1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/virtio_config.h> 23 #include <linux/cc_platform.h> 24 25 #include <asm/tlbflush.h> 26 #include <asm/fixmap.h> 27 #include <asm/setup.h> 28 #include <asm/bootparam.h> 29 #include <asm/set_memory.h> 30 #include <asm/cacheflush.h> 31 #include <asm/processor-flags.h> 32 #include <asm/msr.h> 33 #include <asm/cmdline.h> 34 35 #include "mm_internal.h" 36 37 /* 38 * Since SME related variables are set early in the boot process they must 39 * reside in the .data section so as not to be zeroed out when the .bss 40 * section is later cleared. 41 */ 42 u64 sme_me_mask __section(".data") = 0; 43 u64 sev_status __section(".data") = 0; 44 u64 sev_check_data __section(".data") = 0; 45 EXPORT_SYMBOL(sme_me_mask); 46 47 /* Buffer used for early in-place encryption by BSP, no locking needed */ 48 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 49 50 /* 51 * This routine does not change the underlying encryption setting of the 52 * page(s) that map this memory. It assumes that eventually the memory is 53 * meant to be accessed as either encrypted or decrypted but the contents 54 * are currently not in the desired state. 55 * 56 * This routine follows the steps outlined in the AMD64 Architecture 57 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 58 */ 59 static void __init __sme_early_enc_dec(resource_size_t paddr, 60 unsigned long size, bool enc) 61 { 62 void *src, *dst; 63 size_t len; 64 65 if (!sme_me_mask) 66 return; 67 68 wbinvd(); 69 70 /* 71 * There are limited number of early mapping slots, so map (at most) 72 * one page at time. 73 */ 74 while (size) { 75 len = min_t(size_t, sizeof(sme_early_buffer), size); 76 77 /* 78 * Create mappings for the current and desired format of 79 * the memory. Use a write-protected mapping for the source. 80 */ 81 src = enc ? early_memremap_decrypted_wp(paddr, len) : 82 early_memremap_encrypted_wp(paddr, len); 83 84 dst = enc ? early_memremap_encrypted(paddr, len) : 85 early_memremap_decrypted(paddr, len); 86 87 /* 88 * If a mapping can't be obtained to perform the operation, 89 * then eventual access of that area in the desired mode 90 * will cause a crash. 91 */ 92 BUG_ON(!src || !dst); 93 94 /* 95 * Use a temporary buffer, of cache-line multiple size, to 96 * avoid data corruption as documented in the APM. 97 */ 98 memcpy(sme_early_buffer, src, len); 99 memcpy(dst, sme_early_buffer, len); 100 101 early_memunmap(dst, len); 102 early_memunmap(src, len); 103 104 paddr += len; 105 size -= len; 106 } 107 } 108 109 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 110 { 111 __sme_early_enc_dec(paddr, size, true); 112 } 113 114 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 115 { 116 __sme_early_enc_dec(paddr, size, false); 117 } 118 119 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 120 bool map) 121 { 122 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 123 pmdval_t pmd_flags, pmd; 124 125 /* Use early_pmd_flags but remove the encryption mask */ 126 pmd_flags = __sme_clr(early_pmd_flags); 127 128 do { 129 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 130 __early_make_pgtable((unsigned long)vaddr, pmd); 131 132 vaddr += PMD_SIZE; 133 paddr += PMD_SIZE; 134 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 135 } while (size); 136 137 flush_tlb_local(); 138 } 139 140 void __init sme_unmap_bootdata(char *real_mode_data) 141 { 142 struct boot_params *boot_data; 143 unsigned long cmdline_paddr; 144 145 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 146 return; 147 148 /* Get the command line address before unmapping the real_mode_data */ 149 boot_data = (struct boot_params *)real_mode_data; 150 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 151 152 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 153 154 if (!cmdline_paddr) 155 return; 156 157 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 158 } 