xref: /openbmc/linux/arch/x86/mm/numa.c (revision 110e6f26)
1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/string.h>
5 #include <linux/init.h>
6 #include <linux/bootmem.h>
7 #include <linux/memblock.h>
8 #include <linux/mmzone.h>
9 #include <linux/ctype.h>
10 #include <linux/module.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14 
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/acpi.h>
19 #include <asm/amd_nb.h>
20 
21 #include "numa_internal.h"
22 
23 int __initdata numa_off;
24 nodemask_t numa_nodes_parsed __initdata;
25 
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
28 
29 static struct numa_meminfo numa_meminfo
30 #ifndef CONFIG_MEMORY_HOTPLUG
31 __initdata
32 #endif
33 ;
34 
35 static int numa_distance_cnt;
36 static u8 *numa_distance;
37 
38 static __init int numa_setup(char *opt)
39 {
40 	if (!opt)
41 		return -EINVAL;
42 	if (!strncmp(opt, "off", 3))
43 		numa_off = 1;
44 #ifdef CONFIG_NUMA_EMU
45 	if (!strncmp(opt, "fake=", 5))
46 		numa_emu_cmdline(opt + 5);
47 #endif
48 #ifdef CONFIG_ACPI_NUMA
49 	if (!strncmp(opt, "noacpi", 6))
50 		acpi_numa = -1;
51 #endif
52 	return 0;
53 }
54 early_param("numa", numa_setup);
55 
56 /*
57  * apicid, cpu, node mappings
58  */
59 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
60 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61 };
62 
63 int numa_cpu_node(int cpu)
64 {
65 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
66 
67 	if (apicid != BAD_APICID)
68 		return __apicid_to_node[apicid];
69 	return NUMA_NO_NODE;
70 }
71 
72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73 EXPORT_SYMBOL(node_to_cpumask_map);
74 
75 /*
76  * Map cpu index to node index
77  */
78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
80 
81 void numa_set_node(int cpu, int node)
82 {
83 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
84 
85 	/* early setting, no percpu area yet */
86 	if (cpu_to_node_map) {
87 		cpu_to_node_map[cpu] = node;
88 		return;
89 	}
90 
91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
92 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
93 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
94 		dump_stack();
95 		return;
96 	}
97 #endif
98 	per_cpu(x86_cpu_to_node_map, cpu) = node;
99 
100 	set_cpu_numa_node(cpu, node);
101 }
102 
103 void numa_clear_node(int cpu)
104 {
105 	numa_set_node(cpu, NUMA_NO_NODE);
106 }
107 
108 /*
109  * Allocate node_to_cpumask_map based on number of available nodes
110  * Requires node_possible_map to be valid.
111  *
112  * Note: cpumask_of_node() is not valid until after this is done.
113  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114  */
115 void __init setup_node_to_cpumask_map(void)
116 {
117 	unsigned int node;
118 
119 	/* setup nr_node_ids if not done yet */
120 	if (nr_node_ids == MAX_NUMNODES)
121 		setup_nr_node_ids();
122 
123 	/* allocate the map */
124 	for (node = 0; node < nr_node_ids; node++)
125 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126 
127 	/* cpumask_of_node() will now work */
128 	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 }
130 
131 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132 				     struct numa_meminfo *mi)
133 {
134 	/* ignore zero length blks */
135 	if (start == end)
136 		return 0;
137 
138 	/* whine about and ignore invalid blks */
139 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140 		pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141 			   nid, start, end - 1);
142 		return 0;
143 	}
144 
145 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146 		pr_err("NUMA: too many memblk ranges\n");
147 		return -EINVAL;
148 	}
149 
150 	mi->blk[mi->nr_blks].start = start;
151 	mi->blk[mi->nr_blks].end = end;
152 	mi->blk[mi->nr_blks].nid = nid;
153 	mi->nr_blks++;
154 	return 0;
155 }
156 
157 /**
158  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159  * @idx: Index of memblk to remove
160  * @mi: numa_meminfo to remove memblk from
161  *
162  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163  * decrementing @mi->nr_blks.
164  */
165 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166 {
167 	mi->nr_blks--;
168 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
169 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
170 }
171 
172 /**
173  * numa_add_memblk - Add one numa_memblk to numa_meminfo
174  * @nid: NUMA node ID of the new memblk
175  * @start: Start address of the new memblk
176  * @end: End address of the new memblk
177  *
178  * Add a new memblk to the default numa_meminfo.
