xref: /openbmc/linux/arch/x86/mm/mem_encrypt_identity.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 /*
13  * Since we're dealing with identity mappings, physical and virtual
14  * addresses are the same, so override these defines which are ultimately
15  * used by the headers in misc.h.
16  */
17 #define __pa(x)  ((unsigned long)(x))
18 #define __va(x)  ((void *)((unsigned long)(x)))
19 
20 /*
21  * Special hack: we have to be careful, because no indirections are
22  * allowed here, and paravirt_ops is a kind of one. As it will only run in
23  * baremetal anyway, we just keep it from happening. (This list needs to
24  * be extended when new paravirt and debugging variants are added.)
25  */
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
29 
30 /*
31  * This code runs before CPU feature bits are set. By default, the
32  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34  * is provided to handle this situation and, instead, use a variable that
35  * has been set by the early boot code.
36  */
37 #define USE_EARLY_PGTABLE_L5
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/mem_encrypt.h>
42 #include <linux/cc_platform.h>
43 
44 #include <asm/setup.h>
45 #include <asm/sections.h>
46 #include <asm/cmdline.h>
47 #include <asm/coco.h>
48 
49 #include "mm_internal.h"
50 
51 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
52 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
53 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
54 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
55 
56 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
57 
58 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
59 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
60 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
61 
62 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
63 
64 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
65 
66 #define PTE_FLAGS_DEC		PTE_FLAGS
67 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
68 				 (_PAGE_PAT | _PAGE_PWT))
69 
70 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
71 
72 struct sme_populate_pgd_data {
73 	void    *pgtable_area;
74 	pgd_t   *pgd;
75 
76 	pmdval_t pmd_flags;
77 	pteval_t pte_flags;
78 	unsigned long paddr;
79 
80 	unsigned long vaddr;
81 	unsigned long vaddr_end;
82 };
83 
84 /*
85  * This work area lives in the .init.scratch section, which lives outside of
86  * the kernel proper. It is sized to hold the intermediate copy buffer and
87  * more than enough pagetable pages.
88  *
89  * By using this section, the kernel can be encrypted in place and it
90  * avoids any possibility of boot parameters or initramfs images being
91  * placed such that the in-place encryption logic overwrites them.  This
92  * section is 2MB aligned to allow for simple pagetable setup using only
93  * PMD entries (see vmlinux.lds.S).
94  */
95 static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
96 
97 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
98 static char sme_cmdline_on[]  __initdata = "on";
99 static char sme_cmdline_off[] __initdata = "off";
100 
101 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
102 {
103 	unsigned long pgd_start, pgd_end, pgd_size;
104 	pgd_t *pgd_p;
105 
106 	pgd_start = ppd->vaddr & PGDIR_MASK;
107 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
108 
109 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
110 
111 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
112 
113 	memset(pgd_p, 0, pgd_size);
114 }
115 
116 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
117 {
118 	pgd_t *pgd;
119 	p4d_t *p4d;
120 	pud_t *pud;
121 	pmd_t *pmd;
122 
123 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
124 	if (pgd_none(*pgd)) {
125 		p4d = ppd->pgtable_area;
126 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
127 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
128 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
129 	}
130 
131 	p4d = p4d_offset(pgd, ppd->vaddr);
132 	if (p4d_none(*p4d)) {
133 		pud = ppd->pgtable_area;
134 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
135 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
136 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
137 	}
138 
139 	pud = pud_offset(p4d, ppd->vaddr);
140 	if (pud_none(*pud)) {
141 		pmd = ppd->pgtable_area;
142 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
143 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
144 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
145 	}
146 
147 	if (pud_large(*pud))
148 		return NULL;
149 
150 	return pud;
151 }
152 
153 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
154 {
155 	pud_t *pud;
156 	pmd_t *pmd;
157 
158 	pud = sme_prepare_pgd(ppd);
159 	if (!pud)
160 		return;
161 
162 	pmd = pmd_offset(pud, ppd->vaddr);
163 	if (pmd_large(*pmd))
164 		return;
165 
166 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
167 }
168 
169 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
170 {
171 	pud_t *pud;
172 	pmd_t *pmd;
173 	pte_t *pte;
174 
175 	pud = sme_prepare_pgd(ppd);
176 	if (!pud)
177 		return;
178 
179 	pmd = pmd_offset(pud, ppd->vaddr);
180 	if (pmd_none(*pmd)) {
181 		pte = ppd->pgtable_area;
182 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
183 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
184 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
185 	}
186 
187 	if (pmd_large(*pmd))
