1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Common code for 32 and 64-bit NUMA */ 3 #include <linux/acpi.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/string.h> 7 #include <linux/init.h> 8 #include <linux/memblock.h> 9 #include <linux/mmzone.h> 10 #include <linux/ctype.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/proto.h> 17 #include <asm/dma.h> 18 #include <asm/amd_nb.h> 19 20 #include "numa_internal.h" 21 22 int numa_off; 23 nodemask_t numa_nodes_parsed __initdata; 24 25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 26 EXPORT_SYMBOL(node_data); 27 28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo; 29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; 30 31 static int numa_distance_cnt; 32 static u8 *numa_distance; 33 34 static __init int numa_setup(char *opt) 35 { 36 if (!opt) 37 return -EINVAL; 38 if (!strncmp(opt, "off", 3)) 39 numa_off = 1; 40 if (!strncmp(opt, "fake=", 5)) 41 return numa_emu_cmdline(opt + 5); 42 if (!strncmp(opt, "noacpi", 6)) 43 disable_srat(); 44 if (!strncmp(opt, "nohmat", 6)) 45 disable_hmat(); 46 return 0; 47 } 48 early_param("numa", numa_setup); 49 50 /* 51 * apicid, cpu, node mappings 52 */ 53 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 54 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 55 }; 56 57 int numa_cpu_node(int cpu) 58 { 59 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 60 61 if (apicid != BAD_APICID) 62 return __apicid_to_node[apicid]; 63 return NUMA_NO_NODE; 64 } 65 66 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 67 EXPORT_SYMBOL(node_to_cpumask_map); 68 69 /* 70 * Map cpu index to node index 71 */ 72 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 73 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 74 75 void numa_set_node(int cpu, int node) 76 { 77 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 78 79 /* early setting, no percpu area yet */ 80 if (cpu_to_node_map) { 81 cpu_to_node_map[cpu] = node; 82 return; 83 } 84 85 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 86 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 87 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 88 dump_stack(); 89 return; 90 } 91 #endif 92 per_cpu(x86_cpu_to_node_map, cpu) = node; 93 94 set_cpu_numa_node(cpu, node); 95 } 96 97 void numa_clear_node(int cpu) 98 { 99 numa_set_node(cpu, NUMA_NO_NODE); 100 } 101 102 /* 103 * Allocate node_to_cpumask_map based on number of available nodes 104 * Requires node_possible_map to be valid. 105 * 106 * Note: cpumask_of_node() is not valid until after this is done. 107 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 108 */ 109 void __init setup_node_to_cpumask_map(void) 110 { 111 unsigned int node; 112 113 /* setup nr_node_ids if not done yet */ 114 if (nr_node_ids == MAX_NUMNODES) 115 setup_nr_node_ids(); 116 117 /* allocate the map */ 118 for (node = 0; node < nr_node_ids; node++) 119 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 120 121 /* cpumask_of_node() will now work */ 122 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 123 } 124 125 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 126 struct numa_meminfo *mi) 127 { 128 /* ignore zero length blks */ 129 if (start == end) 130 return 0; 131 132 /* whine about and ignore invalid blks */ 133 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 134 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 135 nid, start, end - 1); 136 return 0; 137 } 138 139 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 140 pr_err("too many memblk ranges\n"); 141 return -EINVAL; 142 } 143 144 mi->blk[mi->nr_blks].start = start; 145 mi->blk[mi->nr_blks].end = end; 146 mi->blk[mi->nr_blks].nid = nid; 147 mi->nr_blks++; 148 return 0; 149 } 150 151 /** 152 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 