179  *
180  * RETURNS:
181  * 0 on success, -errno on failure.
182  */
183 int __init numa_add_memblk(int nid, u64 start, u64 end)
184 {
185 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186 }
187 
188 /* Allocate NODE_DATA for a node on the local memory */
189 static void __init alloc_node_data(int nid)
190 {
191 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192 	u64 nd_pa;
193 	void *nd;
194 	int tnid;
195 
196 	/*
197 	 * Allocate node data.  Try node-local memory and then any node.
198 	 * Never allocate in DMA zone.
199 	 */
200 	nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
201 	if (!nd_pa) {
202 		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
203 					      MEMBLOCK_ALLOC_ACCESSIBLE);
204 		if (!nd_pa) {
205 			pr_err("Cannot find %zu bytes in node %d\n",
206 			       nd_size, nid);
207 			return;
208 		}
209 	}
210 	nd = __va(nd_pa);
211 
212 	/* report and initialize */
213 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
214 	       nd_pa, nd_pa + nd_size - 1);
215 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
216 	if (tnid != nid)
217 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
218 
219 	node_data[nid] = nd;
220 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
221 
222 	node_set_online(nid);
223 }
224 
225 /**
226  * numa_cleanup_meminfo - Cleanup a numa_meminfo
227  * @mi: numa_meminfo to clean up
228  *
229  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
230  * conflicts and clear unused memblks.
231  *
232  * RETURNS:
233  * 0 on success, -errno on failure.
234  */
235 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
236 {
237 	const u64 low = 0;
238 	const u64 high = PFN_PHYS(max_pfn);
239 	int i, j, k;
240 
241 	/* first, trim all entries */
242 	for (i = 0; i < mi->nr_blks; i++) {
243 		struct numa_memblk *bi = &mi->blk[i];
244 
245 		/* make sure all blocks are inside the limits */
246 		bi->start = max(bi->start, low);
247 		bi->end = min(bi->end, high);
248 
249 		/* and there's no empty or non-exist block */
250 		if (bi->start >= bi->end ||
251 		    !memblock_overlaps_region(&memblock.memory,
252 			bi->start, bi->end - bi->start))
253 			numa_remove_memblk_from(i--, mi);
254 	}
255 
256 	/* merge neighboring / overlapping entries */
257 	for (i = 0; i < mi->nr_blks; i++) {
258 		struct numa_memblk *bi = &mi->blk[i];
259 
260 		for (j = i + 1; j < mi->nr_blks; j++) {
261 			struct numa_memblk *bj = &mi->blk[j];
262 			u64 start, end;
263 
264 			/*
265 			 * See whether there are overlapping blocks.  Whine
266 			 * about but allow overlaps of the same nid.  They
267 			 * will be merged below.
268 			 */
269 			if (bi->end > bj->start && bi->start < bj->end) {
270 				if (bi->nid != bj->nid) {
271 					pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
272 					       bi->nid, bi->start, bi->end - 1,
273 					       bj->nid, bj->start, bj->end - 1);
274 					return -EINVAL;
275 				}
276 				pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
277 					   bi->nid, bi->start, bi->end - 1,
278 					   bj->start, bj->end - 1);
279 			}
280 
281 			/*
282 			 * Join together blocks on the same node, holes
283 			 * between which don't overlap with memory on other
284 			 * nodes.
285 			 */
286 			if (bi->nid != bj->nid)
287 				continue;
288 			start = min(bi->start, bj->start);
289 			end = max(bi->end, bj->end);
290 			for (k = 0; k < mi->nr_blks; k++) {
291 				struct numa_memblk *bk = &mi->blk[k];
292 
293 				if (bi->nid == bk->nid)
294 					continue;
295 				if (start < bk->end && end > bk->start)
296 					break;
297 			}
298 			if (k < mi->nr_blks)
299 				continue;
300 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
301 			       bi->nid, bi->start, bi->end - 1, bj->start,
302 			       bj->end - 1, start, end - 1);
303 			bi->start = start;
304 			bi->end = end;
305 			numa_remove_memblk_from(j--, mi);
306 		}
307 	}
308 
309 	/* clear unused ones */
310 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
311 		mi->blk[i].start = mi->blk[i].end = 0;
312 		mi->blk[i].nid = NUMA_NO_NODE;
313 	}
314 
315 	return 0;
316 }
317 
318 /*
319  * Set nodes, which have memory in @mi, in *@nodemask.
