1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/virtio_config.h> 23 #include <linux/virtio_anchor.h> 24 #include <linux/cc_platform.h> 25 26 #include <asm/tlbflush.h> 27 #include <asm/fixmap.h> 28 #include <asm/setup.h> 29 #include <asm/mem_encrypt.h> 30 #include <asm/bootparam.h> 31 #include <asm/set_memory.h> 32 #include <asm/cacheflush.h> 33 #include <asm/processor-flags.h> 34 #include <asm/msr.h> 35 #include <asm/cmdline.h> 36 #include <asm/sev.h> 37 #include <asm/ia32.h> 38 39 #include "mm_internal.h" 40 41 /* 42 * Since SME related variables are set early in the boot process they must 43 * reside in the .data section so as not to be zeroed out when the .bss 44 * section is later cleared. 45 */ 46 u64 sme_me_mask __section(".data") = 0; 47 u64 sev_status __section(".data") = 0; 48 u64 sev_check_data __section(".data") = 0; 49 EXPORT_SYMBOL(sme_me_mask); 50 51 /* Buffer used for early in-place encryption by BSP, no locking needed */ 52 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 53 54 /* 55 * SNP-specific routine which needs to additionally change the page state from 56 * private to shared before copying the data from the source to destination and 57 * restore after the copy. 58 */ 59 static inline void __init snp_memcpy(void *dst, void *src, size_t sz, 60 unsigned long paddr, bool decrypt) 61 { 62 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 63 64 if (decrypt) { 65 /* 66 * @paddr needs to be accessed decrypted, mark the page shared in 67 * the RMP table before copying it. 68 */ 69 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); 70 71 memcpy(dst, src, sz); 72 73 /* Restore the page state after the memcpy. */ 74 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); 75 } else { 76 /* 77 * @paddr need to be accessed encrypted, no need for the page state 78 * change. 79 */ 80 memcpy(dst, src, sz); 81 } 82 } 83 84 /* 85 * This routine does not change the underlying encryption setting of the 86 * page(s) that map this memory. It assumes that eventually the memory is 87 * meant to be accessed as either encrypted or decrypted but the contents 88 * are currently not in the desired state. 89 * 90 * This routine follows the steps outlined in the AMD64 Architecture 91 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 92 */ 93 static void __init __sme_early_enc_dec(resource_size_t paddr, 94 unsigned long size, bool enc) 95 { 96 void *src, *dst; 97 size_t len; 98 99 if (!sme_me_mask) 100 return; 101 102 wbinvd(); 103 104 /* 105 * There are limited number of early mapping slots, so map (at most) 106 * one page at time. 107 */ 108 while (size) { 109 len = min_t(size_t, sizeof(sme_early_buffer), size); 110 111 /* 112 * Create mappings for the current and desired format of 113 * the memory. Use a write-protected mapping for the source. 114 */ 115 src = enc ? early_memremap_decrypted_wp(paddr, len) : 116 early_memremap_encrypted_wp(paddr, len); 117 118 dst = enc ? early_memremap_encrypted(paddr, len) : 119 early_memremap_decrypted(paddr, len); 120 121 /* 122 * If a mapping can't be obtained to perform the operation, 123 * then eventual access of that area in the desired mode 124 * will cause a crash. 125 */ 126 BUG_ON(!src || !dst); 127 128 /* 129 * Use a temporary buffer, of cache-line multiple size, to 130 * avoid data corruption as documented in the APM. 131 */ 132 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 133 snp_memcpy(sme_early_buffer, src, len, paddr, enc); 134 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); 135 } else { 136 memcpy(sme_early_buffer, src, len); 137 memcpy(dst, sme_early_buffer, len); 138 } 139 140 early_memunmap(dst, len); 141 early_memunmap(src, len); 142 143 paddr += len; 144 size -= len; 145 } 146 } 147 148 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 149 { 150 __sme_early_enc_dec(paddr, size, true); 151 } 152 153 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 154 { 155 __sme_early_enc_dec(paddr, size, false); 156 } 157 158 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 159 bool map) 160 { 161 