153 * @idx: Index of memblk to remove 154 * @mi: numa_meminfo to remove memblk from 155 * 156 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 157 * decrementing @mi->nr_blks. 158 */ 159 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 160 { 161 mi->nr_blks--; 162 memmove(&mi->blk[idx], &mi->blk[idx + 1], 163 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 164 } 165 166 /** 167 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another 168 * @dst: numa_meminfo to append block to 169 * @idx: Index of memblk to remove 170 * @src: numa_meminfo to remove memblk from 171 */ 172 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, 173 struct numa_meminfo *src) 174 { 175 dst->blk[dst->nr_blks++] = src->blk[idx]; 176 numa_remove_memblk_from(idx, src); 177 } 178 179 /** 180 * numa_add_memblk - Add one numa_memblk to numa_meminfo 181 * @nid: NUMA node ID of the new memblk 182 * @start: Start address of the new memblk 183 * @end: End address of the new memblk 184 * 185 * Add a new memblk to the default numa_meminfo. 186 * 187 * RETURNS: 188 * 0 on success, -errno on failure. 189 */ 190 int __init numa_add_memblk(int nid, u64 start, u64 end) 191 { 192 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 193 } 194 195 /* Allocate NODE_DATA for a node on the local memory */ 196 static void __init alloc_node_data(int nid) 197 { 198 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 199 u64 nd_pa; 200 void *nd; 201 int tnid; 202 203 /* 204 * Allocate node data. Try node-local memory and then any node. 205 * Never allocate in DMA zone. 206 */ 207 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 208 if (!nd_pa) { 209 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", 210 nd_size, nid); 211 return; 212 } 213 nd = __va(nd_pa); 214 215 /* report and initialize */ 216 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 217 nd_pa, nd_pa + nd_size - 1); 218 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 219 if (tnid != nid) 220 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 221 222 node_data[nid] = nd; 223 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 224 225 node_set_online(nid); 226 } 227 228 /** 229 * numa_cleanup_meminfo - Cleanup a numa_meminfo 230 * @mi: numa_meminfo to clean up 231 * 232 * Sanitize @mi by merging and removing unnecessary memblks. Also check for 233 * conflicts and clear unused memblks. 234 * 235 * RETURNS: 236 * 0 on success, -errno on failure. 237 */ 238 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 239 { 240 const u64 low = 0; 241 const u64 high = PFN_PHYS(max_pfn); 242 int i, j, k; 243 244 /* first, trim all entries */ 245 for (i = 0; i < mi->nr_blks; i++) { 246 struct numa_memblk *bi = &mi->blk[i]; 247 248 /* move / save reserved memory ranges */ 249 if (!memblock_overlaps_region(&memblock.memory, 250 bi->start, bi->end - bi->start)) { 251 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); 252 continue; 253 } 254 255 /* make sure all non-reserved blocks are inside the limits */ 256 bi->start = max(bi->start, low); 257 bi->end = min(bi->end, high); 258 259 /* and there's no empty block */ 260 if (bi->start >= bi->end) 261 numa_remove_memblk_from(i--, mi); 262 } 263 264 /* merge neighboring / overlapping entries */ 265 for (i = 0; i < mi->nr_blks; i++) { 266 struct numa_memblk *bi = &mi->blk[i]; 267 268 for (j = i + 1; j < mi->nr_blks; j++) { 269 struct numa_memblk *bj = &mi->blk[j]; 270 u64 start, end; 271 272 /* 273 * See whether there are overlapping blocks. Whine 274 * about but allow overlaps of the same nid. They 275 * will be merged below. 