xref: /openbmc/linux/arch/x86/mm/mem_encrypt_amd.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/virtio_config.h>
23 #include <linux/virtio_anchor.h>
24 #include <linux/cc_platform.h>
25 
26 #include <asm/tlbflush.h>
27 #include <asm/fixmap.h>
28 #include <asm/setup.h>
29 #include <asm/mem_encrypt.h>
30 #include <asm/bootparam.h>
31 #include <asm/set_memory.h>
32 #include <asm/cacheflush.h>
33 #include <asm/processor-flags.h>
34 #include <asm/msr.h>
35 #include <asm/cmdline.h>
36 #include <asm/sev.h>
37 
38 #include "mm_internal.h"
39 
40 /*
41  * Since SME related variables are set early in the boot process they must
42  * reside in the .data section so as not to be zeroed out when the .bss
43  * section is later cleared.
44  */
45 u64 sme_me_mask __section(".data") = 0;
46 u64 sev_status __section(".data") = 0;
47 u64 sev_check_data __section(".data") = 0;
48 EXPORT_SYMBOL(sme_me_mask);
49 
50 /* Buffer used for early in-place encryption by BSP, no locking needed */
51 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
52 
53 /*
54  * SNP-specific routine which needs to additionally change the page state from
55  * private to shared before copying the data from the source to destination and
56  * restore after the copy.
57  */
58 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
59 				     unsigned long paddr, bool decrypt)
60 {
61 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
62 
63 	if (decrypt) {
64 		/*
65 		 * @paddr needs to be accessed decrypted, mark the page shared in
66 		 * the RMP table before copying it.
67 		 */
68 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
69 
70 		memcpy(dst, src, sz);
71 
72 		/* Restore the page state after the memcpy. */
73 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
74 	} else {
75 		/*
76 		 * @paddr need to be accessed encrypted, no need for the page state
77 		 * change.
78 		 */
79 		memcpy(dst, src, sz);
80 	}
81 }
82 
83 /*
84  * This routine does not change the underlying encryption setting of the
85  * page(s) that map this memory. It assumes that eventually the memory is
86  * meant to be accessed as either encrypted or decrypted but the contents
87  * are currently not in the desired state.
88  *
89  * This routine follows the steps outlined in the AMD64 Architecture
90  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
91  */
92 static void __init __sme_early_enc_dec(resource_size_t paddr,
93 				       unsigned long size, bool enc)
94 {
95 	void *src, *dst;
96 	size_t len;
97 
98 	if (!sme_me_mask)
99 		return;
100 
101 	wbinvd();
102 
103 	/*
104 	 * There are limited number of early mapping slots, so map (at most)
105 	 * one page at time.
106 	 */
107 	while (size) {
108 		len = min_t(size_t, sizeof(sme_early_buffer), size);
109 
110 		/*
111 		 * Create mappings for the current and desired format of
112 		 * the memory. Use a write-protected mapping for the source.
113 		 */
114 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
115 			    early_memremap_encrypted_wp(paddr, len);
116 
117 		dst = enc ? early_memremap_encrypted(paddr, len) :
118 			    early_memremap_decrypted(paddr, len);
119 
120 		/*
121 		 * If a mapping can't be obtained to perform the operation,
122 		 * then eventual access of that area in the desired mode
123 		 * will cause a crash.
124 		 */
125 		BUG_ON(!src || !dst);
126 
127 		/*
128 		 * Use a temporary buffer, of cache-line multiple size, to
129 		 * avoid data corruption as documented in the APM.
