (which covers the
464  * kernel's own memory ranges) as hot-unswappable.
465  */
466 static void __init numa_clear_kernel_node_hotplug(void)
467 {
468 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
469 	struct memblock_region *mb_region;
470 	int i;
471 
472 	/*
473 	 * We have to do some preprocessing of memblock regions, to
474 	 * make them suitable for reservation.
475 	 *
476 	 * At this time, all memory regions reserved by memblock are
477 	 * used by the kernel, but those regions are not split up
478 	 * along node boundaries yet, and don't necessarily have their
479 	 * node ID set yet either.
480 	 *
481 	 * So iterate over all memory known to the x86 architecture,
482 	 * and use those ranges to set the nid in memblock.reserved.
483 	 * This will split up the memblock regions along node
484 	 * boundaries and will set the node IDs as well.
485 	 */
486 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
487 		struct numa_memblk *mb = numa_meminfo.blk + i;
488 		int ret;
489 
490 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
491 		WARN_ON_ONCE(ret);
492 	}
493 
494 	/*
495 	 * Now go over all reserved memblock regions, to construct a
496 	 * node mask of all kernel reserved memory areas.
497 	 *
498 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
499 	 *   numa_meminfo might not include all memblock.reserved
500 	 *   memory ranges, because quirks such as trim_snb_memory()
501 	 *   reserve specific pages for Sandy Bridge graphics. ]
502 	 */
503 	for_each_memblock(reserved, mb_region) {
504 		if (mb_region->nid != MAX_NUMNODES)
505 			node_set(mb_region->nid, reserved_nodemask);
506 	}
507 
508 	/*
509 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
510 	 * belonging to the reserved node mask.
511 	 *
512 	 * Note that this will include memory regions that reside
513 	 * on nodes that contain kernel memory - entire nodes
514 	 * become hot-unpluggable:
515 	 */
516 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
517 		struct numa_memblk *mb = numa_meminfo.blk + i;
518 
519 		if (!node_isset(mb->nid, reserved_nodemask))
520 			continue;
521 
522 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
523 	}
524 }
525 
526 static int __init numa_register_memblks(struct numa_meminfo *mi)
527 {
528 	unsigned long uninitialized_var(pfn_align);
529 	int i, nid;
530 
531 	/* Account for nodes with cpus and no memory */
532 	node_possible_map = numa_nodes_parsed;
533 	numa_nodemask_from_meminfo(&node_possible_map, mi);
534 	if (WARN_ON(nodes_empty(node_possible_map)))
535 		return -EINVAL;
536 
537 	for (i = 0; i < mi->nr_blks; i++) {
538 		struct numa_memblk *mb = &mi->blk[i];
539 		memblock_set_node(mb->start, mb->end - mb->start,
540 				  &memblock.memory, mb->nid);
541 	}
542 
543 	/*
544 	 * At very early time, the kernel have to use some memory such as
545 	 * loading the kernel image. We cannot prevent this anyway. So any
546 	 * node the kernel resides in should be un-hotpluggable.
547 	 *
548 	 * And when we come here, alloc node data won't fail.
549 	 */
550 	numa_clear_kernel_node_hotplug();
551 
552 	/*
553 	 * If sections array is gonna be used for pfn -> nid mapping, check
554 	 * whether its granularity is fine enough.
555 	 */
556 #ifdef NODE_NOT_IN_PAGE_FLAGS
557 	pfn_align = node_map_pfn_alignment();
558 	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
559 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
560 		       PFN_PHYS(pfn_align) >> 20,
561 		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
562 		return -EINVAL;
563 	}
564 #endif
565 	if (!numa_meminfo_cover_memory(mi))
566 		return -EINVAL;
567 
568 	/* Finally register nodes. */
569 	for_each_node_mask(nid, node_possible_map) {
570 		u64 start = PFN_PHYS(max_pfn);
571 		u64 end = 0;
572 
573 		for (i = 0; i < mi->nr_blks; i++) {
574 			if (nid != mi->blk[i].nid)
575 				continue;
576 			start = min(mi->blk[i].start, start);
577 			end = max(mi->blk[i].end, end);
578 		}
579 
580 		if (start >= end)
581 			continue;
582 
583 		/*
584 		 * Don't confuse VM with a node that doesn't have the
585 		 * minimum amount of memory:
586 		 */
587 		if (end && (end - start) < NODE_MIN_SIZE)
588 			continue;
589 
590 		alloc_node_data(nid);
591 	}
592 
593 	/* Dump memblock with node info and return. */
594 	memblock_dump_all();
595 	return 0;
596 }
597 
598 /*
599  * There are unfortunately some poorly designed mainboards around that
600  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
601  * mapping. To avoid this fill in the mapping for all possible CPUs,
602  * as the number of CPUs is not known yet. We round robin the existing
603  * nodes.