276 */ 277 if (bi->end > bj->start && bi->start < bj->end) { 278 if (bi->nid != bj->nid) { 279 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 280 bi->nid, bi->start, bi->end - 1, 281 bj->nid, bj->start, bj->end - 1); 282 return -EINVAL; 283 } 284 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 285 bi->nid, bi->start, bi->end - 1, 286 bj->start, bj->end - 1); 287 } 288 289 /* 290 * Join together blocks on the same node, holes 291 * between which don't overlap with memory on other 292 * nodes. 293 */ 294 if (bi->nid != bj->nid) 295 continue; 296 start = min(bi->start, bj->start); 297 end = max(bi->end, bj->end); 298 for (k = 0; k < mi->nr_blks; k++) { 299 struct numa_memblk *bk = &mi->blk[k]; 300 301 if (bi->nid == bk->nid) 302 continue; 303 if (start < bk->end && end > bk->start) 304 break; 305 } 306 if (k < mi->nr_blks) 307 continue; 308 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 309 bi->nid, bi->start, bi->end - 1, bj->start, 310 bj->end - 1, start, end - 1); 311 bi->start = start; 312 bi->end = end; 313 numa_remove_memblk_from(j--, mi); 314 } 315 } 316 317 /* clear unused ones */ 318 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 319 mi->blk[i].start = mi->blk[i].end = 0; 320 mi->blk[i].nid = NUMA_NO_NODE; 321 } 322 323 return 0; 324 } 325 326 /* 327 * Set nodes, which have memory in @mi, in *@nodemask. 328 */ 329 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 330 const struct numa_meminfo *mi) 331 { 332 int i; 333 334 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 335 if (mi->blk[i].start != mi->blk[i].end && 336 mi->blk[i].nid != NUMA_NO_NODE) 337 node_set(mi->blk[i].nid, *nodemask); 338 } 339 340 /** 341 * numa_reset_distance - Reset NUMA distance table 342 * 343 * The current table is freed. The next numa_set_distance() call will 344 * create a new one. 345 */ 346 void __init numa_reset_distance(void) 347 { 348 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 349 350 /* numa_distance could be 1LU marking allocation failure, test cnt */ 351 if (numa_distance_cnt) 352 memblock_free(__pa(numa_distance), size); 353 numa_distance_cnt = 0; 354 numa_distance = NULL; /* enable table creation */ 355 } 356 357 static int __init numa_alloc_distance(void) 358 { 359 nodemask_t nodes_parsed; 360 size_t size; 361 int i, j, cnt = 0; 362 u64 phys; 363 364 /* size the new table and allocate it */ 365 nodes_parsed = numa_nodes_parsed; 366 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 367 368 for_each_node_mask(i, nodes_parsed) 369 cnt = i; 370 cnt++; 371 size = cnt * cnt * sizeof(numa_distance[0]); 372 373 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 374 size, PAGE_SIZE); 375 if (!phys) { 376 pr_warn("Warning: can't allocate distance table!\n"); 377 /* don't retry until explicitly reset */ 378 numa_distance = (void *)1LU; 379 return -ENOMEM; 380 } 381 memblock_reserve(phys, size); 382 383 numa_distance = __va(phys); 384 numa_distance_cnt = cnt; 385 386 /* fill with the default distances */ 387 for (i = 0; i < cnt; i++) 388 for (j = 0; j < cnt; j++) 389 numa_distance[i * cnt + j] = i == j ? 390 LOCAL_DISTANCE : REMOTE_DISTANCE; 391 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 392 393 return 0; 394 } 395 396 /** 397 * numa_set_distance - Set NUMA distance from one NUMA to another 398 * @from: the 'from' node to set distance 399 * @to: the 'to' node to set distance 400 * @distance: NUMA distance 401 * 402 * Set the distance from node @from to @to to @distance. If distance table 403 * doesn't exist, one which is large enough to accommodate all the currently 404 * known nodes will be created. 405 * 406 * If such table cannot be allocated, a warning is printed and further 407 * calls are ignored until the distance table is reset with 408 * numa_reset_distance(). 409 * 410 * If @from or @to is higher than the highest known node or lower than zero 411 * at the time of table creation or @distance doesn't make sense, the call 412 * is ignored. 