1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/virtio_config.h> 23 #include <linux/cc_platform.h> 24 #include <linux/platform-feature.h> 25 26 #include <asm/tlbflush.h> 27 #include <asm/fixmap.h> 28 #include <asm/setup.h> 29 #include <asm/bootparam.h> 30 #include <asm/set_memory.h> 31 #include <asm/cacheflush.h> 32 #include <asm/processor-flags.h> 33 #include <asm/msr.h> 34 #include <asm/cmdline.h> 35 #include <asm/sev.h> 36 37 #include "mm_internal.h" 38 39 /* 40 * Since SME related variables are set early in the boot process they must 41 * reside in the .data section so as not to be zeroed out when the .bss 42 * section is later cleared. 43 */ 44 u64 sme_me_mask __section(".data") = 0; 45 u64 sev_status __section(".data") = 0; 46 u64 sev_check_data __section(".data") = 0; 47 EXPORT_SYMBOL(sme_me_mask); 48 49 /* Buffer used for early in-place encryption by BSP, no locking needed */ 50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 51 52 /* 53 * SNP-specific routine which needs to additionally change the page state from 54 * private to shared before copying the data from the source to destination and 55 * restore after the copy. 56 */ 57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz, 58 unsigned long paddr, bool decrypt) 59 { 60 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 61 62 if (decrypt) { 63 /* 64 * @paddr needs to be accessed decrypted, mark the page shared in 65 * the RMP table before copying it. 66 */ 67 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); 68 69 memcpy(dst, src, sz); 70 71 /* Restore the page state after the memcpy. */ 72 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); 73 } else { 74 /* 75 * @paddr need to be accessed encrypted, no need for the page state 76 * change. 77 */ 78 memcpy(dst, src, sz); 79 } 80 } 81 82 /* 83 * This routine does not change the underlying encryption setting of the 84 * page(s) that map this memory. It assumes that eventually the memory is 85 * meant to be accessed as either encrypted or decrypted but the contents 86 * are currently not in the desired state. 87 * 88 * This routine follows the steps outlined in the AMD64 Architecture 89 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 90 */ 91 static void __init __sme_early_enc_dec(resource_size_t paddr, 92 unsigned long size, bool enc) 93 { 94 void *src, *dst; 95 size_t len; 96 97 if (!sme_me_mask) 98 return; 99 100 wbinvd(); 101 102 /* 103 * There are limited number of early mapping slots, so map (at most) 104 * one page at time. 105 */ 106 while (size) { 107 len = min_t(size_t, sizeof(sme_early_buffer), size); 108 109 /* 110 * Create mappings for the current and desired format of 111 * the memory. Use a write-protected mapping for the source. 112 */ 113 src = enc ? early_memremap_decrypted_wp(paddr, len) : 114 early_memremap_encrypted_wp(paddr, len); 115 116 dst = enc ? early_memremap_encrypted(paddr, len) : 117 early_memremap_decrypted(paddr, len); 118 119 /* 120 * If a mapping can't be obtained to perform the operation, 121 * then eventual access of that area in the desired mode 122 * will cause a crash. 123 */ 124 BUG_ON(!src || !dst); 125 126 /* 127 * Use a temporary buffer, of cache-line multiple size, to 128 * avoid data corruption as documented in the APM. 129 */ 130 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 131 snp_memcpy(sme_early_buffer, src, len, paddr, enc); 132 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); 133 } else { 134 memcpy(sme_early_buffer, src, len); 135 memcpy(dst, sme_early_buffer, len); 136 } 137 138 early_memunmap(dst, len); 139 early_memunmap(src, len); 140 141 paddr += len; 142 size -= len; 143 } 144 } 145 146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 147 { 148 __sme_early_enc_dec(paddr, size, true); 149 } 150 151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 152 { 153 __sme_early_enc_dec(paddr, size, false); 154 } 155 156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 157 bool map) 158 { 159 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 160 pmdval_t pmd_flags, pmd; 161 162 /* Use early_pmd_flags but remove the encryption mask */ 163 pmd_flags = __sme_clr(early_pmd_flags); 164 165 do { 166 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 167 __early_make_pgtable((unsigned long)vaddr, pmd); 168 169 vaddr += PMD_SIZE; 170 paddr += PMD_SIZE; 171 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 172 } while (size); 173 174 flush_tlb_local(); 175 } 176 177 void __init sme_unmap_bootdata(char *real_mode_data) 178 { 179 struct boot_params *boot_data; 180 unsigned long cmdline_paddr; 181 182 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 183 return; 184 185 /* Get the command line address before unmapping the real_mode_data */ 186 boot_data = (struct boot_params *)real_mode_data; 187 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 