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 162 pmdval_t pmd_flags, pmd; 163 164 /* Use early_pmd_flags but remove the encryption mask */ 165 pmd_flags = __sme_clr(early_pmd_flags); 166 167 do { 168 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 169 __early_make_pgtable((unsigned long)vaddr, pmd); 170 171 vaddr += PMD_SIZE; 172 paddr += PMD_SIZE; 173 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 174 } while (size); 175 176 flush_tlb_local(); 177 } 178 179 void __init sme_unmap_bootdata(char *real_mode_data) 180 { 181 struct boot_params *boot_data; 182 unsigned long cmdline_paddr; 183 184 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 185 return; 186 187 /* Get the command line address before unmapping the real_mode_data */ 188 boot_data = (struct boot_params *)real_mode_data; 189 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 190 191 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 192 193 if (!cmdline_paddr) 194 return; 195 196 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 197 } 198 199 void __init sme_map_bootdata(char *real_mode_data) 200 { 201 struct boot_params *boot_data; 202 unsigned long cmdline_paddr; 203 204 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 205 return; 206 207 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 208 209 /* Get the command line address after mapping the real_mode_data */ 210 boot_data = (struct boot_params *)real_mode_data; 211 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 212 213 if (!cmdline_paddr) 214 return; 215 216 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 217 } 218 219 void __init sev_setup_arch(void) 220 { 221 phys_addr_t total_mem = memblock_phys_mem_size(); 222 unsigned long size; 223 224 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 225 return; 226 227 /* 228 * For SEV, all DMA has to occur via shared/unencrypted pages. 229 * SEV uses SWIOTLB to make this happen without changing device 230 * drivers. However, depending on the workload being run, the 231 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 232 * run out of buffers for DMA, resulting in I/O errors and/or 233 * performance degradation especially with high I/O workloads. 234 * 235 * Adjust the default size of SWIOTLB for SEV guests using 236 * a percentage of guest memory for SWIOTLB buffers. 237 * Also, as the SWIOTLB bounce buffer memory is allocated 238 * from low memory, ensure that the adjusted size is within 239 * the limits of low available memory. 240 * 241 * The percentage of guest memory used here for SWIOTLB buffers 242 * is more of an approximation of the static adjustment which 243 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 244 */ 245 size = total_mem * 6 / 100; 246 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 247 swiotlb_adjust_size(size); 248 249 /* Set restricted memory access for virtio. */ 250 virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc); 251 } 252 253 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 254 { 255 unsigned long pfn = 0; 256 pgprot_t prot; 257 258 switch (level) { 259 case PG_LEVEL_4K: 260 pfn = pte_pfn(*kpte); 261 prot = pte_pgprot(*kpte); 262 break; 263 case PG_LEVEL_2M: 264 pfn = pmd_pfn(*(pmd_t *)kpte); 265 prot = pmd_pgprot(*(pmd_t *)kpte); 266 break; 267 case PG_LEVEL_1G: 268 pfn = pud_pfn(*(pud_t *)kpte); 269 prot = pud_pgprot(*(pud_t *)kpte); 270 break; 271 default: 272 WARN_ONCE(1, "Invalid level for kpte\n"); 273 return 0; 274 } 275 276 if (ret_prot) 277 *ret_prot = prot; 278 279 return pfn; 280 } 281 282 static bool amd_enc_tlb_flush_required(bool enc) 283 { 284 return true; 285 } 286 287 static bool amd_enc_cache_flush_required(void) 288 { 289 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); 290 } 291 292 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) 293 { 294 #ifdef CONFIG_PARAVIRT 295 unsigned long vaddr_end = vaddr + size; 296 297 while (vaddr < vaddr_end) { 298 int psize, pmask, level; 299 unsigned long pfn; 300 pte_t *kpte; 301 302 kpte = lookup_address(vaddr, &level); 303 if (!kpte || pte_none(*kpte)) { 304 WARN_ONCE(1, "kpte lookup for vaddr\n"); 305 return; 306 } 307 308 pfn = pg_level_to_pfn(level, kpte, NULL); 309 if (!pfn) 310 continue; 311 312 psize = page_level_size(level); 313 pmask = page_level_mask(level); 314 315 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 316 317 vaddr = (vaddr & pmask) + psize; 318 } 319 #endif 320 } 321 322 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) 323 { 324 /* 325 * To maintain the security guarantees of SEV-SNP guests, make sure 326 * to invalidate the memory before encryption attribute is cleared. 