159 160 void __init sme_map_bootdata(char *real_mode_data) 161 { 162 struct boot_params *boot_data; 163 unsigned long cmdline_paddr; 164 165 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 166 return; 167 168 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 169 170 /* Get the command line address after mapping the real_mode_data */ 171 boot_data = (struct boot_params *)real_mode_data; 172 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 173 174 if (!cmdline_paddr) 175 return; 176 177 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 178 } 179 180 void __init sme_early_init(void) 181 { 182 unsigned int i; 183 184 if (!sme_me_mask) 185 return; 186 187 early_pmd_flags = __sme_set(early_pmd_flags); 188 189 __supported_pte_mask = __sme_set(__supported_pte_mask); 190 191 /* Update the protection map with memory encryption mask */ 192 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 193 protection_map[i] = pgprot_encrypted(protection_map[i]); 194 195 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 196 swiotlb_force = SWIOTLB_FORCE; 197 } 198 199 void __init sev_setup_arch(void) 200 { 201 phys_addr_t total_mem = memblock_phys_mem_size(); 202 unsigned long size; 203 204 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 205 return; 206 207 /* 208 * For SEV, all DMA has to occur via shared/unencrypted pages. 209 * SEV uses SWIOTLB to make this happen without changing device 210 * drivers. However, depending on the workload being run, the 211 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 212 * run out of buffers for DMA, resulting in I/O errors and/or 213 * performance degradation especially with high I/O workloads. 214 * 215 * Adjust the default size of SWIOTLB for SEV guests using 216 * a percentage of guest memory for SWIOTLB buffers. 217 * Also, as the SWIOTLB bounce buffer memory is allocated 218 * from low memory, ensure that the adjusted size is within 219 * the limits of low available memory. 220 * 221 * The percentage of guest memory used here for SWIOTLB buffers 222 * is more of an approximation of the static adjustment which 223 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 224 */ 225 size = total_mem * 6 / 100; 226 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 227 swiotlb_adjust_size(size); 228 } 229 230 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 231 { 232 unsigned long pfn = 0; 233 pgprot_t prot; 234 235 switch (level) { 236 case PG_LEVEL_4K: 237 pfn = pte_pfn(*kpte); 238 prot = pte_pgprot(*kpte); 239 break; 240 case PG_LEVEL_2M: 241 pfn = pmd_pfn(*(pmd_t *)kpte); 242 prot = pmd_pgprot(*(pmd_t *)kpte); 243 break; 244 case PG_LEVEL_1G: 245 pfn = pud_pfn(*(pud_t *)kpte); 246 prot = pud_pgprot(*(pud_t *)kpte); 247 break; 248 default: 249 WARN_ONCE(1, "Invalid level for kpte\n"); 250 return 0; 251 } 252 253 if (ret_prot) 254 *ret_prot = prot; 255 256 return pfn; 257 } 258 259 void notify_range_enc_status_changed(unsigned long vaddr, int npages, bool enc) 260 { 261 #ifdef CONFIG_PARAVIRT 262 unsigned long sz = npages << PAGE_SHIFT; 263 unsigned long vaddr_end = vaddr + sz; 264 265 while (vaddr < vaddr_end) { 266 int psize, pmask, level; 267 unsigned long pfn; 268 pte_t *kpte; 269 270 kpte = lookup_address(vaddr, &level); 271 if (!kpte || pte_none(*kpte)) { 272 WARN_ONCE(1, "kpte lookup for vaddr\n"); 273 return; 274 } 275 276 pfn = pg_level_to_pfn(level, kpte, NULL); 277 if (!pfn) 278 continue; 279 280 psize = page_level_size(level); 281 pmask = page_level_mask(level); 282 283 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 284 285 vaddr = (vaddr & pmask) + psize; 286 } 287 #endif 288 } 289 290 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 291 { 292 pgprot_t old_prot, new_prot; 293 unsigned long pfn, pa, size; 294 pte_t new_pte; 295 296 pfn = pg_level_to_pfn(level, kpte, &old_prot); 297 if (!pfn) 298 return; 299 300 new_prot = old_prot; 301 if (enc) 302 