188 		return;
189 
190 	pte = pte_offset_map(pmd, ppd->vaddr);
191 	if (pte_none(*pte))
192 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
193 }
194 
195 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
196 {
197 	while (ppd->vaddr < ppd->vaddr_end) {
198 		sme_populate_pgd_large(ppd);
199 
200 		ppd->vaddr += PMD_PAGE_SIZE;
201 		ppd->paddr += PMD_PAGE_SIZE;
202 	}
203 }
204 
205 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
206 {
207 	while (ppd->vaddr < ppd->vaddr_end) {
208 		sme_populate_pgd(ppd);
209 
210 		ppd->vaddr += PAGE_SIZE;
211 		ppd->paddr += PAGE_SIZE;
212 	}
213 }
214 
215 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
216 				   pmdval_t pmd_flags, pteval_t pte_flags)
217 {
218 	unsigned long vaddr_end;
219 
220 	ppd->pmd_flags = pmd_flags;
221 	ppd->pte_flags = pte_flags;
222 
223 	/* Save original end value since we modify the struct value */
224 	vaddr_end = ppd->vaddr_end;
225 
226 	/* If start is not 2MB aligned, create PTE entries */
227 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
228 	__sme_map_range_pte(ppd);
229 
230 	/* Create PMD entries */
231 	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
232 	__sme_map_range_pmd(ppd);
233 
234 	/* If end is not 2MB aligned, create PTE entries */
235 	ppd->vaddr_end = vaddr_end;
236 	__sme_map_range_pte(ppd);
237 }
238 
239 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
240 {
241 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
242 }
243 
244 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
245 {
246 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
247 }
248 
249 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
250 {
251 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
252 }
253 
254 static unsigned long __init sme_pgtable_calc(unsigned long len)
255 {
256 	unsigned long entries = 0, tables = 0;
257 
258 	/*
259 	 * Perform a relatively simplistic calculation of the pagetable
260 	 * entries that are needed. Those mappings will be covered mostly
261 	 * by 2MB PMD entries so we can conservatively calculate the required
262 	 * number of P4D, PUD and PMD structures needed to perform the
263 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
264 	 * would be needed for the start and end portion of the address range
265 	 * that fall outside of the 2MB alignment.  This results in, at most,
266 	 * two extra pages to hold PTE entries for each range that is mapped.
267 	 * Incrementing the count for each covers the case where the addresses
268 	 * cross entries.
269 	 */
270 
271 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
272 	if (PTRS_PER_P4D > 1)
273 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
274 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
275 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
276 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
277 
278 	/*
279 	 * Now calculate the added pagetable structures needed to populate
280 	 * the new pagetables.
281 	 */
282 
283 	if (PTRS_PER_P4D > 1)
284 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
285 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
286 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
287 
288 	return entries + tables;
289 }
290 
291 void __init sme_encrypt_kernel(struct boot_params *bp)
292 {
293 	unsigned long workarea_start, workarea_end, workarea_len;
294 	unsigned long execute_start, execute_end, execute_len;
295 	unsigned long kernel_start, kernel_end, kernel_len;
296 	unsigned long initrd_start, initrd_end, initrd_len;
297 	struct sme_populate_pgd_data ppd;
298 	unsigned long pgtable_area_len;
299 	unsigned long decrypted_base;
300 
301 	/*
302 	 * This is early code, use an open coded check for SME instead of
303 	 * using cc_platform_has(). This eliminates worries about removing
304 	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
305 	 * function.
306 	 */
307 	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
308 		return;
309 
310 	/*
311 	 * Prepare for encrypting the kernel and initrd by building new
312 	 * pagetables with the necessary attributes needed to encrypt the
313 	 * kernel in place.
314 	 *
315 	 *   One range of virtual addresses will map the memory occupied
316 	 *   by the kernel and initrd as encrypted.
317 	 *
318 	 *   Another range of virtual addresses will map the memory occupied
319 	 *   by the kernel and initrd as decrypted and write-protected.
320 	 *
321 	 *     The use of write-protect attribute will prevent any of the
322 	 *     memory from being cached.
323 	 */
324 
325 	/* Physical addresses gives us the identity mapped virtual addresses */
326 	kernel_start = __pa_symbol(_text);
327 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
328 	kernel_len = kernel_end - kernel_start;
329 
330 	initrd_start = 0;
331 	initrd_end = 0;
332 	initrd_len = 0;
333 #ifdef CONFIG_BLK_DEV_INITRD
334 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
335 		     ((unsigned long)bp->ext_ramdisk_size << 32);
336 	if (initrd_len) {
337 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
338 			       ((unsigned long)bp->ext_ramdisk_image << 32);
339 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
340 		initrd_len = initrd_end - initrd_start;
341 	}
342 #endif
343 
344 	/*
345 	 * We're running identity mapped, so we must obtain the address to the
346 	 * SME encryption workarea using rip-relative addressing.