604  */
605 static void __init numa_init_array(void)
606 {
607 	int rr, i;
608 
609 	rr = first_node(node_online_map);
610 	for (i = 0; i < nr_cpu_ids; i++) {
611 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
612 			continue;
613 		numa_set_node(i, rr);
614 		rr = next_node_in(rr, node_online_map);
615 	}
616 }
617 
618 static int __init numa_init(int (*init_func)(void))
619 {
620 	int i;
621 	int ret;
622 
623 	for (i = 0; i < MAX_LOCAL_APIC; i++)
624 		set_apicid_to_node(i, NUMA_NO_NODE);
625 
626 	nodes_clear(numa_nodes_parsed);
627 	nodes_clear(node_possible_map);
628 	nodes_clear(node_online_map);
629 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
630 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
631 				  MAX_NUMNODES));
632 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
633 				  MAX_NUMNODES));
634 	/* In case that parsing SRAT failed. */
635 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
636 	numa_reset_distance();
637 
638 	ret = init_func();
639 	if (ret < 0)
640 		return ret;
641 
642 	/*
643 	 * We reset memblock back to the top-down direction
644 	 * here because if we configured ACPI_NUMA, we have
645 	 * parsed SRAT in init_func(). It is ok to have the
646 	 * reset here even if we did't configure ACPI_NUMA
647 	 * or acpi numa init fails and fallbacks to dummy
648 	 * numa init.
649 	 */
650 	memblock_set_bottom_up(false);
651 
652 	ret = numa_cleanup_meminfo(&numa_meminfo);
653 	if (ret < 0)
654 		return ret;
655 
656 	numa_emulation(&numa_meminfo, numa_distance_cnt);
657 
658 	ret = numa_register_memblks(&numa_meminfo);
659 	if (ret < 0)
660 		return ret;
661 
662 	for (i = 0; i < nr_cpu_ids; i++) {
663 		int nid = early_cpu_to_node(i);
664 
665 		if (nid == NUMA_NO_NODE)
666 			continue;
667 		if (!node_online(nid))
668 			numa_clear_node(i);
669 	}
670 	numa_init_array();
671 
672 	return 0;
673 }
674 
675 /**
676  * dummy_numa_init - Fallback dummy NUMA init
677  *
678  * Used if there's no underlying NUMA architecture, NUMA initialization
679  * fails, or NUMA is disabled on the command line.
680  *
681  * Must online at least one node and add memory blocks that cover all
682  * allowed memory.  This function must not fail.
683  */
684 static int __init dummy_numa_init(void)
685 {
686 	printk(KERN_INFO "%s\n",
687 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
688 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
689 	       0LLU, PFN_PHYS(max_pfn) - 1);
690 
691 	node_set(0, numa_nodes_parsed);
692 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
693 
694 	return 0;
695 }
696 
697 /**
698  * x86_numa_init - Initialize NUMA
699  *
700  * Try each configured NUMA initialization method until one succeeds.  The
701  * last fallback is dummy single node config encomapssing whole memory and
702  * never fails.
703  */
704 void __init x86_numa_init(void)
705 {
706 	if (!numa_off) {
707 #ifdef CONFIG_ACPI_NUMA
708 		if (!numa_init(x86_acpi_numa_init))
709 			return;
710 #endif
711 #ifdef CONFIG_AMD_NUMA
712 		if (!numa_init(amd_numa_init))
713 			return;
714 #endif
715 	}
716 
717 	numa_init(dummy_numa_init);
718 }
719 
720 static void __init init_memory_less_node(int nid)
721 {
722 	unsigned long zones_size[MAX_NR_ZONES] = {0};
723 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
724 
725 	/* Allocate and initialize node data. Memory-less node is now online.*/
726 	alloc_node_data(nid);
727 	free_area_init_node(nid, zones_size, 0, zholes_size);
728 
729 	/*
730 	 * All zonelists will be built later in start_kernel() after per cpu
731 	 * areas are initialized.
732 	 */
733 }
734 
735 /*
736  * Setup early cpu_to_node.