130 		 */
131 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
132 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
133 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
134 		} else {
135 			memcpy(sme_early_buffer, src, len);
136 			memcpy(dst, sme_early_buffer, len);
137 		}
138 
139 		early_memunmap(dst, len);
140 		early_memunmap(src, len);
141 
142 		paddr += len;
143 		size -= len;
144 	}
145 }
146 
147 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
148 {
149 	__sme_early_enc_dec(paddr, size, true);
150 }
151 
152 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
153 {
154 	__sme_early_enc_dec(paddr, size, false);
155 }
156 
157 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
158 					     bool map)
159 {
160 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
161 	pmdval_t pmd_flags, pmd;
162 
163 	/* Use early_pmd_flags but remove the encryption mask */
164 	pmd_flags = __sme_clr(early_pmd_flags);
165 
166 	do {
167 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
168 		__early_make_pgtable((unsigned long)vaddr, pmd);
169 
170 		vaddr += PMD_SIZE;
171 		paddr += PMD_SIZE;
172 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
173 	} while (size);
174 
175 	flush_tlb_local();
176 }
177 
178 void __init sme_unmap_bootdata(char *real_mode_data)
179 {
180 	struct boot_params *boot_data;
181 	unsigned long cmdline_paddr;
182 
183 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
184 		return;
185 
186 	/* Get the command line address before unmapping the real_mode_data */
187 	boot_data = (struct boot_params *)real_mode_data;
188 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
189 
190 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
191 
192 	if (!cmdline_paddr)
193 		return;
194 
195 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
196 }
197 
198 void __init sme_map_bootdata(char *real_mode_data)
199 {
200 	struct boot_params *boot_data;
201 	unsigned long cmdline_paddr;
202 
203 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
204 		return;
205 
206 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
207 
208 	/* Get the command line address after mapping the real_mode_data */
209 	boot_data = (struct boot_params *)real_mode_data;
210 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
211 
212 	if (!cmdline_paddr)
213 		return;
214 
215 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
216 }
217 
218 void __init sev_setup_arch(void)
219 {
220 	phys_addr_t total_mem = memblock_phys_mem_size();
221 	unsigned long size;
222 
223 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
224 		return;
225 
226 	/*
227 	 * For SEV, all DMA has to occur via shared/unencrypted pages.
228 	 * SEV uses SWIOTLB to make this happen without changing device
229 	 * drivers. However, depending on the workload being run, the
230 	 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
231 	 * run out of buffers for DMA, resulting in I/O errors and/or
232 	 * performance degradation especially with high I/O workloads.
233 	 *
234 	 * Adjust the default size of SWIOTLB for SEV guests using
235 	 * a percentage of guest memory for SWIOTLB buffers.
236 	 * Also, as the SWIOTLB bounce buffer memory is allocated
237 	 * from low memory, ensure that the adjusted size is within
238 	 * the limits of low available memory.
239 	 *
240 	 * The percentage of guest memory used here for SWIOTLB buffers
241 	 * is more of an approximation of the static adjustment which
242 	 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
243 	 */
244 	size = total_mem * 6 / 100;
245 	size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
246 	swiotlb_adjust_size(size);
247 
248 	/* Set restricted memory access for virtio. */
249 	virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc);
250 }
251 
252 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
253 {
254 	unsigned long pfn = 0;
255 	pgprot_t prot;
256 
257 	switch (level) {
258 	case PG_LEVEL_4K:
259 		pfn = pte_pfn(*kpte);
260 		prot = pte_pgprot(*kpte);
261 		break;
262 	case PG_LEVEL_2M:
263 		pfn = pmd_pfn(*(pmd_t *)kpte);
264 		prot = pmd_pgprot(*(pmd_t *)kpte);
265 		break;
266 	case PG_LEVEL_1G:
267 		pfn = pud_pfn(*(pud_t *)kpte);
268 		prot = pud_pgprot(*(pud_t *)kpte);
269 		break;
270 	default:
271 		WARN_ONCE(1, "Invalid level for kpte\n");
272 		return 0;
273 	}
274 
275 	if (ret_prot)
276 		*ret_prot = prot;
277 
278 	return pfn;
279 }
280 
281 static bool amd_enc_tlb_flush_required(bool enc)
282 {
283 	return true;
284 }
285 
286 static bool amd_enc_cache_flush_required(void)
287 {
288 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
289 }
290 
291 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
292 {
293 #ifdef CONFIG_PARAVIRT
294 	unsigned long vaddr_end = vaddr + size;
295 
296 	while (vaddr < vaddr_end) {
297 		int psize, pmask, level;
298 		unsigned long pfn;
299 		pte_t *kpte;
300 
301 		kpte = lookup_address(vaddr, &level);
302 		if (!kpte || pte_none(*kpte)) {
303 			WARN_ONCE(1, "kpte lookup for vaddr\n");
304 			return;
305 		}
306 
307 		pfn = pg_level_to_pfn(level, kpte, NULL);
308 		if (!pfn)
309 			continue;
310 
311 		psize = page_level_size(level);
312 		pmask = page_level_mask(level);
313 
314 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
315 
316 		vaddr = (vaddr & pmask) + psize;
317 	}
318 #endif
319 }
320 
321 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
322 {
323 	/*
324 	 * To maintain the security guarantees of SEV-SNP guests, make sure
325 	 * to invalidate the memory before encryption attribute is cleared.
