1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/virtio_config.h> 23 #include <linux/virtio_anchor.h> 24 #include <linux/cc_platform.h> 25 26 #include <asm/tlbflush.h> 27 #include <asm/fixmap.h> 28 #include <asm/setup.h> 29 #include <asm/mem_encrypt.h> 30 #include <asm/bootparam.h> 31 #include <asm/set_memory.h> 32 #include <asm/cacheflush.h> 33 #include <asm/processor-flags.h> 34 #include <asm/msr.h> 35 #include <asm/cmdline.h> 36 #include <asm/sev.h> 37 38 #include "mm_internal.h" 39 40 /* 41 * Since SME related variables are set early in the boot process they must 42 * reside in the .data section so as not to be zeroed out when the .bss 43 * section is later cleared. 44 */ 45 u64 sme_me_mask __section(".data") = 0; 46 u64 sev_status __section(".data") = 0; 47 u64 sev_check_data __section(".data") = 0; 48 EXPORT_SYMBOL(sme_me_mask); 49 50 /* Buffer used for early in-place encryption by BSP, no locking needed */ 51 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 52 53 /* 54 * SNP-specific routine which needs to additionally change the page state from 55 * private to shared before copying the data from the source to destination and 56 * restore after the copy. 57 */ 58 static inline void __init snp_memcpy(void *dst, void *src, size_t sz, 59 unsigned long paddr, bool decrypt) 60 { 61 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 62 63 if (decrypt) { 64 /* 65 * @paddr needs to be accessed decrypted, mark the page shared in 66 * the RMP table before copying it. 67 */ 68 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); 69 70 memcpy(dst, src, sz); 71 72 /* Restore the page state after the memcpy. */ 73 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); 74 } else { 75 /* 76 * @paddr need to be accessed encrypted, no need for the page state 77 * change. 78 */ 79 memcpy(dst, src, sz); 80 } 81 } 82 83 /* 84 * This routine does not change the underlying encryption setting of the 85 * page(s) that map this memory. It assumes that eventually the memory is 86 * meant to be accessed as either encrypted or decrypted but the contents 87 * are currently not in the desired state. 88 * 89 * This routine follows the steps outlined in the AMD64 Architecture 90 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 91 */ 92 static void __init __sme_early_enc_dec(resource_size_t paddr, 93 unsigned long size, bool enc) 94 { 95 void *src, *dst; 96 size_t len; 97 98 if (!sme_me_mask) 99 return; 100 101 wbinvd(); 102 103 /* 104 * There are limited number of early mapping slots, so map (at most) 105 * one page at time. 106 */ 107 while (size) { 108 len = min_t(size_t, sizeof(sme_early_buffer), size); 109 110 /* 111 * Create mappings for the current and desired format of 112 * the memory. Use a write-protected mapping for the source. 113 */ 114 src = enc ? early_memremap_decrypted_wp(paddr, len) : 115 early_memremap_encrypted_wp(paddr, len); 116 117 dst = enc ? early_memremap_encrypted(paddr, len) : 118 early_memremap_decrypted(paddr, len); 119 120 /* 121 * If a mapping can't be obtained to perform the operation, 122 * then eventual access of that area in the desired mode 123 * will cause a crash. 124 */ 125 BUG_ON(!src || !dst); 126 127 /* 128 * Use a temporary buffer, of cache-line multiple size, to 129 * avoid data corruption as documented in the APM. 130 */ 131 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 132 snp_memcpy(sme_early_buffer, src, len, paddr, enc); 133 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); 134 } else { 135 memcpy(sme_early_buffer, src, len); 136 memcpy(dst, sme_early_buffer, len); 137 } 138 139 early_memunmap(dst, len); 140 early_memunmap(src, len); 141 142 paddr += len; 143 size -= len; 144 } 145 } 146 147 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 148 { 149 __sme_early_enc_dec(paddr, size, true); 150 } 151 152 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 153 { 154 __sme_early_enc_dec(paddr, size, false); 155 } 156 157 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 158 bool map) 159 { 160 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 161 pmdval_t pmd_flags, pmd; 162 163 /* Use early_pmd_flags but remove the encryption mask */ 164 pmd_flags = __sme_clr(early_pmd_flags); 165 166 do { 167 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 168 __early_make_pgtable((unsigned long)vaddr, pmd); 169 170 vaddr += PMD_SIZE; 171 paddr += PMD_SIZE; 172 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 173 } while (size); 174 175 flush_tlb_local(); 176 } 177 178 void __init sme_unmap_bootdata(char *real_mode_data) 179 { 180 struct boot_params *boot_data; 181 unsigned long cmdline_paddr; 182 183 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 184 return; 185 186 /* Get the command line address before unmapping the real_mode_data */ 187 boot_data = (struct boot_params *)real_mode_data; 188 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 