320  */
321 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
322 					      const struct numa_meminfo *mi)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
327 		if (mi->blk[i].start != mi->blk[i].end &&
328 		    mi->blk[i].nid != NUMA_NO_NODE)
329 			node_set(mi->blk[i].nid, *nodemask);
330 }
331 
332 /**
333  * numa_reset_distance - Reset NUMA distance table
334  *
335  * The current table is freed.  The next numa_set_distance() call will
336  * create a new one.
337  */
338 void __init numa_reset_distance(void)
339 {
340 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
341 
342 	/* numa_distance could be 1LU marking allocation failure, test cnt */
343 	if (numa_distance_cnt)
344 		memblock_free(__pa(numa_distance), size);
345 	numa_distance_cnt = 0;
346 	numa_distance = NULL;	/* enable table creation */
347 }
348 
349 static int __init numa_alloc_distance(void)
350 {
351 	nodemask_t nodes_parsed;
352 	size_t size;
353 	int i, j, cnt = 0;
354 	u64 phys;
355 
356 	/* size the new table and allocate it */
357 	nodes_parsed = numa_nodes_parsed;
358 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
359 
360 	for_each_node_mask(i, nodes_parsed)
361 		cnt = i;
362 	cnt++;
363 	size = cnt * cnt * sizeof(numa_distance[0]);
364 
365 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
366 				      size, PAGE_SIZE);
367 	if (!phys) {
368 		pr_warning("NUMA: Warning: can't allocate distance table!\n");
369 		/* don't retry until explicitly reset */
370 		numa_distance = (void *)1LU;
371 		return -ENOMEM;
372 	}
373 	memblock_reserve(phys, size);
374 
375 	numa_distance = __va(phys);
376 	numa_distance_cnt = cnt;
377 
378 	/* fill with the default distances */
379 	for (i = 0; i < cnt; i++)
380 		for (j = 0; j < cnt; j++)
381 			numa_distance[i * cnt + j] = i == j ?
382 				LOCAL_DISTANCE : REMOTE_DISTANCE;
383 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
384 
385 	return 0;
386 }
387 
388 /**
389  * numa_set_distance - Set NUMA distance from one NUMA to another
390  * @from: the 'from' node to set distance
391  * @to: the 'to'  node to set distance
392  * @distance: NUMA distance
393  *
394  * Set the distance from node @from to @to to @distance.  If distance table
395  * doesn't exist, one which is large enough to accommodate all the currently
396  * known nodes will be created.
397  *
398  * If such table cannot be allocated, a warning is printed and further
399  * calls are ignored until the distance table is reset with
400  * numa_reset_distance().
401  *
402  * If @from or @to is higher than the highest known node or lower than zero
403  * at the time of table creation or @distance doesn't make sense, the call
404  * is ignored.
405  * This is to allow simplification of specific NUMA config implementations.
406  */
407 void __init numa_set_distance(int from, int to, int distance)
408 {
409 	if (!numa_distance && numa_alloc_distance() < 0)
410 		return;
411 
412 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
413 			from < 0 || to < 0) {
414 		pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
415 			    from, to, distance);
416 		return;
417 	}
418 
419 	if ((u8)distance != distance ||
420 	    (from == to && distance != LOCAL_DISTANCE)) {
421 		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
422 			     from, to, distance);
423 		return;
424 	}
425 
426 	numa_distance[from * numa_distance_cnt + to] = distance;
427 }
428 
429 int __node_distance(int from, int to)
430 {
431 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
432 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
433 	return numa_distance[from * numa_distance_cnt + to];
434 }
435 EXPORT_SYMBOL(__node_distance);
436 
437 /*
438  * Sanity check to catch more bad NUMA configurations (they are amazingly
439  * common).  Make sure the nodes cover all memory.
440  */
441 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
442 {
443 	u64 numaram, e820ram;
444 	int i;
445 
446 	numaram = 0;
447 	for (i = 0; i < mi->nr_blks; i++) {
448 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
449 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
450 		numaram += e - s;
451 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
452 		if ((s64)numaram < 0)
453 			numaram = 0;
454 	}
455 
456 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
457 
458 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
459 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
460 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
461 		       (numaram << PAGE_SHIFT) >> 20,
462 		       (e820ram << PAGE_SHIFT) >> 20);
463 		return false;
464 	}
465 	return true;
466 }
467 
468 /*
469  * Mark all currently memblock-reserved physical memory (which covers the
470  * kernel's own memory ranges) as hot-unswappable.