413 * This is to allow simplification of specific NUMA config implementations. 414 */ 415 void __init numa_set_distance(int from, int to, int distance) 416 { 417 if (!numa_distance && numa_alloc_distance() < 0) 418 return; 419 420 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 421 from < 0 || to < 0) { 422 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 423 from, to, distance); 424 return; 425 } 426 427 if ((u8)distance != distance || 428 (from == to && distance != LOCAL_DISTANCE)) { 429 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 430 from, to, distance); 431 return; 432 } 433 434 numa_distance[from * numa_distance_cnt + to] = distance; 435 } 436 437 int __node_distance(int from, int to) 438 { 439 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 440 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 441 return numa_distance[from * numa_distance_cnt + to]; 442 } 443 EXPORT_SYMBOL(__node_distance); 444 445 /* 446 * Sanity check to catch more bad NUMA configurations (they are amazingly 447 * common). Make sure the nodes cover all memory. 448 */ 449 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 450 { 451 u64 numaram, e820ram; 452 int i; 453 454 numaram = 0; 455 for (i = 0; i < mi->nr_blks; i++) { 456 u64 s = mi->blk[i].start >> PAGE_SHIFT; 457 u64 e = mi->blk[i].end >> PAGE_SHIFT; 458 numaram += e - s; 459 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 460 if ((s64)numaram < 0) 461 numaram = 0; 462 } 463 464 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 465 466 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 467 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 468 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 469 (numaram << PAGE_SHIFT) >> 20, 470 (e820ram << PAGE_SHIFT) >> 20); 471 return false; 472 } 473 return true; 474 } 475 476 /* 477 * Mark all currently memblock-reserved physical memory (which covers the 478 * kernel's own memory ranges) as hot-unswappable. 479 */ 480 static void __init numa_clear_kernel_node_hotplug(void) 481 { 482 nodemask_t reserved_nodemask = NODE_MASK_NONE; 483 struct memblock_region *mb_region; 484 int i; 485 486 /* 487 * We have to do some preprocessing of memblock regions, to 488 * make them suitable for reservation. 489 * 490 * At this time, all memory regions reserved by memblock are 491 * used by the kernel, but those regions are not split up 492 * along node boundaries yet, and don't necessarily have their 493 * node ID set yet either. 494 * 495 * So iterate over all memory known to the x86 architecture, 496 * and use those ranges to set the nid in memblock.reserved. 497 * This will split up the memblock regions along node 498 * boundaries and will set the node IDs as well. 499 */ 500 for (i = 0; i < numa_meminfo.nr_blks; i++) { 501 struct numa_memblk *mb = numa_meminfo.blk + i; 502 int ret; 503 504 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); 505 WARN_ON_ONCE(ret); 506 } 507 508 /* 509 * Now go over all reserved memblock regions, to construct a 510 * node mask of all kernel reserved memory areas. 511 * 512 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, 513 * numa_meminfo might not include all memblock.reserved 514 * memory ranges, because quirks such as trim_snb_memory() 515 * reserve specific pages for Sandy Bridge graphics. ] 516 */ 517 for_each_reserved_mem_region(mb_region) { 518 int nid = memblock_get_region_node(mb_region); 519 520 if (nid != MAX_NUMNODES) 521 node_set(nid, reserved_nodemask); 522 } 523 524 /* 525 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory 526 * belonging to the reserved node mask. 527 * 528 * Note that this will include memory regions that reside 529 * on nodes that contain kernel memory - entire nodes 530 * become hot-unpluggable: 