347 	 */
348 	asm ("lea sme_workarea(%%rip), %0"
349 	     : "=r" (workarea_start)
350 	     : "p" (sme_workarea));
351 
352 	/*
353 	 * Calculate required number of workarea bytes needed:
354 	 *   executable encryption area size:
355 	 *     stack page (PAGE_SIZE)
356 	 *     encryption routine page (PAGE_SIZE)
357 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
358 	 *   pagetable structures for the encryption of the kernel
359 	 *   pagetable structures for workarea (in case not currently mapped)
360 	 */
361 	execute_start = workarea_start;
362 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
363 	execute_len = execute_end - execute_start;
364 
365 	/*
366 	 * One PGD for both encrypted and decrypted mappings and a set of
367 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
368 	 */
369 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
370 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
371 	if (initrd_len)
372 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
373 
374 	/* PUDs and PMDs needed in the current pagetables for the workarea */
375 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
376 
377 	/*
378 	 * The total workarea includes the executable encryption area and
379 	 * the pagetable area. The start of the workarea is already 2MB
380 	 * aligned, align the end of the workarea on a 2MB boundary so that
381 	 * we don't try to create/allocate PTE entries from the workarea
382 	 * before it is mapped.
383 	 */
384 	workarea_len = execute_len + pgtable_area_len;
385 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
386 
387 	/*
388 	 * Set the address to the start of where newly created pagetable
389 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
390 	 * structures are created when the workarea is added to the current
391 	 * pagetables and when the new encrypted and decrypted kernel
392 	 * mappings are populated.
393 	 */
394 	ppd.pgtable_area = (void *)execute_end;
395 
396 	/*
397 	 * Make sure the current pagetable structure has entries for
398 	 * addressing the workarea.
399 	 */
400 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
401 	ppd.paddr = workarea_start;
402 	ppd.vaddr = workarea_start;
403 	ppd.vaddr_end = workarea_end;
404 	sme_map_range_decrypted(&ppd);
405 
406 	/* Flush the TLB - no globals so cr3 is enough */
407 	native_write_cr3(__native_read_cr3());
408 
409 	/*
410 	 * A new pagetable structure is being built to allow for the kernel
411 	 * and initrd to be encrypted. It starts with an empty PGD that will
412 	 * then be populated with new PUDs and PMDs as the encrypted and
413 	 * decrypted kernel mappings are created.
414 	 */
415 	ppd.pgd = ppd.pgtable_area;
416 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
417 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
418 
419 	/*
420 	 * A different PGD index/entry must be used to get different
421 	 * pagetable entries for the decrypted mapping. Choose the next
422 	 * PGD index and convert it to a virtual address to be used as
423 	 * the base of the mapping.
424 	 */
425 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
426 	if (initrd_len) {
427 		unsigned long check_base;
428 
429 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
430 		decrypted_base = max(decrypted_base, check_base);
431 	}
432 	decrypted_base <<= PGDIR_SHIFT;
433 
434 	/* Add encrypted kernel (identity) mappings */
435 	ppd.paddr = kernel_start;
436 	ppd.vaddr = kernel_start;
437 	ppd.vaddr_end = kernel_end;
438 	sme_map_range_encrypted(&ppd);
439 
440 	/* Add decrypted, write-protected kernel (non-identity) mappings */
441 	ppd.paddr = kernel_start;
442 	ppd.vaddr = kernel_start + decrypted_base;
443 	ppd.vaddr_end = kernel_end + decrypted_base;
444 	sme_map_range_decrypted_wp(&ppd);
445 
446 	if (initrd_len) {
447 		/* Add encrypted initrd (identity) mappings */
448 		ppd.paddr = initrd_start;
449 		ppd.vaddr = initrd_start;
450 		ppd.vaddr_end = initrd_end;
451 		sme_map_range_encrypted(&ppd);
452 		/*
453 		 * Add decrypted, write-protected initrd (non-identity) mappings
454 		 */
455 		ppd.paddr = initrd_start;
456 		ppd.vaddr = initrd_start + decrypted_base;
457 		ppd.vaddr_end = initrd_end + decrypted_base;
458 		sme_map_range_decrypted_wp(&ppd);
459 	}
460 
461 	/* Add decrypted workarea mappings to both kernel mappings */
462 	ppd.paddr = workarea_start;
463 	ppd.vaddr = workarea_start;
464 	ppd.vaddr_end = workarea_end;
465 	sme_map_range_decrypted(&ppd);
466 
467 	ppd.paddr = workarea_start;
468 	ppd.vaddr = workarea_start + decrypted_base;
469 	ppd.vaddr_end = workarea_end + decrypted_base;
470 	sme_map_range_decrypted(&ppd);
471 
472 	/* Perform the encryption */
473 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
474 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
475 
476 	if (initrd_len)
477 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
478 				    initrd_len, workarea_start,
479 				    (unsigned long)ppd.pgd);
480 
481 	/*
482 	 * At this point we are running encrypted.  Remove the mappings for
483 	 * the decrypted areas - all that is needed for this is to remove
484 	 * the PGD entry/entries.