188 189 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 190 191 if (!cmdline_paddr) 192 return; 193 194 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 195 } 196 197 void __init sme_map_bootdata(char *real_mode_data) 198 { 199 struct boot_params *boot_data; 200 unsigned long cmdline_paddr; 201 202 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 203 return; 204 205 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 206 207 /* Get the command line address after mapping the real_mode_data */ 208 boot_data = (struct boot_params *)real_mode_data; 209 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 210 211 if (!cmdline_paddr) 212 return; 213 214 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 215 } 216 217 void __init sev_setup_arch(void) 218 { 219 phys_addr_t total_mem = memblock_phys_mem_size(); 220 unsigned long size; 221 222 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 223 return; 224 225 /* 226 * For SEV, all DMA has to occur via shared/unencrypted pages. 227 * SEV uses SWIOTLB to make this happen without changing device 228 * drivers. However, depending on the workload being run, the 229 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 230 * run out of buffers for DMA, resulting in I/O errors and/or 231 * performance degradation especially with high I/O workloads. 232 * 233 * Adjust the default size of SWIOTLB for SEV guests using 234 * a percentage of guest memory for SWIOTLB buffers. 235 * Also, as the SWIOTLB bounce buffer memory is allocated 236 * from low memory, ensure that the adjusted size is within 237 * the limits of low available memory. 238 * 239 * The percentage of guest memory used here for SWIOTLB buffers 240 * is more of an approximation of the static adjustment which 241 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 242 */ 243 size = total_mem * 6 / 100; 244 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 245 swiotlb_adjust_size(size); 246 247 /* Set restricted memory access for virtio. */ 248 platform_set(PLATFORM_VIRTIO_RESTRICTED_MEM_ACCESS); 249 } 250 251 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 252 { 253 unsigned long pfn = 0; 254 pgprot_t prot; 255 256 switch (level) { 257 case PG_LEVEL_4K: 258 pfn = pte_pfn(*kpte); 259 prot = pte_pgprot(*kpte); 260 break; 261 case PG_LEVEL_2M: 262 pfn = pmd_pfn(*(pmd_t *)kpte); 263 prot = pmd_pgprot(*(pmd_t *)kpte); 264 break; 265 case PG_LEVEL_1G: 266 pfn = pud_pfn(*(pud_t *)kpte); 267 prot = pud_pgprot(*(pud_t *)kpte); 268 break; 269 default: 270 WARN_ONCE(1, "Invalid level for kpte\n"); 271 return 0; 272 } 273 274 if (ret_prot) 275 *ret_prot = prot; 276 277 return pfn; 278 } 279 280 static bool amd_enc_tlb_flush_required(bool enc) 281 { 282 return true; 283 } 284 285 static bool amd_enc_cache_flush_required(void) 286 { 287 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); 288 } 289 290 static void enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 291 { 292 #ifdef CONFIG_PARAVIRT 293 unsigned long sz = npages << PAGE_SHIFT; 294 unsigned long vaddr_end = vaddr + sz; 295 296 while (vaddr < vaddr_end) { 297 int psize, pmask, level; 298 unsigned long pfn; 299 pte_t *kpte; 300 301 kpte = lookup_address(vaddr, &level); 302 if (!kpte || pte_none(*kpte)) { 303 WARN_ONCE(1, "kpte lookup for vaddr\n"); 304 return; 305 } 306 307 pfn = pg_level_to_pfn(level, kpte, NULL); 308 if (!pfn) 309 continue; 310 311 psize = page_level_size(level); 312 pmask = page_level_mask(level); 313 314 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 315 316 vaddr = (vaddr & pmask) + psize; 317 } 318 #endif 319 } 320 321 static void amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) 322 { 323 /* 324 * To maintain the security guarantees of SEV-SNP guests, make sure 325 * to invalidate the memory before encryption attribute is cleared. 326 */ 327 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) 328 snp_set_memory_shared(vaddr, npages); 329 } 330 331 /* Return true unconditionally: return value doesn't matter for the SEV side */ 332 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) 333 { 334 /* 335 * After memory is mapped encrypted in the page table, validate it 336 * so that it is consistent with the page table updates. 