327 */ 328 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) 329 snp_set_memory_shared(vaddr, npages); 330 331 return true; 332 } 333 334 /* Return true unconditionally: return value doesn't matter for the SEV side */ 335 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) 336 { 337 /* 338 * After memory is mapped encrypted in the page table, validate it 339 * so that it is consistent with the page table updates. 340 */ 341 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) 342 snp_set_memory_private(vaddr, npages); 343 344 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 345 enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc); 346 347 return true; 348 } 349 350 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 351 { 352 pgprot_t old_prot, new_prot; 353 unsigned long pfn, pa, size; 354 pte_t new_pte; 355 356 pfn = pg_level_to_pfn(level, kpte, &old_prot); 357 if (!pfn) 358 return; 359 360 new_prot = old_prot; 361 if (enc) 362 pgprot_val(new_prot) |= _PAGE_ENC; 363 else 364 pgprot_val(new_prot) &= ~_PAGE_ENC; 365 366 /* If prot is same then do nothing. */ 367 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 368 return; 369 370 pa = pfn << PAGE_SHIFT; 371 size = page_level_size(level); 372 373 /* 374 * We are going to perform in-place en-/decryption and change the 375 * physical page attribute from C=1 to C=0 or vice versa. Flush the 376 * caches to ensure that data gets accessed with the correct C-bit. 377 */ 378 clflush_cache_range(__va(pa), size); 379 380 /* Encrypt/decrypt the contents in-place */ 381 if (enc) { 382 sme_early_encrypt(pa, size); 383 } else { 384 sme_early_decrypt(pa, size); 385 386 /* 387 * ON SNP, the page state in the RMP table must happen 388 * before the page table updates. 389 */ 390 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1); 391 } 392 393 /* Change the page encryption mask. */ 394 new_pte = pfn_pte(pfn, new_prot); 395 set_pte_atomic(kpte, new_pte); 396 397 /* 398 * If page is set encrypted in the page table, then update the RMP table to 399 * add this page as private. 400 */ 401 if (enc) 402 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1); 403 } 404 405 static int __init early_set_memory_enc_dec(unsigned long vaddr, 406 unsigned long size, bool enc) 407 { 408 unsigned long vaddr_end, vaddr_next, start; 409 unsigned long psize, pmask; 410 int split_page_size_mask; 411 int level, ret; 412 pte_t *kpte; 413 414 start = vaddr; 415 vaddr_next = vaddr; 416 vaddr_end = vaddr + size; 417 418 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 419 kpte = lookup_address(vaddr, &level); 420 if (!kpte || pte_none(*kpte)) { 421 ret = 1; 422 goto out; 423 } 424 425 if (level == PG_LEVEL_4K) { 426 __set_clr_pte_enc(kpte, level, enc); 427 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 428 continue; 429 } 430 431 psize = page_level_size(level); 432 pmask = page_level_mask(level); 433 434 /* 435 * Check whether we can change the large page in one go. 436 * We request a split when the address is not aligned and 437 * the number of pages to set/clear encryption bit is smaller 438 * than the number of pages in the large page. 439 */ 440 if (vaddr == (vaddr & pmask) && 441 ((vaddr_end - vaddr) >= psize)) { 442 __set_clr_pte_enc(kpte, level, enc); 443 vaddr_next = (vaddr & pmask) + psize; 444 continue; 445 } 446 447 /* 448 * The virtual address is part of a larger page, create the next 449 * level page table mapping (4K or 2M). If it is part of a 2M 450 * page then we request a split of the large page