1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 23 #include <asm/tlbflush.h> 24 #include <asm/fixmap.h> 25 #include <asm/setup.h> 26 #include <asm/bootparam.h> 27 #include <asm/set_memory.h> 28 #include <asm/cacheflush.h> 29 #include <asm/processor-flags.h> 30 #include <asm/msr.h> 31 #include <asm/cmdline.h> 32 33 #include "mm_internal.h" 34 35 /* 36 * Since SME related variables are set early in the boot process they must 37 * reside in the .data section so as not to be zeroed out when the .bss 38 * section is later cleared. 39 */ 40 u64 sme_me_mask __section(".data") = 0; 41 u64 sev_status __section(".data") = 0; 42 u64 sev_check_data __section(".data") = 0; 43 EXPORT_SYMBOL(sme_me_mask); 44 DEFINE_STATIC_KEY_FALSE(sev_enable_key); 45 EXPORT_SYMBOL_GPL(sev_enable_key); 46 47 bool sev_enabled __section(".data"); 48 49 /* Buffer used for early in-place encryption by BSP, no locking needed */ 50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 51 52 /* 53 * This routine does not change the underlying encryption setting of the 54 * page(s) that map this memory. It assumes that eventually the memory is 55 * meant to be accessed as either encrypted or decrypted but the contents 56 * are currently not in the desired state. 57 * 58 * This routine follows the steps outlined in the AMD64 Architecture 59 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 60 */ 61 static void __init __sme_early_enc_dec(resource_size_t paddr, 62 unsigned long size, bool enc) 63 { 64 void *src, *dst; 65 size_t len; 66 67 if (!sme_me_mask) 68 return; 69 70 wbinvd(); 71 72 /* 73 * There are limited number of early mapping slots, so map (at most) 74 * one page at time. 75 */ 76 while (size) { 77 len = min_t(size_t, sizeof(sme_early_buffer), size); 78 79 /* 80 * Create mappings for the current and desired format of 81 * the memory. Use a write-protected mapping for the source. 82 */ 83 src = enc ? early_memremap_decrypted_wp(paddr, len) : 84 early_memremap_encrypted_wp(paddr, len); 85 86 dst = enc ? early_memremap_encrypted(paddr, len) : 87 early_memremap_decrypted(paddr, len); 88 89 /* 90 * If a mapping can't be obtained to perform the operation, 91 * then eventual access of that area in the desired mode 92 * will cause a crash. 93 */ 94 BUG_ON(!src || !dst); 95 96 /* 97 * Use a temporary buffer, of cache-line multiple size, to 98 * avoid data corruption as documented in the APM. 99 */ 100 memcpy(sme_early_buffer, src, len); 101 memcpy(dst, sme_early_buffer, len); 102 103 early_memunmap(dst, len); 104 early_memunmap(src, len); 105 106 paddr += len; 107 size -= len; 108 } 109 } 110 111 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 112 { 113 __sme_early_enc_dec(paddr, size, true); 114 } 115 116 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 117 { 118 __sme_early_enc_dec(paddr, size, false); 119 } 120 121 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 122 bool map) 123 { 124 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 125 pmdval_t pmd_flags, pmd; 126 127 /* Use early_pmd_flags but remove the encryption mask */ 128 pmd_flags = __sme_clr(early_pmd_flags); 129 130 do { 131 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 132 __early_make_pgtable((unsigned long)vaddr, pmd); 133 134 vaddr += PMD_SIZE; 135 paddr += PMD_SIZE; 136 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 137 } while (size); 138 139 flush_tlb_local(); 140 } 141 142 void __init sme_unmap_bootdata(char *real_mode_data) 143 { 144 struct boot_params *boot_data; 145 unsigned long cmdline_paddr; 146 147 if (!sme_active()) 148 return; 149 150 /* Get the command line address before unmapping the real_mode_data */ 151 boot_data = (struct boot_params *)real_mode_data; 152 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 153 154 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 155 156 if (!cmdline_paddr) 157 return; 158 159 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 