471  */
472 static void __init numa_clear_kernel_node_hotplug(void)
473 {
474 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
475 	struct memblock_region *mb_region;
476 	int i;
477 
478 	/*
479 	 * We have to do some preprocessing of memblock regions, to
480 	 * make them suitable for reservation.
481 	 *
482 	 * At this time, all memory regions reserved by memblock are
483 	 * used by the kernel, but those regions are not split up
484 	 * along node boundaries yet, and don't necessarily have their
485 	 * node ID set yet either.
486 	 *
487 	 * So iterate over all memory known to the x86 architecture,
488 	 * and use those ranges to set the nid in memblock.reserved.
489 	 * This will split up the memblock regions along node
490 	 * boundaries and will set the node IDs as well.
491 	 */
492 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
493 		struct numa_memblk *mb = numa_meminfo.blk + i;
494 		int ret;
495 
496 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
497 		WARN_ON_ONCE(ret);
498 	}
499 
500 	/*
501 	 * Now go over all reserved memblock regions, to construct a
502 	 * node mask of all kernel reserved memory areas.
503 	 *
504 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
505 	 *   numa_meminfo might not include all memblock.reserved
506 	 *   memory ranges, because quirks such as trim_snb_memory()
507 	 *   reserve specific pages for Sandy Bridge graphics. ]
508 	 */
509 	for_each_memblock(reserved, mb_region) {
510 		if (mb_region->nid != MAX_NUMNODES)
511 			node_set(mb_region->nid, reserved_nodemask);
512 	}
513 
514 	/*
515 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
516 	 * belonging to the reserved node mask.
517 	 *
518 	 * Note that this will include memory regions that reside
519 	 * on nodes that contain kernel memory - entire nodes
520 	 * become hot-unpluggable:
521 	 */
522 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
523 		struct numa_memblk *mb = numa_meminfo.blk + i;
524 
525 		if (!node_isset(mb->nid, reserved_nodemask))
526 			continue;
527 
528 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
529 	}
530 }
531 
532 static int __init numa_register_memblks(struct numa_meminfo *mi)
533 {
534 	unsigned long uninitialized_var(pfn_align);
535 	int i, nid;
536 
537 	/* Account for nodes with cpus and no memory */
538 	node_possible_map = numa_nodes_parsed;
539 	numa_nodemask_from_meminfo(&node_possible_map, mi);
540 	if (WARN_ON(nodes_empty(node_possible_map)))
541 		return -EINVAL;
542 
543 	for (i = 0; i < mi->nr_blks; i++) {
544 		struct numa_memblk *mb = &mi->blk[i];
545 		memblock_set_node(mb->start, mb->end - mb->start,
546 				  &memblock.memory, mb->nid);
547 	}
548 
549 	/*
550 	 * At very early time, the kernel have to use some memory such as
551 	 * loading the kernel image. We cannot prevent this anyway. So any
552 	 * node the kernel resides in should be un-hotpluggable.
553 	 *
554 	 * And when we come here, alloc node data won't fail.
555 	 */
556 	numa_clear_kernel_node_hotplug();
557 
558 	/*
559 	 * If sections array is gonna be used for pfn -> nid mapping, check
560 	 * whether its granularity is fine enough.
561 	 */
562 #ifdef NODE_NOT_IN_PAGE_FLAGS
563 	pfn_align = node_map_pfn_alignment();
564 	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
565 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
566 		       PFN_PHYS(pfn_align) >> 20,
567 		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
568 		return -EINVAL;
569 	}
570 #endif
571 	if (!numa_meminfo_cover_memory(mi))
572 		return -EINVAL;
573 
574 	/* Finally register nodes. */
575 	for_each_node_mask(nid, node_possible_map) {
576 		u64 start = PFN_PHYS(max_pfn);
577 		u64 end = 0;
578 
579 		for (i = 0; i < mi->nr_blks; i++) {
580 			if (nid != mi->blk[i].nid)
581 				continue;
582 			start = min(mi->blk[i].start, start);
583 			end = max(mi->blk[i].end, end);
584 		}
585 
586 		if (start >= end)
587 			continue;
588 
589 		/*
590 		 * Don't confuse VM with a node that doesn't have the
591 		 * minimum amount of memory:
592 		 */
593 		if (end && (end - start) < NODE_MIN_SIZE)
594 			continue;
595 
596 		alloc_node_data(nid);
597 	}
598 
599 	/* Dump memblock with node info and return. */
600 	memblock_dump_all();
601 	return 0;
602 }
603 
604 /*
605  * There are unfortunately some poorly designed mainboards around that
606  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
607  * mapping. To avoid this fill in the mapping for all possible CPUs,
608  * as the number of CPUs is not known yet. We round robin the existing
609  * nodes.
