1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 /* 13 * Since we're dealing with identity mappings, physical and virtual 14 * addresses are the same, so override these defines which are ultimately 15 * used by the headers in misc.h. 16 */ 17 #define __pa(x) ((unsigned long)(x)) 18 #define __va(x) ((void *)((unsigned long)(x))) 19 20 /* 21 * Special hack: we have to be careful, because no indirections are 22 * allowed here, and paravirt_ops is a kind of one. As it will only run in 23 * baremetal anyway, we just keep it from happening. (This list needs to 24 * be extended when new paravirt and debugging variants are added.) 25 */ 26 #undef CONFIG_PARAVIRT 27 #undef CONFIG_PARAVIRT_XXL 28 #undef CONFIG_PARAVIRT_SPINLOCKS 29 30 /* 31 * This code runs before CPU feature bits are set. By default, the 32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if 33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 34 * is provided to handle this situation and, instead, use a variable that 35 * has been set by the early boot code. 36 */ 37 #define USE_EARLY_PGTABLE_L5 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/mem_encrypt.h> 42 #include <linux/cc_platform.h> 43 44 #include <asm/setup.h> 45 #include <asm/sections.h> 46 #include <asm/cmdline.h> 47 #include <asm/coco.h> 48 #include <asm/sev.h> 49 50 #include "mm_internal.h" 51 52 #define PGD_FLAGS _KERNPG_TABLE_NOENC 53 #define P4D_FLAGS _KERNPG_TABLE_NOENC 54 #define PUD_FLAGS _KERNPG_TABLE_NOENC 55 #define PMD_FLAGS _KERNPG_TABLE_NOENC 56 57 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) 58 59 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE 60 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ 61 (_PAGE_PAT_LARGE | _PAGE_PWT)) 62 63 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) 64 65 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) 66 67 #define PTE_FLAGS_DEC PTE_FLAGS 68 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ 69 (_PAGE_PAT | _PAGE_PWT)) 70 71 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) 72 73 struct sme_populate_pgd_data { 74 void *pgtable_area; 75 pgd_t *pgd; 76 77 pmdval_t pmd_flags; 78 pteval_t pte_flags; 79 unsigned long paddr; 80 81 unsigned long vaddr; 82 unsigned long vaddr_end; 83 }; 84 85 /* 86 * This work area lives in the .init.scratch section, which lives outside of 87 * the kernel proper. It is sized to hold the intermediate copy buffer and 88 * more than enough pagetable pages. 89 * 90 * By using this section, the kernel can be encrypted in place and it 91 * avoids any possibility of boot parameters or initramfs images being 92 * placed such that the in-place encryption logic overwrites them. This 93 * section is 2MB aligned to allow for simple pagetable setup using only 94 * PMD entries (see vmlinux.lds.S). 95 */ 96 static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); 97 98 static char sme_cmdline_arg[] __initdata = "mem_encrypt"; 99 static char sme_cmdline_on[] __initdata = "on"; 100 static char sme_cmdline_off[] __initdata = "off"; 101 102 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) 103 { 104 unsigned long pgd_start, pgd_end, pgd_size; 105 pgd_t *pgd_p; 106 107 pgd_start = ppd->vaddr & PGDIR_MASK; 108 pgd_end = ppd->vaddr_end & PGDIR_MASK; 109 110 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); 111 112 pgd_p = ppd->pgd + pgd_index(ppd->vaddr); 113 114 memset(pgd_p, 0, pgd_size); 115 } 116 117 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) 118 { 119 pgd_t *pgd; 120 p4d_t *p4d; 121 pud_t *pud; 122 pmd_t *pmd; 123 124 pgd = ppd->pgd + pgd_index(ppd->vaddr); 125 if (pgd_none(*pgd)) { 126 p4d = ppd->pgtable_area; 127 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); 128 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; 129 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); 130 } 131 132 p4d = p4d_offset(pgd, ppd->vaddr); 133 if (p4d_none(*p4d)) { 