326 	 */
327 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
328 		snp_set_memory_shared(vaddr, npages);
329 
330 	return true;
331 }
332 
333 /* Return true unconditionally: return value doesn't matter for the SEV side */
334 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
335 {
336 	/*
337 	 * After memory is mapped encrypted in the page table, validate it
338 	 * so that it is consistent with the page table updates.
339 	 */
340 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
341 		snp_set_memory_private(vaddr, npages);
342 
343 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
344 		enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
345 
346 	return true;
347 }
348 
349 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
350 {
351 	pgprot_t old_prot, new_prot;
352 	unsigned long pfn, pa, size;
353 	pte_t new_pte;
354 
355 	pfn = pg_level_to_pfn(level, kpte, &old_prot);
356 	if (!pfn)
357 		return;
358 
359 	new_prot = old_prot;
360 	if (enc)
361 		pgprot_val(new_prot) |= _PAGE_ENC;
362 	else
363 		pgprot_val(new_prot) &= ~_PAGE_ENC;
364 
365 	/* If prot is same then do nothing. */
366 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
367 		return;
368 
369 	pa = pfn << PAGE_SHIFT;
370 	size = page_level_size(level);
371 
372 	/*
373 	 * We are going to perform in-place en-/decryption and change the
374 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
375 	 * caches to ensure that data gets accessed with the correct C-bit.
376 	 */
377 	clflush_cache_range(__va(pa), size);
378 
379 	/* Encrypt/decrypt the contents in-place */
380 	if (enc) {
381 		sme_early_encrypt(pa, size);
382 	} else {
383 		sme_early_decrypt(pa, size);
384 
385 		/*
386 		 * ON SNP, the page state in the RMP table must happen
387 		 * before the page table updates.
388 		 */
389 		early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
390 	}
391 
392 	/* Change the page encryption mask. */
393 	new_pte = pfn_pte(pfn, new_prot);
394 	set_pte_atomic(kpte, new_pte);
395 
396 	/*
397 	 * If page is set encrypted in the page table, then update the RMP table to
398 	 * add this page as private.
399 	 */
400 	if (enc)
401 		early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
402 }
403 
404 static int __init early_set_memory_enc_dec(unsigned long vaddr,
405 					   unsigned long size, bool enc)
406 {
407 	unsigned long vaddr_end, vaddr_next, start;
408 	unsigned long psize, pmask;
409 	int split_page_size_mask;
410 	int level, ret;
411 	pte_t *kpte;
412 
413 	start = vaddr;
414 	vaddr_next = vaddr;
415 	vaddr_end = vaddr + size;
416 
417 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
418 		kpte = lookup_address(vaddr, &level);
419 		if (!kpte || pte_none(*kpte)) {
420 			ret = 1;
421 			goto out;
422 		}
423 
424 		if (level == PG_LEVEL_4K) {
425 			__set_clr_pte_enc(kpte, level, enc);
426 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
427 			continue;
428 		}
429 
430 		psize = page_level_size(level);
431 		pmask = page_level_mask(level);
432 
433 		/*
434 		 * Check whether we can change the large page in one go.