610  */
611 static void __init numa_init_array(void)
612 {
613 	int rr, i;
614 
615 	rr = first_node(node_online_map);
616 	for (i = 0; i < nr_cpu_ids; i++) {
617 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
618 			continue;
619 		numa_set_node(i, rr);
620 		rr = next_node(rr, node_online_map);
621 		if (rr == MAX_NUMNODES)
622 			rr = first_node(node_online_map);
623 	}
624 }
625 
626 static int __init numa_init(int (*init_func)(void))
627 {
628 	int i;
629 	int ret;
630 
631 	for (i = 0; i < MAX_LOCAL_APIC; i++)
632 		set_apicid_to_node(i, NUMA_NO_NODE);
633 
634 	nodes_clear(numa_nodes_parsed);
635 	nodes_clear(node_possible_map);
636 	nodes_clear(node_online_map);
637 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
638 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
639 				  MAX_NUMNODES));
640 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
641 				  MAX_NUMNODES));
642 	/* In case that parsing SRAT failed. */
643 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
644 	numa_reset_distance();
645 
646 	ret = init_func();
647 	if (ret < 0)
648 		return ret;
649 
650 	/*
651 	 * We reset memblock back to the top-down direction
652 	 * here because if we configured ACPI_NUMA, we have
653 	 * parsed SRAT in init_func(). It is ok to have the
654 	 * reset here even if we did't configure ACPI_NUMA
655 	 * or acpi numa init fails and fallbacks to dummy
656 	 * numa init.
657 	 */
658 	memblock_set_bottom_up(false);
659 
660 	ret = numa_cleanup_meminfo(&numa_meminfo);
661 	if (ret < 0)
662 		return ret;
663 
664 	numa_emulation(&numa_meminfo, numa_distance_cnt);
665 
666 	ret = numa_register_memblks(&numa_meminfo);
667 	if (ret < 0)
668 		return ret;
669 
670 	for (i = 0; i < nr_cpu_ids; i++) {
671 		int nid = early_cpu_to_node(i);
672 
673 		if (nid == NUMA_NO_NODE)
674 			continue;
675 		if (!node_online(nid))
676 			numa_clear_node(i);
677 	}
678 	numa_init_array();
679 
680 	return 0;
681 }
682 
683 /**
684  * dummy_numa_init - Fallback dummy NUMA init
685  *
686  * Used if there's no underlying NUMA architecture, NUMA initialization
687  * fails, or NUMA is disabled on the command line.
688  *
689  * Must online at least one node and add memory blocks that cover all
690  * allowed memory.  This function must not fail.
691  */
692 static int __init dummy_numa_init(void)
693 {
694 	printk(KERN_INFO "%s\n",
695 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
696 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
697 	       0LLU, PFN_PHYS(max_pfn) - 1);
698 
699 	node_set(0, numa_nodes_parsed);
700 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
701 
702 	return 0;
703 }
704 
705 /**
706  * x86_numa_init - Initialize NUMA
707  *
708  * Try each configured NUMA initialization method until one succeeds.  The
709  * last fallback is dummy single node config encomapssing whole memory and
710  * never fails.
711  */
712 void __init x86_numa_init(void)
713 {
714 	if (!numa_off) {
715 #ifdef CONFIG_ACPI_NUMA
716 		if (!numa_init(x86_acpi_numa_init))
717 			return;
718 #endif
719 #ifdef CONFIG_AMD_NUMA
720 		if (!numa_init(amd_numa_init))
721 			return;
722 #endif
723 	}
724 
725 	numa_init(dummy_numa_init);
726 }
727 
728 static __init int find_near_online_node(int node)
729 {
730 	int n, val;
731 	int min_val = INT_MAX;
732 	int best_node = -1;
733 
734 	for_each_online_node(n) {
735 		val = node_distance(node, n);
736 
737 		if (val < min_val) {
738 			min_val = val;
739 			best_node = n;
740 		}
741 	}
742 
743 	return best_node;
744 }
745 
746 /*
747  * Setup early cpu_to_node.
748  *
749  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
750  * and apicid_to_node[] tables have valid entries for a CPU.