134 pud = ppd->pgtable_area; 135 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); 136 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; 137 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); 138 } 139 140 pud = pud_offset(p4d, ppd->vaddr); 141 if (pud_none(*pud)) { 142 pmd = ppd->pgtable_area; 143 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); 144 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; 145 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); 146 } 147 148 if (pud_large(*pud)) 149 return NULL; 150 151 return pud; 152 } 153 154 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) 155 { 156 pud_t *pud; 157 pmd_t *pmd; 158 159 pud = sme_prepare_pgd(ppd); 160 if (!pud) 161 return; 162 163 pmd = pmd_offset(pud, ppd->vaddr); 164 if (pmd_large(*pmd)) 165 return; 166 167 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); 168 } 169 170 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) 171 { 172 pud_t *pud; 173 pmd_t *pmd; 174 pte_t *pte; 175 176 pud = sme_prepare_pgd(ppd); 177 if (!pud) 178 return; 179 180 pmd = pmd_offset(pud, ppd->vaddr); 181 if (pmd_none(*pmd)) { 182 pte = ppd->pgtable_area; 183 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); 184 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; 185 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); 186 } 187 188 if (pmd_large(*pmd)) 189 return; 190 191 pte = pte_offset_map(pmd, ppd->vaddr); 192 if (pte_none(*pte)) 193 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); 194 } 195 196 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) 197 { 198 while (ppd->vaddr < ppd->vaddr_end) { 199 sme_populate_pgd_large(ppd); 200 201 ppd->vaddr += PMD_PAGE_SIZE; 202 ppd->paddr += PMD_PAGE_SIZE; 203 } 204 } 205 206 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) 207 { 208 while (ppd->vaddr < ppd->vaddr_end) { 209 sme_populate_pgd(ppd); 210 211 ppd->vaddr += PAGE_SIZE; 212 ppd->paddr += PAGE_SIZE; 213 } 214 } 215 216 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, 217 pmdval_t pmd_flags, pteval_t pte_flags) 218 { 219 unsigned long vaddr_end; 220 221 ppd->pmd_flags = pmd_flags; 222 ppd->pte_flags = pte_flags; 223 224 /* Save original end value since we modify the struct value */ 225 vaddr_end = ppd->vaddr_end; 226 227 /* If start is not 2MB aligned, create PTE entries */ 228 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); 229 __sme_map_range_pte(ppd); 230 231 /* Create PMD entries */ 232 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; 233 __sme_map_range_pmd(ppd); 234 235 /* If end is not 2MB aligned, create PTE entries */ 236 ppd->vaddr_end = vaddr_end; 237 __sme_map_range_pte(ppd); 238 } 239 240 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) 241 { 242 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); 243 } 244 245 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) 246 { 247 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); 248 } 249 250 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) 251 { 252 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); 253 } 254 255 static unsigned long __init sme_pgtable_calc(unsigned long len) 256 { 257 unsigned long entries = 0, tables = 0; 258 259 /* 260 * Perform a relatively simplistic calculation of the pagetable 261 * entries that are needed. Those mappings will be covered mostly 262 * by 2MB PMD entries so we can conservatively calculate the required 263 * number of P4D, PUD and PMD structures needed to perform the 264 * mappings. For mappings that are not 2MB aligned, PTE mappings 265 * would be needed for the start and end portion of the address range 266 * that fall outside of the 2MB alignment. This results in, at most, 267 * two extra pages to hold PTE entries for each range that is mapped. 268 * Incrementing the count for each covers the case where the addresses 269 * cross entries. 