xref: /openbmc/linux/arch/x86/mm/mem_encrypt_amd.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/virtio_config.h>
23 #include <linux/cc_platform.h>
24 #include <linux/platform-feature.h>
25 
26 #include <asm/tlbflush.h>
27 #include <asm/fixmap.h>
28 #include <asm/setup.h>
29 #include <asm/bootparam.h>
30 #include <asm/set_memory.h>
31 #include <asm/cacheflush.h>
32 #include <asm/processor-flags.h>
33 #include <asm/msr.h>
34 #include <asm/cmdline.h>
35 #include <asm/sev.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Since SME related variables are set early in the boot process they must
41  * reside in the .data section so as not to be zeroed out when the .bss
42  * section is later cleared.
43  */
44 u64 sme_me_mask __section(".data") = 0;
45 u64 sev_status __section(".data") = 0;
46 u64 sev_check_data __section(".data") = 0;
47 EXPORT_SYMBOL(sme_me_mask);
48 
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
51 
52 /*
53  * SNP-specific routine which needs to additionally change the page state from
54  * private to shared before copying the data from the source to destination and
55  * restore after the copy.
56  */
57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
58 				     unsigned long paddr, bool decrypt)
59 {
60 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
61 
62 	if (decrypt) {
63 		/*
64 		 * @paddr needs to be accessed decrypted, mark the page shared in
65 		 * the RMP table before copying it.
66 		 */
67 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
68 
69 		memcpy(dst, src, sz);
70 
71 		/* Restore the page state after the memcpy. */
72 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
73 	} else {
74 		/*
75 		 * @paddr need to be accessed encrypted, no need for the page state
76 		 * change.
77 		 */
78 		memcpy(dst, src, sz);
79 	}
80 }
81 
82 /*
83  * This routine does not change the underlying encryption setting of the
84  * page(s) that map this memory. It assumes that eventually the memory is
85  * meant to be accessed as either encrypted or decrypted but the contents
86  * are currently not in the desired state.
87  *
88  * This routine follows the steps outlined in the AMD64 Architecture
89  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
90  */
91 static void __init __sme_early_enc_dec(resource_size_t paddr,
92 				       unsigned long size, bool enc)
93 {
94 	void *src, *dst;
95 	size_t len;
96 
97 	if (!sme_me_mask)
98 		return;
99 
100 	wbinvd();
101 
102 	/*
103 	 * There are limited number of early mapping slots, so map (at most)
104 	 * one page at time.
105 	 */
106 	while (size) {
107 		len = min_t(size_t, sizeof(sme_early_buffer), size);
108 
109 		/*
110 		 * Create mappings for the current and desired format of
111 		 * the memory. Use a write-protected mapping for the source.
112 		 */
113 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
114 			    early_memremap_encrypted_wp(paddr, len);
115 
116 		dst = enc ? early_memremap_encrypted(paddr, len) :
117 			    early_memremap_decrypted(paddr, len);
118 
119 		/*
120 		 * If a mapping can't be obtained to perform the operation,
121 		 * then eventual access of that area in the desired mode
122 		 * will cause a crash.
123 		 */
124 		BUG_ON(!src || !dst);
125 
126 		/*
127 		 * Use a temporary buffer, of cache-line multiple size, to
128 		 * avoid data corruption as documented in the APM.
129 		 */
130 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
131 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
132 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
133 		} else {
134 			memcpy(sme_early_buffer, src, len);
135 			memcpy(dst, sme_early_buffer, len);
136 		}
137 
138 		early_memunmap(dst, len);
139 		early_memunmap(src, len);
140 
141 		paddr += len;
142 		size -= len;
143 	}
144 }
145 
146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
147 {
148 	__sme_early_enc_dec(paddr, size, true);
149 }
150 
151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
152 {
153 	__sme_early_enc_dec(paddr, size, false);
154 }
155 
156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
157 					     bool map)
158 {
159 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
160 	pmdval_t pmd_flags, pmd;
161 
162 	/* Use early_pmd_flags but remove the encryption mask */
163 	pmd_flags = __sme_clr(early_pmd_flags);
164 
165 	do {
166 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
167 		__early_make_pgtable((unsigned long)vaddr, pmd);
168 
169 		vaddr += PMD_SIZE;
170 		paddr += PMD_SIZE;
171 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
172 	} while (size);
173 
174 	flush_tlb_local();
175 }
176 
177 void __init sme_unmap_bootdata(char *real_mode_data)
178 {
179 	struct boot_params *boot_data;
180 	unsigned long cmdline_paddr;
181 
182 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
183 		return;
184 
185 	/* Get the command line address before unmapping the real_mode_data */
186 	boot_data = (struct boot_params *)real_mode_data;
187 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
188 
189 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
190 
191 	if (!cmdline_paddr)
192 		return;
193 
194 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
195 }
196 
197 void __init sme_map_bootdata(char *real_mode_data)
198 {
199 	struct boot_params *boot_data;
200 	unsigned long cmdline_paddr;
201 
202 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
203 		return;
204 
205 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
206 
207 	/* Get the command line address after mapping the real_mode_data */
208 	boot_data = (struct boot_params *)real_mode_data;
209 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
210 
211 	if (!cmdline_paddr)
212 		return;
213 
214 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
215 }
216 
217 void __init sev_setup_arch(void)
218 {
219 	phys_addr_t total_mem = memblock_phys_mem_size();
220 	unsigned long size;
221 
222 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
223 		return;
224 
225 	/*
226 	 * For SEV, all DMA has to occur via shared/unencrypted pages.