751  * This means we skip cpu_to_node[] initialisation for NUMA
752  * emulation and faking node case (when running a kernel compiled
753  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
754  * is already initialized in a round robin manner at numa_init_array,
755  * prior to this call, and this initialization is good enough
756  * for the fake NUMA cases.
757  *
758  * Called before the per_cpu areas are setup.
759  */
760 void __init init_cpu_to_node(void)
761 {
762 	int cpu;
763 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
764 
765 	BUG_ON(cpu_to_apicid == NULL);
766 
767 	for_each_possible_cpu(cpu) {
768 		int node = numa_cpu_node(cpu);
769 
770 		if (node == NUMA_NO_NODE)
771 			continue;
772 		if (!node_online(node))
773 			node = find_near_online_node(node);
774 		numa_set_node(cpu, node);
775 	}
776 }
777 
778 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
779 
780 # ifndef CONFIG_NUMA_EMU
781 void numa_add_cpu(int cpu)
782 {
783 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
784 }
785 
786 void numa_remove_cpu(int cpu)
787 {
788 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
789 }
790 # endif	/* !CONFIG_NUMA_EMU */
791 
792 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
793 
794 int __cpu_to_node(int cpu)
795 {
796 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
797 		printk(KERN_WARNING
798 			"cpu_to_node(%d): usage too early!\n", cpu);
799 		dump_stack();
800 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
801 	}
802 	return per_cpu(x86_cpu_to_node_map, cpu);
803 }
804 EXPORT_SYMBOL(__cpu_to_node);
805 
806 /*
807  * Same function as cpu_to_node() but used if called before the
808  * per_cpu areas are setup.
809  */
810 int early_cpu_to_node(int cpu)
811 {
812 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
813 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
814 
815 	if (!cpu_possible(cpu)) {
816 		printk(KERN_WARNING
817 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
818 		dump_stack();
819 		return NUMA_NO_NODE;
820 	}
821 	return per_cpu(x86_cpu_to_node_map, cpu);
822 }
823 
824 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
825 {
826 	struct cpumask *mask;
827 
828 	if (node == NUMA_NO_NODE) {
829 		/* early_cpu_to_node() already emits a warning and trace */
830 		return;
831 	}
832 	mask = node_to_cpumask_map[node];
833 	if (!mask) {
834 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
835 		dump_stack();
836 		return;
837 	}
838 
839 	if (enable)
840 		cpumask_set_cpu(cpu, mask);
841 	else
842 		cpumask_clear_cpu(cpu, mask);
843 
844 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
845 		enable ? "numa_add_cpu" : "numa_remove_cpu",
846 		cpu, node, cpumask_pr_args(mask));
847 	return;
848 }
849 
850 # ifndef CONFIG_NUMA_EMU
851 static void numa_set_cpumask(int cpu, bool enable)
852 {
853 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
854 }
855 
856 void numa_add_cpu(int cpu)
857 {
858 	numa_set_cpumask(cpu, true);
859 }
860 
861 void numa_remove_cpu(int cpu)
862 {
863 	numa_set_cpumask(cpu, false);
864 }
865 # endif	/* !CONFIG_NUMA_EMU */
866 
867 /*
868  * Returns a pointer to the bitmask of CPUs on Node 'node'.
869  */
870 const struct cpumask *cpumask_of_node(int node)
871 {
872 	if (node >= nr_node_ids) {
873 		printk(KERN_WARNING
874 			"cpumask_of_node(%d): node > nr_node_ids(%d)\n",
875 			node, nr_node_ids);
876 		dump_stack();
877 		return cpu_none_mask;
878 	}
879 	if (node_to_cpumask_map[node] == NULL) {
880 		printk(KERN_WARNING
881 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
882 			node);
883 		dump_stack();
884 		return cpu_online_mask;
885 	}
886 	return node_to_cpumask_map[node];
887 }
888 EXPORT_SYMBOL(cpumask_of_node);
889 
890 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
891 
892 #ifdef CONFIG_MEMORY_HOTPLUG
893 int memory_add_physaddr_to_nid(u64 start)
894 {
895 	struct numa_meminfo *mi = &numa_meminfo;
896 	int nid = mi->blk[0].nid;
897 	int i;
898 
899 	for (i = 0; i < mi->nr_blks; i++)
900 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
901 			nid = mi->blk[i].nid;
902 	return nid;
903 }
904 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
905 #endif
906