189 190 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 191 192 if (!cmdline_paddr) 193 return; 194 195 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 196 } 197 198 void __init sme_map_bootdata(char *real_mode_data) 199 { 200 struct boot_params *boot_data; 201 unsigned long cmdline_paddr; 202 203 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 204 return; 205 206 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 207 208 /* Get the command line address after mapping the real_mode_data */ 209 boot_data = (struct boot_params *)real_mode_data; 210 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 211 212 if (!cmdline_paddr) 213 return; 214 215 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 216 } 217 218 void __init sev_setup_arch(void) 219 { 220 phys_addr_t total_mem = memblock_phys_mem_size(); 221 unsigned long size; 222 223 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 224 return; 225 226 /* 227 * For SEV, all DMA has to occur via shared/unencrypted pages. 228 * SEV uses SWIOTLB to make this happen without changing device 229 * drivers. However, depending on the workload being run, the 230 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 231 * run out of buffers for DMA, resulting in I/O errors and/or 232 * performance degradation especially with high I/O workloads. 233 * 234 * Adjust the default size of SWIOTLB for SEV guests using 235 * a percentage of guest memory for SWIOTLB buffers. 236 * Also, as the SWIOTLB bounce buffer memory is allocated 237 * from low memory, ensure that the adjusted size is within 238 * the limits of low available memory. 239 * 240 * The percentage of guest memory used here for SWIOTLB buffers 241 * is more of an approximation of the static adjustment which 242 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 243 */ 244 size = total_mem * 6 / 100; 245 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 246 swiotlb_adjust_size(size); 247 248 /* Set restricted memory access for virtio. */ 249 virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc); 250 } 251 252 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 253 { 254 unsigned long pfn = 0; 255 pgprot_t prot; 256 257 switch (level) { 258 case PG_LEVEL_4K: 259 pfn = pte_pfn(*kpte); 260 prot = pte_pgprot(*kpte); 261 break; 262 case PG_LEVEL_2M: 263 pfn = pmd_pfn(*(pmd_t *)kpte); 264 prot = pmd_pgprot(*(pmd_t *)kpte); 265 break; 266 case PG_LEVEL_1G: 267 pfn = pud_pfn(*(pud_t *)kpte); 268 prot = pud_pgprot(*(pud_t *)kpte); 269 break; 270 default: 271 WARN_ONCE(1, "Invalid level for kpte\n"); 272 return 0; 273 } 274 275 if (ret_prot) 276 *ret_prot = prot; 277 278 return pfn; 279 } 280 281 static bool amd_enc_tlb_flush_required(bool enc) 282 { 283 return true; 284 } 285 286 static bool amd_enc_cache_flush_required(void) 287 { 288 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); 289 } 290 291 static void enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 292 { 293 #ifdef CONFIG_PARAVIRT 294 unsigned long sz = npages << PAGE_SHIFT; 295 unsigned long vaddr_end = vaddr + sz; 296 297 while (vaddr < vaddr_end) { 298 int psize, pmask, level; 299 unsigned long pfn; 300 pte_t *kpte; 301 302 kpte = lookup_address(vaddr, &level); 303 if (!kpte || pte_none(*kpte)) { 304 WARN_ONCE(1, "kpte lookup for vaddr\n"); 305 return; 306 } 307 308 pfn = pg_level_to_pfn(level, kpte, NULL); 309 if (!pfn) 310 continue; 311 312 psize = page_level_size(level); 313 pmask = page_level_mask(level); 314 315 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 316 317 vaddr = (vaddr & pmask) + psize; 318 } 319 #endif 320 } 321 322 static void amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) 323 { 324 /* 325 * To maintain the security guarantees of SEV-SNP guests, make sure 326 * to invalidate the memory before encryption attribute is cleared. 327 */ 328 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) 329 snp_set_memory_shared(vaddr, npages); 330 } 331 332 /* Return true unconditionally: return value doesn't matter for the SEV side */ 333 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) 334 { 335 /* 336 * After memory is mapped encrypted in the page table, validate it 337 * so that it is consistent with the page table updates. 338 */ 339 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) 340 snp_set_memory_private(vaddr, npages); 341 342 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 343 enc_dec_hypercall(vaddr, npages, enc); 344 345 return true; 346 } 347 348 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 349 { 350 pgprot_t old_prot, new_prot; 351 unsigned long pfn, pa, size; 352 pte_t new_pte; 353 354 pfn = pg_level_to_pfn(level, kpte, &old_prot); 355 if (!pfn) 356 return; 357 358 new_prot = old_prot; 359 if (enc) 360 pgprot_val(new_prot) |= _PAGE_ENC; 361 else 362 pgprot_val(new_prot) &= ~_PAGE_ENC; 363 364 /* If prot is same then do nothing. */ 365 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 366 return; 367 368 pa = pfn << PAGE_SHIFT; 369 size = page_level_size(level); 370 371 /* 372 * We are going to perform in-place en-/decryption and change the 373 * physical page attribute from C=1 to C=0 or vice versa. Flush the 374 * caches to ensure that data gets accessed with the correct C-bit. 375 */ 376 clflush_cache_range(__va(pa), size); 377 378 /* Encrypt/decrypt the contents in-place */ 379 if (enc) { 380 sme_early_encrypt(pa, size); 381 } else { 382 sme_early_decrypt(pa, size); 383 384 /* 385 * ON SNP, the page state in the RMP table must happen 386 * before the page table updates. 