485 	 */
486 	ppd.vaddr = kernel_start + decrypted_base;
487 	ppd.vaddr_end = kernel_end + decrypted_base;
488 	sme_clear_pgd(&ppd);
489 
490 	if (initrd_len) {
491 		ppd.vaddr = initrd_start + decrypted_base;
492 		ppd.vaddr_end = initrd_end + decrypted_base;
493 		sme_clear_pgd(&ppd);
494 	}
495 
496 	ppd.vaddr = workarea_start + decrypted_base;
497 	ppd.vaddr_end = workarea_end + decrypted_base;
498 	sme_clear_pgd(&ppd);
499 
500 	/* Flush the TLB - no globals so cr3 is enough */
501 	native_write_cr3(__native_read_cr3());
502 }
503 
504 void __init sme_enable(struct boot_params *bp)
505 {
506 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
507 	unsigned int eax, ebx, ecx, edx;
508 	unsigned long feature_mask;
509 	bool active_by_default;
510 	unsigned long me_mask;
511 	char buffer[16];
512 	u64 msr;
513 
514 	/* Check for the SME/SEV support leaf */
515 	eax = 0x80000000;
516 	ecx = 0;
517 	native_cpuid(&eax, &ebx, &ecx, &edx);
518 	if (eax < 0x8000001f)
519 		return;
520 
521 #define AMD_SME_BIT	BIT(0)
522 #define AMD_SEV_BIT	BIT(1)
523 
524 	/*
525 	 * Check for the SME/SEV feature:
526 	 *   CPUID Fn8000_001F[EAX]
527 	 *   - Bit 0 - Secure Memory Encryption support
528 	 *   - Bit 1 - Secure Encrypted Virtualization support
529 	 *   CPUID Fn8000_001F[EBX]
530 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
531 	 */
532 	eax = 0x8000001f;
533 	ecx = 0;
534 	native_cpuid(&eax, &ebx, &ecx, &edx);
535 	/* Check whether SEV or SME is supported */
536 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
537 		return;
538 
539 	me_mask = 1UL << (ebx & 0x3f);
540 
541 	/* Check the SEV MSR whether SEV or SME is enabled */
542 	sev_status   = __rdmsr(MSR_AMD64_SEV);
543 	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
544 
545 	/* Check if memory encryption is enabled */
546 	if (feature_mask == AMD_SME_BIT) {
547 		/*
548 		 * No SME if Hypervisor bit is set. This check is here to
549 		 * prevent a guest from trying to enable SME. For running as a
550 		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
551 		 * might be other hypervisors which emulate that MSR as non-zero
552 		 * or even pass it through to the guest.
553 		 * A malicious hypervisor can still trick a guest into this
554 		 * path, but there is no way to protect against that.
555 		 */
556 		eax = 1;
557 		ecx = 0;
558 		native_cpuid(&eax, &ebx, &ecx, &edx);
559 		if (ecx & BIT(31))
560 			return;
561 
562 		/* For SME, check the SYSCFG MSR */
563 		msr = __rdmsr(MSR_AMD64_SYSCFG);
564 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
565 			return;
566 	} else {
567 		/* SEV state cannot be controlled by a command line option */
568 		sme_me_mask = me_mask;
569 		goto out;
570 	}
571 
572 	/*
573 	 * Fixups have not been applied to phys_base yet and we're running
574 	 * identity mapped, so we must obtain the address to the SME command
575 	 * line argument data using rip-relative addressing.
576 	 */
577 	asm ("lea sme_cmdline_arg(%%rip), %0"
578 	     : "=r" (cmdline_arg)
579 	     : "p" (sme_cmdline_arg));
580 	asm ("lea sme_cmdline_on(%%rip), %0"
581 	     : "=r" (cmdline_on)
582 	     : "p" (sme_cmdline_on));
583 	asm ("lea sme_cmdline_off(%%rip), %0"
584 	     : "=r" (cmdline_off)
585 	     : "p" (sme_cmdline_off));
586 
587 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
588 		active_by_default = true;
589 	else
590 		active_by_default = false;
591 
592 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
593 				     ((u64)bp->ext_cmd_line_ptr << 32));
594 
595 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
596 
597 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
598 		sme_me_mask = me_mask;
599 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
600 		sme_me_mask = 0;
601 	else
602 		sme_me_mask = active_by_default ? me_mask : 0;
603 out:
604 	if (sme_me_mask) {
605 		physical_mask &= ~sme_me_mask;
606 		cc_set_vendor(CC_VENDOR_AMD);
607 		cc_set_mask(sme_me_mask);
608 	}
609 }
610