pgprot_val(new_prot) |= _PAGE_ENC; 303 else 304 pgprot_val(new_prot) &= ~_PAGE_ENC; 305 306 /* If prot is same then do nothing. */ 307 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 308 return; 309 310 pa = pfn << PAGE_SHIFT; 311 size = page_level_size(level); 312 313 /* 314 * We are going to perform in-place en-/decryption and change the 315 * physical page attribute from C=1 to C=0 or vice versa. Flush the 316 * caches to ensure that data gets accessed with the correct C-bit. 317 */ 318 clflush_cache_range(__va(pa), size); 319 320 /* Encrypt/decrypt the contents in-place */ 321 if (enc) 322 sme_early_encrypt(pa, size); 323 else 324 sme_early_decrypt(pa, size); 325 326 /* Change the page encryption mask. */ 327 new_pte = pfn_pte(pfn, new_prot); 328 set_pte_atomic(kpte, new_pte); 329 } 330 331 static int __init early_set_memory_enc_dec(unsigned long vaddr, 332 unsigned long size, bool enc) 333 { 334 unsigned long vaddr_end, vaddr_next, start; 335 unsigned long psize, pmask; 336 int split_page_size_mask; 337 int level, ret; 338 pte_t *kpte; 339 340 start = vaddr; 341 vaddr_next = vaddr; 342 vaddr_end = vaddr + size; 343 344 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 345 kpte = lookup_address(vaddr, &level); 346 if (!kpte || pte_none(*kpte)) { 347 ret = 1; 348 goto out; 349 } 350 351 if (level == PG_LEVEL_4K) { 352 __set_clr_pte_enc(kpte, level, enc); 353 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 354 continue; 355 } 356 357 psize = page_level_size(level); 358 pmask = page_level_mask(level); 359 360 /* 361 * Check whether we can change the large page in one go. 362 * We request a split when the address is not aligned and 363 * the number of pages to set/clear encryption bit is smaller 364 * than the number of pages in the large page. 365 */ 366 if (vaddr == (vaddr & pmask) && 367 ((vaddr_end - vaddr) >= psize)) { 368 __set_clr_pte_enc(kpte, level, enc); 369 vaddr_next = (vaddr & pmask) + psize; 370 continue; 371 } 372 373 /* 374 * The virtual address is part of a larger page, create the next 375 * level page table mapping (4K or 2M). If it is part of a 2M 376 * page then we request a split of the large page into 4K 377 * chunks. A 1GB large page is split into 2M pages, resp. 378 */ 379 if (level == PG_LEVEL_2M) 380 split_page_size_mask = 0; 381 else 382 split_page_size_mask = 1 << PG_LEVEL_2M; 383 384 /* 385 * kernel_physical_mapping_change() does not flush the TLBs, so 386 * a TLB flush is required after we exit from the for loop. 387 */ 388 kernel_physical_mapping_change(__pa(vaddr & pmask), 389 __pa((vaddr_end & pmask) + psize), 390 split_page_size_mask); 391 } 392 393 ret = 0; 394 395 notify_range_enc_status_changed(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc); 396 out: 397 __flush_tlb_all(); 398 return ret; 399 } 400 401 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 402 { 403 return early_set_memory_enc_dec(vaddr, size, false); 404 } 405 406 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 407 { 408 return early_set_memory_enc_dec(vaddr, size, true); 409 } 410 411 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 412 { 413 notify_range_enc_status_changed(vaddr, npages, enc); 414 } 415 416 void __init mem_encrypt_free_decrypted_mem(void) 417 { 418 unsigned long vaddr, vaddr_end, npages; 419 int r; 420 421 vaddr = (unsigned long)__start_bss_decrypted_unused; 422 vaddr_end = (unsigned long)__end_bss_decrypted; 423 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 424 425 /* 426 * The unused memory range was mapped decrypted, change the encryption 427 * attribute from decrypted to encrypted before freeing it. 428 */ 429 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 430 r = set_memory_encrypted(vaddr, npages); 431 if (r) { 432 pr_warn("failed to free unused decrypted pages\n"); 433 return; 434 } 435 } 436 437 free_init_pages("unused decrypted", vaddr, vaddr_end); 438 } 439