227 	 * SEV uses SWIOTLB to make this happen without changing device
228 	 * drivers. However, depending on the workload being run, the
229 	 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
230 	 * run out of buffers for DMA, resulting in I/O errors and/or
231 	 * performance degradation especially with high I/O workloads.
232 	 *
233 	 * Adjust the default size of SWIOTLB for SEV guests using
234 	 * a percentage of guest memory for SWIOTLB buffers.
235 	 * Also, as the SWIOTLB bounce buffer memory is allocated
236 	 * from low memory, ensure that the adjusted size is within
237 	 * the limits of low available memory.
238 	 *
239 	 * The percentage of guest memory used here for SWIOTLB buffers
240 	 * is more of an approximation of the static adjustment which
241 	 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
242 	 */
243 	size = total_mem * 6 / 100;
244 	size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
245 	swiotlb_adjust_size(size);
246 
247 	/* Set restricted memory access for virtio. */
248 	platform_set(PLATFORM_VIRTIO_RESTRICTED_MEM_ACCESS);
249 }
250 
251 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
252 {
253 	unsigned long pfn = 0;
254 	pgprot_t prot;
255 
256 	switch (level) {
257 	case PG_LEVEL_4K:
258 		pfn = pte_pfn(*kpte);
259 		prot = pte_pgprot(*kpte);
260 		break;
261 	case PG_LEVEL_2M:
262 		pfn = pmd_pfn(*(pmd_t *)kpte);
263 		prot = pmd_pgprot(*(pmd_t *)kpte);
264 		break;
265 	case PG_LEVEL_1G:
266 		pfn = pud_pfn(*(pud_t *)kpte);
267 		prot = pud_pgprot(*(pud_t *)kpte);
268 		break;
269 	default:
270 		WARN_ONCE(1, "Invalid level for kpte\n");
271 		return 0;
272 	}
273 
274 	if (ret_prot)
275 		*ret_prot = prot;
276 
277 	return pfn;
278 }
279 
280 static bool amd_enc_tlb_flush_required(bool enc)
281 {
282 	return true;
283 }
284 
285 static bool amd_enc_cache_flush_required(void)
286 {
287 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
288 }
289 
290 static void enc_dec_hypercall(unsigned long vaddr, int npages, bool enc)
291 {
292 #ifdef CONFIG_PARAVIRT
293 	unsigned long sz = npages << PAGE_SHIFT;
294 	unsigned long vaddr_end = vaddr + sz;
295 
296 	while (vaddr < vaddr_end) {
297 		int psize, pmask, level;
298 		unsigned long pfn;
299 		pte_t *kpte;
300 
301 		kpte = lookup_address(vaddr, &level);
302 		if (!kpte || pte_none(*kpte)) {
303 			WARN_ONCE(1, "kpte lookup for vaddr\n");
304 			return;
305 		}
306 
307 		pfn = pg_level_to_pfn(level, kpte, NULL);
308 		if (!pfn)
309 			continue;
310 
311 		psize = page_level_size(level);
312 		pmask = page_level_mask(level);
313 
314 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
315 
316 		vaddr = (vaddr & pmask) + psize;
317 	}
318 #endif
319 }
320 
321 static void amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
322 {
323 	/*
324 	 * To maintain the security guarantees of SEV-SNP guests, make sure
325 	 * to invalidate the memory before encryption attribute is cleared.
326 	 */
327 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
328 		snp_set_memory_shared(vaddr, npages);
329 }
330 
331 /* Return true unconditionally: return value doesn't matter for the SEV side */
332 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
333 {
334 	/*
335 	 * After memory is mapped encrypted in the page table, validate it
336 	 * so that it is consistent with the page table updates.
337 	 */
338 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
339 		snp_set_memory_private(vaddr, npages);
340 
341 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
342 		enc_dec_hypercall(vaddr, npages, enc);
343 
344 	return true;
345 }
346 
347 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
348 {
349 	pgprot_t old_prot, new_prot;
350 	unsigned long pfn, pa, size;
351 	pte_t new_pte;
352 
353 	pfn = pg_level_to_pfn(level, kpte, &old_prot);
354 	if (!pfn)
355 		return;
356 
357 	new_prot = old_prot;
358 	if (enc)
359 		pgprot_val(new_prot) |= _PAGE_ENC;
360 	else
361 		pgprot_val(new_prot) &= ~_PAGE_ENC;
362 
363 	/* If prot is same then do nothing. */
364 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
365 		return;
366 
367 	pa = pfn << PAGE_SHIFT;
368 	size = page_level_size(level);
369 
370 	/*
371 	 * We are going to perform in-place en-/decryption and change the
372 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
373 	 * caches to ensure that data gets accessed with the correct C-bit.