into 4K 451 * chunks. A 1GB large page is split into 2M pages, resp. 452 */ 453 if (level == PG_LEVEL_2M) 454 split_page_size_mask = 0; 455 else 456 split_page_size_mask = 1 << PG_LEVEL_2M; 457 458 /* 459 * kernel_physical_mapping_change() does not flush the TLBs, so 460 * a TLB flush is required after we exit from the for loop. 461 */ 462 kernel_physical_mapping_change(__pa(vaddr & pmask), 463 __pa((vaddr_end & pmask) + psize), 464 split_page_size_mask); 465 } 466 467 ret = 0; 468 469 early_set_mem_enc_dec_hypercall(start, size, enc); 470 out: 471 __flush_tlb_all(); 472 return ret; 473 } 474 475 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 476 { 477 return early_set_memory_enc_dec(vaddr, size, false); 478 } 479 480 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 481 { 482 return early_set_memory_enc_dec(vaddr, size, true); 483 } 484 485 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) 486 { 487 enc_dec_hypercall(vaddr, size, enc); 488 } 489 490 void __init sme_early_init(void) 491 { 492 if (!sme_me_mask) 493 return; 494 495 early_pmd_flags = __sme_set(early_pmd_flags); 496 497 __supported_pte_mask = __sme_set(__supported_pte_mask); 498 499 /* Update the protection map with memory encryption mask */ 500 add_encrypt_protection_map(); 501 502 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; 503 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; 504 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; 505 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; 506 507 /* 508 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the 509 * parallel bringup low level code. That raises #VC which cannot be 510 * handled there. 511 * It does not provide a RDMSR GHCB protocol so the early startup 512 * code cannot directly communicate with the secure firmware. The 513 * alternative solution to retrieve the APIC ID via CPUID(0xb), 514 * which is covered by the GHCB protocol, is not viable either 515 * because there is no enforcement of the CPUID(0xb) provided 516 * "initial" APIC ID to be the same as the real APIC ID. 517 * Disable parallel bootup. 518 */ 519 if (sev_status & MSR_AMD64_SEV_ES_ENABLED) 520 x86_cpuinit.parallel_bringup = false; 521 522 /* 523 * The VMM is capable of injecting interrupt 0x80 and triggering the 524 * compatibility syscall path. 525 * 526 * By default, the 32-bit emulation is disabled in order to ensure 527 * the safety of the VM. 528 */ 529 if (sev_status & MSR_AMD64_SEV_ENABLED) 530 ia32_disable(); 531 532 /* 533 * Override init functions that scan the ROM region in SEV-SNP guests, 534 * as this memory is not pre-validated and would thus cause a crash. 535 */ 536 if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) { 537 x86_init.mpparse.find_smp_config = x86_init_noop; 538 x86_init.pci.init_irq = x86_init_noop; 539 x86_init.resources.probe_roms = x86_init_noop; 540 541 /* 542 * DMI setup behavior for SEV-SNP guests depends on 543 * efi_enabled(EFI_CONFIG_TABLES), which hasn't been 544 * parsed yet. snp_dmi_setup() will run after that 545 * parsing has happened. 546 */ 547 x86_init.resources.dmi_setup = snp_dmi_setup; 548 } 549 } 550 551 void __init mem_encrypt_free_decrypted_mem(void) 552 { 553 unsigned long vaddr, vaddr_end, npages; 554 int r; 555 556 vaddr = (unsigned long)__start_bss_decrypted_unused; 557 vaddr_end = (unsigned long)__end_bss_decrypted; 558 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 559 560 /* 561 * If the unused memory range was mapped decrypted, change the encryption 562 * attribute from decrypted to encrypted before freeing it. Base the 563 * re-encryption on the same condition used for the decryption in 564 * sme_postprocess_startup(). Higher level abstractions, such as 565 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM 566 * using vTOM, where sme_me_mask is always zero. 567 */ 568 if (sme_me_mask) { 569 r = set_memory_encrypted(vaddr, npages); 570 if (r) { 571 pr_warn("failed to free unused decrypted pages\n"); 572 return; 573 } 574 } 575 576 free_init_pages("unused decrypted", vaddr, vaddr_end); 577 } 578