270 */ 271 272 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ 273 if (PTRS_PER_P4D > 1) 274 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; 275 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; 276 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; 277 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; 278 279 /* 280 * Now calculate the added pagetable structures needed to populate 281 * the new pagetables. 282 */ 283 284 if (PTRS_PER_P4D > 1) 285 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; 286 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; 287 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; 288 289 return entries + tables; 290 } 291 292 void __init sme_encrypt_kernel(struct boot_params *bp) 293 { 294 unsigned long workarea_start, workarea_end, workarea_len; 295 unsigned long execute_start, execute_end, execute_len; 296 unsigned long kernel_start, kernel_end, kernel_len; 297 unsigned long initrd_start, initrd_end, initrd_len; 298 struct sme_populate_pgd_data ppd; 299 unsigned long pgtable_area_len; 300 unsigned long decrypted_base; 301 302 /* 303 * This is early code, use an open coded check for SME instead of 304 * using cc_platform_has(). This eliminates worries about removing 305 * instrumentation or checking boot_cpu_data in the cc_platform_has() 306 * function. 307 */ 308 if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED) 309 return; 310 311 /* 312 * Prepare for encrypting the kernel and initrd by building new 313 * pagetables with the necessary attributes needed to encrypt the 314 * kernel in place. 315 * 316 * One range of virtual addresses will map the memory occupied 317 * by the kernel and initrd as encrypted. 318 * 319 * Another range of virtual addresses will map the memory occupied 320 * by the kernel and initrd as decrypted and write-protected. 321 * 322 * The use of write-protect attribute will prevent any of the 323 * memory from being cached. 324 */ 325 326 /* Physical addresses gives us the identity mapped virtual addresses */ 327 kernel_start = __pa_symbol(_text); 328 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); 329 kernel_len = kernel_end - kernel_start; 330 331 initrd_start = 0; 332 initrd_end = 0; 333 initrd_len = 0; 334 #ifdef CONFIG_BLK_DEV_INITRD 335 initrd_len = (unsigned long)bp->hdr.ramdisk_size | 336 ((unsigned long)bp->ext_ramdisk_size << 32); 337 if (initrd_len) { 338 initrd_start = (unsigned long)bp->hdr.ramdisk_image | 339 ((unsigned long)bp->ext_ramdisk_image << 32); 340 initrd_end = PAGE_ALIGN(initrd_start + initrd_len); 341 initrd_len = initrd_end - initrd_start; 342 } 343 #endif 344 345 /* 346 * We're running identity mapped, so we must obtain the address to the 347 * SME encryption workarea using rip-relative addressing. 348 */ 349 asm ("lea sme_workarea(%%rip), %0" 350 : "=r" (workarea_start) 351 : "p" (sme_workarea)); 352 353 /* 354 * Calculate required number of workarea bytes needed: 355 * executable encryption area size: 356 * stack page (PAGE_SIZE) 357 * encryption routine page (PAGE_SIZE) 358 * intermediate copy buffer (PMD_PAGE_SIZE) 359 * pagetable structures for the encryption of the kernel 360 * pagetable structures for workarea (in case not currently mapped) 361 */ 362 execute_start = workarea_start; 363 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; 364 execute_len = execute_end - execute_start; 365 366 /* 367 * One PGD for both encrypted and decrypted mappings and a set of 368 * PUDs and PMDs for each of the encrypted and decrypted mappings. 369 */ 370 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; 371 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; 372 if (initrd_len) 373 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; 374 375 /* PUDs and PMDs needed in the current pagetables for the workarea */ 376 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); 377 378 /* 379 * The total workarea includes the executable encryption area and 380 * the pagetable area. The start of the workarea is already 2MB 381 * aligned, align the end of the workarea on a 2MB boundary so that 382 * we don't try to create/allocate PTE entries from the workarea 383 * before it is mapped. 