374 	 */
375 	clflush_cache_range(__va(pa), size);
376 
377 	/* Encrypt/decrypt the contents in-place */
378 	if (enc) {
379 		sme_early_encrypt(pa, size);
380 	} else {
381 		sme_early_decrypt(pa, size);
382 
383 		/*
384 		 * ON SNP, the page state in the RMP table must happen
385 		 * before the page table updates.
386 		 */
387 		early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
388 	}
389 
390 	/* Change the page encryption mask. */
391 	new_pte = pfn_pte(pfn, new_prot);
392 	set_pte_atomic(kpte, new_pte);
393 
394 	/*
395 	 * If page is set encrypted in the page table, then update the RMP table to
396 	 * add this page as private.
397 	 */
398 	if (enc)
399 		early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
400 }
401 
402 static int __init early_set_memory_enc_dec(unsigned long vaddr,
403 					   unsigned long size, bool enc)
404 {
405 	unsigned long vaddr_end, vaddr_next, start;
406 	unsigned long psize, pmask;
407 	int split_page_size_mask;
408 	int level, ret;
409 	pte_t *kpte;
410 
411 	start = vaddr;
412 	vaddr_next = vaddr;
413 	vaddr_end = vaddr + size;
414 
415 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
416 		kpte = lookup_address(vaddr, &level);
417 		if (!kpte || pte_none(*kpte)) {
418 			ret = 1;
419 			goto out;
420 		}
421 
422 		if (level == PG_LEVEL_4K) {
423 			__set_clr_pte_enc(kpte, level, enc);
424 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
425 			continue;
426 		}
427 
428 		psize = page_level_size(level);
429 		pmask = page_level_mask(level);
430 
431 		/*
432 		 * Check whether we can change the large page in one go.
433 		 * We request a split when the address is not aligned and
434 		 * the number of pages to set/clear encryption bit is smaller
435 		 * than the number of pages in the large page.
436 		 */
437 		if (vaddr == (vaddr & pmask) &&
438 		    ((vaddr_end - vaddr) >= psize)) {
439 			__set_clr_pte_enc(kpte, level, enc);
440 			vaddr_next = (vaddr & pmask) + psize;
441 			continue;
442 		}
443 
444 		/*
445 		 * The virtual address is part of a larger page, create the next
446 		 * level page table mapping (4K or 2M). If it is part of a 2M
447 		 * page then we request a split of the large page into 4K
448 		 * chunks. A 1GB large page is split into 2M pages, resp.
449 		 */
450 		if (level == PG_LEVEL_2M)
451 			split_page_size_mask = 0;
452 		else
453 			split_page_size_mask = 1 << PG_LEVEL_2M;
454 
455 		/*
456 		 * kernel_physical_mapping_change() does not flush the TLBs, so
457 		 * a TLB flush is required after we exit from the for loop.
458 		 */
459 		kernel_physical_mapping_change(__pa(vaddr & pmask),
460 					       __pa((vaddr_end & pmask) + psize),
461 					       split_page_size_mask);
462 	}
463 
464 	ret = 0;
465 
466 	early_set_mem_enc_dec_hypercall(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc);
467 out:
468 	__flush_tlb_all();
469 	return ret;
470 }
471 
472 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
473 {
474 	return early_set_memory_enc_dec(vaddr, size, false);
475 }
476 
477 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
478 {
479 	return early_set_memory_enc_dec(vaddr, size, true);
480 }
481 
482 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc)
483 {
484 	enc_dec_hypercall(vaddr, npages, enc);
485 }
486 
487 void __init sme_early_init(void)
488 {
489 	unsigned int i;
490 
491 	if (!sme_me_mask)
492 		return;
493 
494 	early_pmd_flags = __sme_set(early_pmd_flags);
495 
496 	__supported_pte_mask = __sme_set(__supported_pte_mask);
497 
498 	/* Update the protection map with memory encryption mask */
499 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
500 		protection_map[i] = pgprot_encrypted(protection_map[i]);
501 
502 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
503 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
504 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
505 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
506 }
507 
508 void __init mem_encrypt_free_decrypted_mem(void)
509 {
510 	unsigned long vaddr, vaddr_end, npages;
511 	int r;
512 
513 	vaddr = (unsigned long)__start_bss_decrypted_unused;
514 	vaddr_end = (unsigned long)__end_bss_decrypted;
515 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
516 
517 	/*
518 	 * The unused memory range was mapped decrypted, change the encryption
519 	 * attribute from decrypted to encrypted before freeing it.
520 	 */
521 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
522 		r = set_memory_encrypted(vaddr, npages);
523 		if (r) {
524 			pr_warn("failed to free unused decrypted pages\n");
525 			return;
526 		}
527 	}
528 
529 	free_init_pages("unused decrypted", vaddr, vaddr_end);
530 }
531