160 } 161 162 void __init sme_map_bootdata(char *real_mode_data) 163 { 164 struct boot_params *boot_data; 165 unsigned long cmdline_paddr; 166 167 if (!sme_active()) 168 return; 169 170 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 171 172 /* Get the command line address after mapping the real_mode_data */ 173 boot_data = (struct boot_params *)real_mode_data; 174 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 175 176 if (!cmdline_paddr) 177 return; 178 179 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 180 } 181 182 void __init sme_early_init(void) 183 { 184 unsigned int i; 185 186 if (!sme_me_mask) 187 return; 188 189 early_pmd_flags = __sme_set(early_pmd_flags); 190 191 __supported_pte_mask = __sme_set(__supported_pte_mask); 192 193 /* Update the protection map with memory encryption mask */ 194 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 195 protection_map[i] = pgprot_encrypted(protection_map[i]); 196 197 if (sev_active()) 198 swiotlb_force = SWIOTLB_FORCE; 199 } 200 201 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 202 { 203 pgprot_t old_prot, new_prot; 204 unsigned long pfn, pa, size; 205 pte_t new_pte; 206 207 switch (level) { 208 case PG_LEVEL_4K: 209 pfn = pte_pfn(*kpte); 210 old_prot = pte_pgprot(*kpte); 211 break; 212 case PG_LEVEL_2M: 213 pfn = pmd_pfn(*(pmd_t *)kpte); 214 old_prot = pmd_pgprot(*(pmd_t *)kpte); 215 break; 216 case PG_LEVEL_1G: 217 pfn = pud_pfn(*(pud_t *)kpte); 218 old_prot = pud_pgprot(*(pud_t *)kpte); 219 break; 220 default: 221 return; 222 } 223 224 new_prot = old_prot; 225 if (enc) 226 pgprot_val(new_prot) |= _PAGE_ENC; 227 else 228 pgprot_val(new_prot) &= ~_PAGE_ENC; 229 230 /* If prot is same then do nothing. */ 231 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 232 return; 233 234 pa = pfn << page_level_shift(level); 235 size = page_level_size(level); 236 237 /* 238 * We are going to perform in-place en-/decryption and change the 239 * physical page attribute from C=1 to C=0 or vice versa. Flush the 240 * caches to ensure that data gets accessed with the correct C-bit. 241 */ 242 clflush_cache_range(__va(pa), size); 243 244 /* Encrypt/decrypt the contents in-place */ 245 if (enc) 246 sme_early_encrypt(pa, size); 247 else 248 sme_early_decrypt(pa, size); 249 250 /* Change the page encryption mask. */ 251 new_pte = pfn_pte(pfn, new_prot); 252 set_pte_atomic(kpte, new_pte); 253 } 254 255 static int __init early_set_memory_enc_dec(unsigned long vaddr, 256 unsigned long size, bool enc) 257 { 258 unsigned long vaddr_end, vaddr_next; 259 unsigned long psize, pmask; 260 int split_page_size_mask; 261 int level, ret; 262 pte_t *kpte; 263 264 vaddr_next = vaddr; 265 vaddr_end = vaddr + size; 266 267 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 268 kpte = lookup_address(vaddr, &level); 269 if (!kpte || pte_none(*kpte)) { 270 ret = 1; 271 goto out; 272 } 273 274 if (level == PG_LEVEL_4K) { 275 __set_clr_pte_enc(kpte, level, enc); 276 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 277 continue; 278 } 279 280 psize = page_level_size(level); 281 pmask = page_level_mask(level); 282 283 /* 284 * Check whether we can change the large page in one go. 285 * We request a split when the address is not aligned and 286 * the number of pages to set/clear encryption bit is smaller 287 * than the number of pages in the large page. 288 */ 289 if (vaddr == (vaddr & pmask) && 290 ((vaddr_end - vaddr) >= psize)) { 291 __set_clr_pte_enc(kpte, level, enc); 292 vaddr_next = (vaddr & pmask) + psize; 293 continue; 294 } 295 296 /* 297 * The virtual address is part of a larger page, create the next 298 * level page table mapping (4K or 2M). If it is part of a 2M 299 * page then we request a split of the large page into 4K 300 * chunks. A 1GB large page is split into 2M pages, resp. 301 */ 302 if (level == PG_LEVEL_2M) 303 split_page_size_mask = 0; 304 else 305 split_page_size_mask = 1 << PG_LEVEL_2M; 306 307 /* 308 * kernel_physical_mapping_change() does not flush the TLBs, so 309 * a TLB flush is required after we exit from the for loop. 310 */ 311 kernel_physical_mapping_change(__pa(vaddr & pmask), 312 __pa((vaddr_end & pmask) + psize), 313 split_page_size_mask); 314 } 315 316 ret = 0; 317 318 out: 319 __flush_tlb_all(); 320 return ret; 321 } 322 323 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 324 { 325 return early_set_memory_enc_dec(vaddr, size, false); 326 } 327 328 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 329 { 330 return early_set_memory_enc_dec(vaddr, size, true); 331 } 332 333 /* 334 * SME and SEV are very similar but they are not the same, so there are 335 * times that the kernel will need to distinguish between SME and SEV. The 336 * sme_active() and sev_active() functions are used for this. When a 337 * distinction isn't needed, the mem_encrypt_active() function can be used. 338 * 339 * The trampoline code is a good example for this requirement. Before 340 * paging is activated, SME will access all memory as decrypted, but SEV 341 * will access all memory as encrypted. So, when APs are being brought 342 * up under SME the trampoline area cannot be encrypted, whereas under SEV 343 * the trampoline area must be encrypted. 344 */ 345 bool sme_active(void) 346 { 347 return sme_me_mask && !sev_enabled; 348 } 349 350 bool sev_active(void) 351 { 352 return sev_status & MSR_AMD64_SEV_ENABLED; 353 } 354 355 /* Needs to be called from non-instrumentable code */ 356 bool noinstr sev_es_active(void) 357 { 358 return sev_status & MSR_AMD64_SEV_ES_ENABLED; 359 } 360 361 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 362 bool force_dma_unencrypted(struct device *dev) 363 { 364 /* 365 * For SEV, all DMA must be to unencrypted addresses. 366 */ 367 if (sev_active()) 368 return true; 369 370 /* 371 * For SME, all DMA must be to unencrypted addresses if the 372 * device does not support DMA to addresses that include the 373 * encryption mask. 374 */ 375 if (sme_active()) { 376 u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); 377 u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, 378 dev->bus_dma_limit); 379 380 if (dma_dev_mask <= dma_enc_mask) 381 return true; 382 } 383 384 return false; 385 } 386 387 void __init mem_encrypt_free_decrypted_mem(void) 388 { 389 unsigned long vaddr, vaddr_end, npages; 390 int r; 391 392 vaddr = (unsigned long)__start_bss_decrypted_unused; 393 vaddr_end = (unsigned long)__end_bss_decrypted; 394 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 395 396 /* 397 * The unused memory range was mapped decrypted, change the encryption 398 * attribute from decrypted to encrypted before freeing it. 399 */ 400 if (mem_encrypt_active()) { 401 r = set_memory_encrypted(vaddr, npages); 402 if (r) { 403 pr_warn("failed to free unused decrypted pages\n"); 404 return; 405 } 406 } 407 408 free_init_pages("unused decrypted", vaddr, vaddr_end); 409 } 410 411 static void print_mem_encrypt_feature_info(void) 412 { 413 pr_info("AMD Memory Encryption Features active:"); 414 415 /* Secure Memory Encryption */ 416 if (sme_active()) { 417 /* 418 * SME is mutually exclusive with any of the SEV 419 * features below. 420 */ 421 pr_cont(" SME\n"); 422 return; 423 } 424 425 /* Secure Encrypted Virtualization */ 426 if (sev_active()) 427 pr_cont(" SEV"); 428 429 /* Encrypted Register State */ 430 if (sev_es_active()) 431 pr_cont(" SEV-ES"); 432 433 pr_cont("\n"); 434 } 435 436 /* Architecture __weak replacement functions */ 437 void __init mem_encrypt_init(void) 438 { 439 if (!sme_me_mask) 440 return; 441 442 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 443 swiotlb_update_mem_attributes(); 444 445 /* 446 * With SEV, we need to unroll the rep string I/O instructions. 447 */ 448 if (sev_active()) 449 static_branch_enable(&sev_enable_key); 450 451 print_mem_encrypt_feature_info(); 452 } 453 454