531 */ 532 for (i = 0; i < numa_meminfo.nr_blks; i++) { 533 struct numa_memblk *mb = numa_meminfo.blk + i; 534 535 if (!node_isset(mb->nid, reserved_nodemask)) 536 continue; 537 538 memblock_clear_hotplug(mb->start, mb->end - mb->start); 539 } 540 } 541 542 static int __init numa_register_memblks(struct numa_meminfo *mi) 543 { 544 int i, nid; 545 546 /* Account for nodes with cpus and no memory */ 547 node_possible_map = numa_nodes_parsed; 548 numa_nodemask_from_meminfo(&node_possible_map, mi); 549 if (WARN_ON(nodes_empty(node_possible_map))) 550 return -EINVAL; 551 552 for (i = 0; i < mi->nr_blks; i++) { 553 struct numa_memblk *mb = &mi->blk[i]; 554 memblock_set_node(mb->start, mb->end - mb->start, 555 &memblock.memory, mb->nid); 556 } 557 558 /* 559 * At very early time, the kernel have to use some memory such as 560 * loading the kernel image. We cannot prevent this anyway. So any 561 * node the kernel resides in should be un-hotpluggable. 562 * 563 * And when we come here, alloc node data won't fail. 564 */ 565 numa_clear_kernel_node_hotplug(); 566 567 /* 568 * If sections array is gonna be used for pfn -> nid mapping, check 569 * whether its granularity is fine enough. 570 */ 571 if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { 572 unsigned long pfn_align = node_map_pfn_alignment(); 573 574 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 575 pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 576 PFN_PHYS(pfn_align) >> 20, 577 PFN_PHYS(PAGES_PER_SECTION) >> 20); 578 return -EINVAL; 579 } 580 } 581 if (!numa_meminfo_cover_memory(mi)) 582 return -EINVAL; 583 584 /* Finally register nodes. */ 585 for_each_node_mask(nid, node_possible_map) { 586 u64 start = PFN_PHYS(max_pfn); 587 u64 end = 0; 588 589 for (i = 0; i < mi->nr_blks; i++) { 590 if (nid != mi->blk[i].nid) 591 continue; 592 start = min(mi->blk[i].start, start); 593 end = max(mi->blk[i].end, end); 594 } 595 596 if (start >= end) 597 continue; 598 599 /* 600 * Don't confuse VM with a node that doesn't have the 601 * minimum amount of memory: 602 */ 603 if (end && (end - start) < NODE_MIN_SIZE) 604 continue; 605 606 alloc_node_data(nid); 607 } 608 609 /* Dump memblock with node info and return. */ 610 memblock_dump_all(); 611 return 0; 612 } 613 614 /* 615 * There are unfortunately some poorly designed mainboards around that 616 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 617 * mapping. To avoid this fill in the mapping for all possible CPUs, 618 * as the number of CPUs is not known yet. We round robin the existing 619 * nodes. 620 */ 621 static void __init numa_init_array(void) 622 { 623 int rr, i; 624 625 rr = first_node(node_online_map); 626 for (i = 0; i < nr_cpu_ids; i++) { 627 if (early_cpu_to_node(i) != NUMA_NO_NODE) 628 continue; 629 numa_set_node(i, rr); 630 rr = next_node_in(rr, node_online_map); 631 } 632 } 633 634 static int __init numa_init(int (*init_func)(void)) 635 { 636 int i; 637 int ret; 638 639 for (i = 0; i < MAX_LOCAL_APIC; i++) 640 set_apicid_to_node(i, NUMA_NO_NODE); 641 642 nodes_clear(numa_nodes_parsed); 643 nodes_clear(node_possible_map); 644 nodes_clear(node_online_map); 645 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 646 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 647 MAX_NUMNODES)); 648 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 649 MAX_NUMNODES)); 650 /* In case that parsing SRAT failed. */ 651 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 652 numa_reset_distance(); 653 654 ret = init_func(); 655 if (ret < 0) 656 return ret; 657 658 /* 659 * We reset memblock back to the top-down direction 660 * here because if we configured ACPI_NUMA, we have 661 * parsed SRAT in init_func(). It is ok to have the 662 * reset here even if we did't configure ACPI_NUMA 663 * or acpi numa init fails and fallbacks to dummy 664 * numa init. 665 */ 666 memblock_set_bottom_up(false); 667 668 ret = numa_cleanup_meminfo(&numa_meminfo); 669 if (ret < 0) 670 return ret; 671 672 numa_emulation(&numa_meminfo, numa_distance_cnt); 673 674 ret = numa_register_memblks(&numa_meminfo); 675 if (ret < 0) 676 return ret; 677 678 for (i = 0; i < nr_cpu_ids; i++) { 679 int nid = early_cpu_to_node(i); 680 681 if (nid == NUMA_NO_NODE) 682 continue; 683 if (!node_online(nid)) 684 numa_clear_node(i); 685 } 686 numa_init_array(); 687 688 return 0; 689 } 690 691 /** 692 * dummy_numa_init - Fallback dummy NUMA init 693 * 694 * Used if there's no underlying NUMA architecture, NUMA initialization 695 * fails, or NUMA is disabled on the command line. 696 * 697 * Must online at least one node and add memory blocks that cover all 698 * allowed memory. This function must not fail. 699 */ 700 static int __init dummy_numa_init(void) 701 { 702 printk(KERN_INFO "%s\n", 703 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 704 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 705 0LLU, PFN_PHYS(max_pfn) - 1); 706 707 node_set(0, numa_nodes_parsed); 708 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 709 710 return 0; 711 } 712 713 /** 714 * x86_numa_init - Initialize NUMA 715 * 716 * Try each configured NUMA initialization method until one succeeds. The 717 * last fallback is dummy single node config encompassing whole memory and 718 * never fails. 719 */ 720 void __init x86_numa_init(void) 721 { 722 if (!numa_off) { 723 #ifdef CONFIG_ACPI_NUMA 724 if (!numa_init(x86_acpi_numa_init)) 725 return; 726 #endif 727 #ifdef CONFIG_AMD_NUMA 728 if (!numa_init(amd_numa_init)) 729 return; 730 #endif 731 } 732 733 numa_init(dummy_numa_init); 734 } 735 736 static void __init init_memory_less_node(int nid) 737 { 738 /* Allocate and initialize node data. Memory-less node is now online.*/ 739 alloc_node_data(nid); 740 free_area_init_memoryless_node(nid); 741 742 /* 743 * All zonelists will be built later in start_kernel() after per cpu 744 * areas are initialized. 745 */ 746 } 747 748 /* 749 * A node may exist which has one or more Generic Initiators but no CPUs and no 750 * memory. 751 * 752 * This function must be called after init_cpu_to_node(), to ensure that any 753 * memoryless CPU nodes have already been brought online, and before the 754 * node_data[nid] is needed for zone list setup in build_all_zonelists(). 755 * 756 * When this function is called, any nodes containing either memory and/or CPUs 757 * will already be online and there is no need to do anything extra, even if 758 * they also contain one or more Generic Initiators. 759 */ 760 void __init init_gi_nodes(void) 761 { 762 int nid; 763 764 for_each_node_state(nid, N_GENERIC_INITIATOR) 765 if (!node_online(nid)) 766 init_memory_less_node(nid); 767 } 768 769 /* 770 * Setup early cpu_to_node. 771 * 772 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 773 * and apicid_to_node[] tables have valid entries for a CPU. 774 * This means we skip cpu_to_node[] initialisation for NUMA 775 * emulation and faking node case (when running a kernel compiled 776 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 777 * is already initialized in a round robin manner at numa_init_array, 778 * prior to this call, and this initialization is good enough 779 * for the fake NUMA cases. 780 * 781 * Called before the per_cpu areas are setup. 