384 */ 385 workarea_len = execute_len + pgtable_area_len; 386 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); 387 388 /* 389 * Set the address to the start of where newly created pagetable 390 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable 391 * structures are created when the workarea is added to the current 392 * pagetables and when the new encrypted and decrypted kernel 393 * mappings are populated. 394 */ 395 ppd.pgtable_area = (void *)execute_end; 396 397 /* 398 * Make sure the current pagetable structure has entries for 399 * addressing the workarea. 400 */ 401 ppd.pgd = (pgd_t *)native_read_cr3_pa(); 402 ppd.paddr = workarea_start; 403 ppd.vaddr = workarea_start; 404 ppd.vaddr_end = workarea_end; 405 sme_map_range_decrypted(&ppd); 406 407 /* Flush the TLB - no globals so cr3 is enough */ 408 native_write_cr3(__native_read_cr3()); 409 410 /* 411 * A new pagetable structure is being built to allow for the kernel 412 * and initrd to be encrypted. It starts with an empty PGD that will 413 * then be populated with new PUDs and PMDs as the encrypted and 414 * decrypted kernel mappings are created. 415 */ 416 ppd.pgd = ppd.pgtable_area; 417 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); 418 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; 419 420 /* 421 * A different PGD index/entry must be used to get different 422 * pagetable entries for the decrypted mapping. Choose the next 423 * PGD index and convert it to a virtual address to be used as 424 * the base of the mapping. 425 */ 426 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); 427 if (initrd_len) { 428 unsigned long check_base; 429 430 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); 431 decrypted_base = max(decrypted_base, check_base); 432 } 433 decrypted_base <<= PGDIR_SHIFT; 434 435 /* Add encrypted kernel (identity) mappings */ 436 ppd.paddr = kernel_start; 437 ppd.vaddr = kernel_start; 438 ppd.vaddr_end = kernel_end; 439 sme_map_range_encrypted(&ppd); 440 441 /* Add decrypted, write-protected kernel (non-identity) mappings */ 442 ppd.paddr = kernel_start; 443 ppd.vaddr = kernel_start + decrypted_base; 444 ppd.vaddr_end = kernel_end + decrypted_base; 445 sme_map_range_decrypted_wp(&ppd); 446 447 if (initrd_len) { 448 /* Add encrypted initrd (identity) mappings */ 449 ppd.paddr = initrd_start; 450 ppd.vaddr = initrd_start; 451 ppd.vaddr_end = initrd_end; 452 sme_map_range_encrypted(&ppd); 453 /* 454 * Add decrypted, write-protected initrd (non-identity) mappings 455 */ 456 ppd.paddr = initrd_start; 457 ppd.vaddr = initrd_start + decrypted_base; 458 ppd.vaddr_end = initrd_end + decrypted_base; 459 sme_map_range_decrypted_wp(&ppd); 460 } 461 462 /* Add decrypted workarea mappings to both kernel mappings */ 463 ppd.paddr = workarea_start; 464 ppd.vaddr = workarea_start; 465 ppd.vaddr_end = workarea_end; 466 sme_map_range_decrypted(&ppd); 467 468 ppd.paddr = workarea_start; 469 ppd.vaddr = workarea_start + decrypted_base; 470 ppd.vaddr_end = workarea_end + decrypted_base; 471 sme_map_range_decrypted(&ppd); 472 473 /* Perform the encryption */ 474 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, 475 kernel_len, workarea_start, (unsigned long)ppd.pgd); 476 477 if (initrd_len) 478 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, 479 initrd_len, workarea_start, 480 (unsigned long)ppd.pgd); 481 482 /* 483 * At this point we are running encrypted. Remove the mappings for 484 * the decrypted areas - all that is needed for this is to remove 485 * the PGD entry/entries. 