387 */ 388 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1); 389 } 390 391 /* Change the page encryption mask. */ 392 new_pte = pfn_pte(pfn, new_prot); 393 set_pte_atomic(kpte, new_pte); 394 395 /* 396 * If page is set encrypted in the page table, then update the RMP table to 397 * add this page as private. 398 */ 399 if (enc) 400 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1); 401 } 402 403 static int __init early_set_memory_enc_dec(unsigned long vaddr, 404 unsigned long size, bool enc) 405 { 406 unsigned long vaddr_end, vaddr_next, start; 407 unsigned long psize, pmask; 408 int split_page_size_mask; 409 int level, ret; 410 pte_t *kpte; 411 412 start = vaddr; 413 vaddr_next = vaddr; 414 vaddr_end = vaddr + size; 415 416 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 417 kpte = lookup_address(vaddr, &level); 418 if (!kpte || pte_none(*kpte)) { 419 ret = 1; 420 goto out; 421 } 422 423 if (level == PG_LEVEL_4K) { 424 __set_clr_pte_enc(kpte, level, enc); 425 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 426 continue; 427 } 428 429 psize = page_level_size(level); 430 pmask = page_level_mask(level); 431 432 /* 433 * Check whether we can change the large page in one go. 434 * We request a split when the address is not aligned and 435 * the number of pages to set/clear encryption bit is smaller 436 * than the number of pages in the large page. 437 */ 438 if (vaddr == (vaddr & pmask) && 439 ((vaddr_end - vaddr) >= psize)) { 440 __set_clr_pte_enc(kpte, level, enc); 441 vaddr_next = (vaddr & pmask) + psize; 442 continue; 443 } 444 445 /* 446 * The virtual address is part of a larger page, create the next 447 * level page table mapping (4K or 2M). If it is part of a 2M 448 * page then we request a split of the large page into 4K 449 * chunks. A 1GB large page is split into 2M pages, resp. 450 */ 451 if (level == PG_LEVEL_2M) 452 split_page_size_mask = 0; 453 else 454 split_page_size_mask = 1 << PG_LEVEL_2M; 455 456 /* 457 * kernel_physical_mapping_change() does not flush the TLBs, so 458 * a TLB flush is required after we exit from the for loop. 459 */ 460 kernel_physical_mapping_change(__pa(vaddr & pmask), 461 __pa((vaddr_end & pmask) + psize), 462 split_page_size_mask); 463 } 464 465 ret = 0; 466 467 early_set_mem_enc_dec_hypercall(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc); 468 out: 469 __flush_tlb_all(); 470 return ret; 471 } 472 473 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 474 { 475 return early_set_memory_enc_dec(vaddr, size, false); 476 } 477 478 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 479 { 480 return early_set_memory_enc_dec(vaddr, size, true); 481 } 482 483 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 484 { 485 enc_dec_hypercall(vaddr, npages, enc); 486 } 487 488 void __init sme_early_init(void) 489 { 490 if (!sme_me_mask) 491 return; 492 493 early_pmd_flags = __sme_set(early_pmd_flags); 494 495 __supported_pte_mask = __sme_set(__supported_pte_mask); 496 497 /* Update the protection map with memory encryption mask */ 498 add_encrypt_protection_map(); 499 500 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; 501 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; 502 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; 503 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; 504 } 505 506 void __init mem_encrypt_free_decrypted_mem(void) 507 { 508 unsigned long vaddr, vaddr_end, npages; 509 int r; 510 511 vaddr = (unsigned long)__start_bss_decrypted_unused; 512 vaddr_end = (unsigned long)__end_bss_decrypted; 513 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 514 515 /* 516 * If the unused memory range was mapped decrypted, change the encryption 517 * attribute from decrypted to encrypted before freeing it. Base the 518 * re-encryption on the same condition used for the decryption in 519 * sme_postprocess_startup(). Higher level abstractions, such as 520 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM 521 * using vTOM, where sme_me_mask is always zero. 522 */ 523 if (sme_me_mask) { 524 r = set_memory_encrypted(vaddr, npages); 525 if (r) { 526 pr_warn("failed to free unused decrypted pages\n"); 527 return; 528 } 529 } 530 531 free_init_pages("unused decrypted", vaddr, vaddr_end); 532 } 533