737  *
738  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
739  * and apicid_to_node[] tables have valid entries for a CPU.
740  * This means we skip cpu_to_node[] initialisation for NUMA
741  * emulation and faking node case (when running a kernel compiled
742  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
743  * is already initialized in a round robin manner at numa_init_array,
744  * prior to this call, and this initialization is good enough
745  * for the fake NUMA cases.
746  *
747  * Called before the per_cpu areas are setup.
748  */
749 void __init init_cpu_to_node(void)
750 {
751 	int cpu;
752 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
753 
754 	BUG_ON(cpu_to_apicid == NULL);
755 
756 	for_each_possible_cpu(cpu) {
757 		int node = numa_cpu_node(cpu);
758 
759 		if (node == NUMA_NO_NODE)
760 			continue;
761 
762 		if (!node_online(node))
763 			init_memory_less_node(node);
764 
765 		numa_set_node(cpu, node);
766 	}
767 }
768 
769 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
770 
771 # ifndef CONFIG_NUMA_EMU
772 void numa_add_cpu(int cpu)
773 {
774 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
775 }
776 
777 void numa_remove_cpu(int cpu)
778 {
779 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
780 }
781 # endif	/* !CONFIG_NUMA_EMU */
782 
783 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
784 
785 int __cpu_to_node(int cpu)
786 {
787 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
788 		printk(KERN_WARNING
789 			"cpu_to_node(%d): usage too early!\n", cpu);
790 		dump_stack();
791 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
792 	}
793 	return per_cpu(x86_cpu_to_node_map, cpu);
794 }
795 EXPORT_SYMBOL(__cpu_to_node);
796 
797 /*
798  * Same function as cpu_to_node() but used if called before the
799  * per_cpu areas are setup.
800  */
801 int early_cpu_to_node(int cpu)
802 {
803 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
804 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
805 
806 	if (!cpu_possible(cpu)) {
807 		printk(KERN_WARNING
808 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
809 		dump_stack();
810 		return NUMA_NO_NODE;
811 	}
812 	return per_cpu(x86_cpu_to_node_map, cpu);
813 }
814 
815 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
816 {
817 	struct cpumask *mask;
818 
819 	if (node == NUMA_NO_NODE) {
820 		/* early_cpu_to_node() already emits a warning and trace */
821 		return;
822 	}
823 	mask = node_to_cpumask_map[node];
824 	if (!mask) {
825 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
826 		dump_stack();
827 		return;
828 	}
829 
830 	if (enable)
831 		cpumask_set_cpu(cpu, mask);
832 	else
833 		cpumask_clear_cpu(cpu, mask);
834 
835 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
836 		enable ? "numa_add_cpu" : "numa_remove_cpu",
837 		cpu, node, cpumask_pr_args(mask));
838 	return;
839 }
840 
841 # ifndef CONFIG_NUMA_EMU
842 static void numa_set_cpumask(int cpu, bool enable)
843 {
844 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
845 }
846 
847 void numa_add_cpu(int cpu)
848 {
849 	numa_set_cpumask(cpu, true);
850 }
851 
852 void numa_remove_cpu(int cpu)
853 {
854 	numa_set_cpumask(cpu, false);
855 }
856 # endif	/* !CONFIG_NUMA_EMU */
857 
858 /*
859  * Returns a pointer to the bitmask of CPUs on Node 'node'.
860  */
861 const struct cpumask *cpumask_of_node(int node)
862 {
863 	if (node >= nr_node_ids) {
864 		printk(KERN_WARNING
865 			"cpumask_of_node(%d): node > nr_node_ids(%u)\n",
866 			node, nr_node_ids);
867 		dump_stack();
868 		return cpu_none_mask;
869 	}
870 	if (node_to_cpumask_map[node] == NULL) {
871 		printk(KERN_WARNING
872 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
873 			node);
874 		dump_stack();
875 		return cpu_online_mask;
876 	}
877 	return node_to_cpumask_map[node];
878 }
879 EXPORT_SYMBOL(cpumask_of_node);
880 
881 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
882 
883 #ifdef CONFIG_MEMORY_HOTPLUG
884 int memory_add_physaddr_to_nid(u64 start)
885 {
886 	struct numa_meminfo *mi = &numa_meminfo;
887 	int nid = mi->blk[0].nid;
888 	int i;
889 
890 	for (i = 0; i < mi->nr_blks; i++)
891 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
892 			nid = mi->blk[i].nid;
893 	return nid;
894 }
895 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
896 #endif
897