435 		 * We request a split when the address is not aligned and
436 		 * the number of pages to set/clear encryption bit is smaller
437 		 * than the number of pages in the large page.
438 		 */
439 		if (vaddr == (vaddr & pmask) &&
440 		    ((vaddr_end - vaddr) >= psize)) {
441 			__set_clr_pte_enc(kpte, level, enc);
442 			vaddr_next = (vaddr & pmask) + psize;
443 			continue;
444 		}
445 
446 		/*
447 		 * The virtual address is part of a larger page, create the next
448 		 * level page table mapping (4K or 2M). If it is part of a 2M
449 		 * page then we request a split of the large page into 4K
450 		 * chunks. A 1GB large page is split into 2M pages, resp.
451 		 */
452 		if (level == PG_LEVEL_2M)
453 			split_page_size_mask = 0;
454 		else
455 			split_page_size_mask = 1 << PG_LEVEL_2M;
456 
457 		/*
458 		 * kernel_physical_mapping_change() does not flush the TLBs, so
459 		 * a TLB flush is required after we exit from the for loop.
460 		 */
461 		kernel_physical_mapping_change(__pa(vaddr & pmask),
462 					       __pa((vaddr_end & pmask) + psize),
463 					       split_page_size_mask);
464 	}
465 
466 	ret = 0;
467 
468 	early_set_mem_enc_dec_hypercall(start, size, enc);
469 out:
470 	__flush_tlb_all();
471 	return ret;
472 }
473 
474 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
475 {
476 	return early_set_memory_enc_dec(vaddr, size, false);
477 }
478 
479 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
480 {
481 	return early_set_memory_enc_dec(vaddr, size, true);
482 }
483 
484 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
485 {
486 	enc_dec_hypercall(vaddr, size, enc);
487 }
488 
489 void __init sme_early_init(void)
490 {
491 	if (!sme_me_mask)
492 		return;
493 
494 	early_pmd_flags = __sme_set(early_pmd_flags);
495 
496 	__supported_pte_mask = __sme_set(__supported_pte_mask);
497 
498 	/* Update the protection map with memory encryption mask */
499 	add_encrypt_protection_map();
500 
501 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
502 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
503 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
504 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
505 
506 	/*
507 	 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
508 	 * parallel bringup low level code. That raises #VC which cannot be
509 	 * handled there.
510 	 * It does not provide a RDMSR GHCB protocol so the early startup
511 	 * code cannot directly communicate with the secure firmware. The
512 	 * alternative solution to retrieve the APIC ID via CPUID(0xb),
513 	 * which is covered by the GHCB protocol, is not viable either
514 	 * because there is no enforcement of the CPUID(0xb) provided
515 	 * "initial" APIC ID to be the same as the real APIC ID.
516 	 * Disable parallel bootup.
517 	 */
518 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
519 		x86_cpuinit.parallel_bringup = false;
520 }
521 
522 void __init mem_encrypt_free_decrypted_mem(void)
523 {
524 	unsigned long vaddr, vaddr_end, npages;
525 	int r;
526 
527 	vaddr = (unsigned long)__start_bss_decrypted_unused;
528 	vaddr_end = (unsigned long)__end_bss_decrypted;
529 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
530 
531 	/*
532 	 * If the unused memory range was mapped decrypted, change the encryption
533 	 * attribute from decrypted to encrypted before freeing it. Base the
534 	 * re-encryption on the same condition used for the decryption in
535 	 * sme_postprocess_startup(). Higher level abstractions, such as
536 	 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
537 	 * using vTOM, where sme_me_mask is always zero.
538 	 */
539 	if (sme_me_mask) {
540 		r = set_memory_encrypted(vaddr, npages);
541 		if (r) {
542 			pr_warn("failed to free unused decrypted pages\n");
543 			return;
544 		}
545 	}
546 
547 	free_init_pages("unused decrypted", vaddr, vaddr_end);
548 }
549