486 */ 487 ppd.vaddr = kernel_start + decrypted_base; 488 ppd.vaddr_end = kernel_end + decrypted_base; 489 sme_clear_pgd(&ppd); 490 491 if (initrd_len) { 492 ppd.vaddr = initrd_start + decrypted_base; 493 ppd.vaddr_end = initrd_end + decrypted_base; 494 sme_clear_pgd(&ppd); 495 } 496 497 ppd.vaddr = workarea_start + decrypted_base; 498 ppd.vaddr_end = workarea_end + decrypted_base; 499 sme_clear_pgd(&ppd); 500 501 /* Flush the TLB - no globals so cr3 is enough */ 502 native_write_cr3(__native_read_cr3()); 503 } 504 505 void __init sme_enable(struct boot_params *bp) 506 { 507 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; 508 unsigned int eax, ebx, ecx, edx; 509 unsigned long feature_mask; 510 bool active_by_default; 511 unsigned long me_mask; 512 char buffer[16]; 513 bool snp; 514 u64 msr; 515 516 snp = snp_init(bp); 517 518 /* Check for the SME/SEV support leaf */ 519 eax = 0x80000000; 520 ecx = 0; 521 native_cpuid(&eax, &ebx, &ecx, &edx); 522 if (eax < 0x8000001f) 523 return; 524 525 #define AMD_SME_BIT BIT(0) 526 #define AMD_SEV_BIT BIT(1) 527 528 /* 529 * Check for the SME/SEV feature: 530 * CPUID Fn8000_001F[EAX] 531 * - Bit 0 - Secure Memory Encryption support 532 * - Bit 1 - Secure Encrypted Virtualization support 533 * CPUID Fn8000_001F[EBX] 534 * - Bits 5:0 - Pagetable bit position used to indicate encryption 535 */ 536 eax = 0x8000001f; 537 ecx = 0; 538 native_cpuid(&eax, &ebx, &ecx, &edx); 539 /* Check whether SEV or SME is supported */ 540 if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) 541 return; 542 543 me_mask = 1UL << (ebx & 0x3f); 544 545 /* Check the SEV MSR whether SEV or SME is enabled */ 546 sev_status = __rdmsr(MSR_AMD64_SEV); 547 feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; 548 549 /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */ 550 if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) 551 snp_abort(); 552 553 /* Check if memory encryption is enabled */ 554 if (feature_mask == AMD_SME_BIT) { 555 /* 556 * No SME if Hypervisor bit is set. This check is here to 557 * prevent a guest from trying to enable SME. For running as a 558 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there 559 * might be other hypervisors which emulate that MSR as non-zero 560 * or even pass it through to the guest. 561 * A malicious hypervisor can still trick a guest into this 562 * path, but there is no way to protect against that. 563 */ 564 eax = 1; 565 ecx = 0; 566 native_cpuid(&eax, &ebx, &ecx, &edx); 567 if (ecx & BIT(31)) 568 return; 569 570 /* For SME, check the SYSCFG MSR */ 571 msr = __rdmsr(MSR_AMD64_SYSCFG); 572 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 573 return; 574 } else { 575 /* SEV state cannot be controlled by a command line option */ 576 sme_me_mask = me_mask; 577 goto out; 578 } 579 580 /* 581 * Fixups have not been applied to phys_base yet and we're running 582 * identity mapped, so we must obtain the address to the SME command 583 * line argument data using rip-relative addressing. 584 */ 585 asm ("lea sme_cmdline_arg(%%rip), %0" 586 : "=r" (cmdline_arg) 587 : "p" (sme_cmdline_arg)); 588 asm ("lea sme_cmdline_on(%%rip), %0" 589 : "=r" (cmdline_on) 590 : "p" (sme_cmdline_on)); 591 asm ("lea sme_cmdline_off(%%rip), %0" 592 : "=r" (cmdline_off) 593 : "p" (sme_cmdline_off)); 594 595 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) 596 active_by_default = true; 597 else 598 active_by_default = false; 599 600 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | 601 ((u64)bp->ext_cmd_line_ptr << 32)); 602 603 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); 604 605 if (!strncmp(buffer, cmdline_on, sizeof(buffer))) 606 sme_me_mask = me_mask; 607 else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) 608 sme_me_mask = 0; 609 else 610 sme_me_mask = active_by_default ? me_mask : 0; 611 out: 612 if (sme_me_mask) { 613 physical_mask &= ~sme_me_mask; 614 cc_set_vendor(CC_VENDOR_AMD); 615 cc_set_mask(sme_me_mask); 616 } 617 } 618