782 */ 783 void __init init_cpu_to_node(void) 784 { 785 int cpu; 786 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 787 788 BUG_ON(cpu_to_apicid == NULL); 789 790 for_each_possible_cpu(cpu) { 791 int node = numa_cpu_node(cpu); 792 793 if (node == NUMA_NO_NODE) 794 continue; 795 796 if (!node_online(node)) 797 init_memory_less_node(node); 798 799 numa_set_node(cpu, node); 800 } 801 } 802 803 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 804 805 # ifndef CONFIG_NUMA_EMU 806 void numa_add_cpu(int cpu) 807 { 808 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 809 } 810 811 void numa_remove_cpu(int cpu) 812 { 813 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 814 } 815 # endif /* !CONFIG_NUMA_EMU */ 816 817 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 818 819 int __cpu_to_node(int cpu) 820 { 821 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 822 printk(KERN_WARNING 823 "cpu_to_node(%d): usage too early!\n", cpu); 824 dump_stack(); 825 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 826 } 827 return per_cpu(x86_cpu_to_node_map, cpu); 828 } 829 EXPORT_SYMBOL(__cpu_to_node); 830 831 /* 832 * Same function as cpu_to_node() but used if called before the 833 * per_cpu areas are setup. 834 */ 835 int early_cpu_to_node(int cpu) 836 { 837 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 838 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 839 840 if (!cpu_possible(cpu)) { 841 printk(KERN_WARNING 842 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 843 dump_stack(); 844 return NUMA_NO_NODE; 845 } 846 return per_cpu(x86_cpu_to_node_map, cpu); 847 } 848 849 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 850 { 851 struct cpumask *mask; 852 853 if (node == NUMA_NO_NODE) { 854 /* early_cpu_to_node() already emits a warning and trace */ 855 return; 856 } 857 mask = node_to_cpumask_map[node]; 858 if (!mask) { 859 pr_err("node_to_cpumask_map[%i] NULL\n", node); 860 dump_stack(); 861 return; 862 } 863 864 if (enable) 865 cpumask_set_cpu(cpu, mask); 866 else 867 cpumask_clear_cpu(cpu, mask); 868 869 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 870 enable ? "numa_add_cpu" : "numa_remove_cpu", 871 cpu, node, cpumask_pr_args(mask)); 872 return; 873 } 874 875 # ifndef CONFIG_NUMA_EMU 876 static void numa_set_cpumask(int cpu, bool enable) 877 { 878 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 879 } 880 881 void numa_add_cpu(int cpu) 882 { 883 numa_set_cpumask(cpu, true); 884 } 885 886 void numa_remove_cpu(int cpu) 887 { 888 numa_set_cpumask(cpu, false); 889 } 890 # endif /* !CONFIG_NUMA_EMU */ 891 892 /* 893 * Returns a pointer to the bitmask of CPUs on Node 'node'. 894 */ 895 const struct cpumask *cpumask_of_node(int node) 896 { 897 if ((unsigned)node >= nr_node_ids) { 898 printk(KERN_WARNING 899 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", 900 node, nr_node_ids); 901 dump_stack(); 902 return cpu_none_mask; 903 } 904 if (node_to_cpumask_map[node] == NULL) { 905 printk(KERN_WARNING 906 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 907 node); 908 dump_stack(); 909 return cpu_online_mask; 910 } 911 return node_to_cpumask_map[node]; 912 } 913 EXPORT_SYMBOL(cpumask_of_node); 914 915 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 916 917 #ifdef CONFIG_NUMA_KEEP_MEMINFO 918 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) 919 { 920 int i; 921 922 for (i = 0; i < mi->nr_blks; i++) 923 if (mi->blk[i].start <= start && mi->blk[i].end > start) 924 return mi->blk[i].nid; 925 return NUMA_NO_NODE; 926 } 927 928 int phys_to_target_node(phys_addr_t start) 929 { 930 int nid = meminfo_to_nid(&numa_meminfo, start); 931 932 /* 933 * Prefer online nodes, but if reserved memory might be 934 * hot-added continue the search with reserved ranges. 935 */ 936 if (nid != NUMA_NO_NODE) 937 return nid; 938 939 return meminfo_to_nid(&numa_reserved_meminfo, start); 940 } 941 942 int memory_add_physaddr_to_nid(u64 start) 943 { 944 int nid = meminfo_to_nid(&numa_meminfo, start); 945 946 if (nid == NUMA_NO_NODE) 947 nid = numa_meminfo.blk[0].nid; 948 return nid; 949 } 950 #endif 951