337 */ 338 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) 339 snp_set_memory_private(vaddr, npages); 340 341 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 342 enc_dec_hypercall(vaddr, npages, enc); 343 344 return true; 345 } 346 347 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 348 { 349 pgprot_t old_prot, new_prot; 350 unsigned long pfn, pa, size; 351 pte_t new_pte; 352 353 pfn = pg_level_to_pfn(level, kpte, &old_prot); 354 if (!pfn) 355 return; 356 357 new_prot = old_prot; 358 if (enc) 359 pgprot_val(new_prot) |= _PAGE_ENC; 360 else 361 pgprot_val(new_prot) &= ~_PAGE_ENC; 362 363 /* If prot is same then do nothing. */ 364 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 365 return; 366 367 pa = pfn << PAGE_SHIFT; 368 size = page_level_size(level); 369 370 /* 371 * We are going to perform in-place en-/decryption and change the 372 * physical page attribute from C=1 to C=0 or vice versa. Flush the 373 * caches to ensure that data gets accessed with the correct C-bit. 374 */ 375 clflush_cache_range(__va(pa), size); 376 377 /* Encrypt/decrypt the contents in-place */ 378 if (enc) { 379 sme_early_encrypt(pa, size); 380 } else { 381 sme_early_decrypt(pa, size); 382 383 /* 384 * ON SNP, the page state in the RMP table must happen 385 * before the page table updates. 386 */ 387 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1); 388 } 389 390 /* Change the page encryption mask. */ 391 new_pte = pfn_pte(pfn, new_prot); 392 set_pte_atomic(kpte, new_pte); 393 394 /* 395 * If page is set encrypted in the page table, then update the RMP table to 396 * add this page as private. 397 */ 398 if (enc) 399 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1); 400 } 401 402 static int __init early_set_memory_enc_dec(unsigned long vaddr, 403 unsigned long size, bool enc) 404 { 405 unsigned long vaddr_end, vaddr_next, start; 406 unsigned long psize, pmask; 407 int split_page_size_mask; 408 int level, ret; 409 pte_t *kpte; 410 411 start = vaddr; 412 vaddr_next = vaddr; 413 vaddr_end = vaddr + size; 414 415 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 416 kpte = lookup_address(vaddr, &level); 417 if (!kpte || pte_none(*kpte)) { 418 ret = 1; 419 goto out; 420 } 421 422 if (level == PG_LEVEL_4K) { 423 __set_clr_pte_enc(kpte, level, enc); 424 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 425 continue; 426 } 427 428 psize = page_level_size(level); 429 pmask = page_level_mask(level); 430 431 /* 432 * Check whether we can change the large page in one go. 433 * We request a split when the address is not aligned and 434 * the number of pages to set/clear encryption bit is smaller 435 * than the number of pages in the large page. 436 */ 437 if (vaddr == (vaddr & pmask) && 438 ((vaddr_end - vaddr) >= psize)) { 439 __set_clr_pte_enc(kpte, level, enc); 440 vaddr_next = (vaddr & pmask) + psize; 441 continue; 442 } 443 444 /* 445 * The virtual address is part of a larger page, create the next 446 * level page table mapping (4K or 2M). If it is part of a 2M 447 * page then we request a split of the large page into 4K 448 * chunks. A 1GB large page is split into 2M pages, resp. 449 */ 450 if (level == PG_LEVEL_2M) 451 split_page_size_mask = 0; 452 else 453 split_page_size_mask = 1 << PG_LEVEL_2M; 454 455 /* 456 * kernel_physical_mapping_change() does not flush the TLBs, so 457 * a TLB flush is required after we exit from the for loop. 458 */ 459 kernel_physical_mapping_change(__pa(vaddr & pmask), 460 __pa((vaddr_end & pmask) + psize), 461 split_page_size_mask); 462 } 463 464 ret = 0; 465 466 early_set_mem_enc_dec_hypercall(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc); 467 out: 468 __flush_tlb_all(); 469 return ret; 470 } 471 472 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 473 { 474 return early_set_memory_enc_dec(vaddr, size, false); 475 } 476 477 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 478 { 479 return early_set_memory_enc_dec(vaddr, size, true); 480 } 481 482 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 483 { 484 enc_dec_hypercall(vaddr, npages, enc); 485 } 486 487 void __init sme_early_init(void) 488 { 489 unsigned int i; 490 491 if (!sme_me_mask) 492 return; 493 494 early_pmd_flags = __sme_set(early_pmd_flags); 495 496 __supported_pte_mask = __sme_set(__supported_pte_mask); 497 498 /* Update the protection map with memory encryption mask */ 499 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 500 protection_map[i] = pgprot_encrypted(protection_map[i]); 501 502 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; 503 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; 504 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; 505 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; 506 } 507 508 void __init mem_encrypt_free_decrypted_mem(void) 509 { 510 unsigned long vaddr, vaddr_end, npages; 511 int r; 512 513 vaddr = (unsigned long)__start_bss_decrypted_unused; 514 vaddr_end = (unsigned long)__end_bss_decrypted; 515 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 516 517 /* 518 * The unused memory range was mapped decrypted, change the encryption 519 * attribute from decrypted to encrypted before freeing it. 520 */ 521 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 522 r = set_memory_encrypted(vaddr, npages); 523 if (r) { 524 pr_warn("failed to free unused decrypted pages\n"); 525 return; 526 } 527 } 528 529 free_init_pages("unused decrypted", vaddr, vaddr_end); 530 } 531