xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 727dede0)
1 /*
2  * AMD Memory Encryption Support
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define DISABLE_BRANCH_PROFILING
14 
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32 
33 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
34 static char sme_cmdline_on[]  __initdata = "on";
35 static char sme_cmdline_off[] __initdata = "off";
36 
37 /*
38  * Since SME related variables are set early in the boot process they must
39  * reside in the .data section so as not to be zeroed out when the .bss
40  * section is later cleared.
41  */
42 u64 sme_me_mask __section(.data) = 0;
43 EXPORT_SYMBOL_GPL(sme_me_mask);
44 
45 /* Buffer used for early in-place encryption by BSP, no locking needed */
46 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
47 
48 /*
49  * This routine does not change the underlying encryption setting of the
50  * page(s) that map this memory. It assumes that eventually the memory is
51  * meant to be accessed as either encrypted or decrypted but the contents
52  * are currently not in the desired state.
53  *
54  * This routine follows the steps outlined in the AMD64 Architecture
55  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
56  */
57 static void __init __sme_early_enc_dec(resource_size_t paddr,
58 				       unsigned long size, bool enc)
59 {
60 	void *src, *dst;
61 	size_t len;
62 
63 	if (!sme_me_mask)
64 		return;
65 
66 	local_flush_tlb();
67 	wbinvd();
68 
69 	/*
70 	 * There are limited number of early mapping slots, so map (at most)
71 	 * one page at time.
72 	 */
73 	while (size) {
74 		len = min_t(size_t, sizeof(sme_early_buffer), size);
75 
76 		/*
77 		 * Create mappings for the current and desired format of
78 		 * the memory. Use a write-protected mapping for the source.
79 		 */
80 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
81 			    early_memremap_encrypted_wp(paddr, len);
82 
83 		dst = enc ? early_memremap_encrypted(paddr, len) :
84 			    early_memremap_decrypted(paddr, len);
85 
86 		/*
87 		 * If a mapping can't be obtained to perform the operation,
88 		 * then eventual access of that area in the desired mode
89 		 * will cause a crash.
90 		 */
91 		BUG_ON(!src || !dst);
92 
93 		/*
94 		 * Use a temporary buffer, of cache-line multiple size, to
95 		 * avoid data corruption as documented in the APM.
96 		 */
97 		memcpy(sme_early_buffer, src, len);
98 		memcpy(dst, sme_early_buffer, len);
99 
100 		early_memunmap(dst, len);
101 		early_memunmap(src, len);
102 
103 		paddr += len;
104 		size -= len;
105 	}
106 }
107 
108 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
109 {
110 	__sme_early_enc_dec(paddr, size, true);
111 }
112 
113 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
114 {
115 	__sme_early_enc_dec(paddr, size, false);
116 }
117 
118 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
119 					     bool map)
120 {
121 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
122 	pmdval_t pmd_flags, pmd;
123 
124 	/* Use early_pmd_flags but remove the encryption mask */
125 	pmd_flags = __sme_clr(early_pmd_flags);
126 
127 	do {
128 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
129 		__early_make_pgtable((unsigned long)vaddr, pmd);
130 
131 		vaddr += PMD_SIZE;
132 		paddr += PMD_SIZE;
133 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
134 	} while (size);
135 
136 	__native_flush_tlb();
137 }
138 
139 void __init sme_unmap_bootdata(char *real_mode_data)
140 {
141 	struct boot_params *boot_data;
142 	unsigned long cmdline_paddr;
143 
144 	if (!sme_active())
145 		return;
146 
147 	/* Get the command line address before unmapping the real_mode_data */
148 	boot_data = (struct boot_params *)real_mode_data;
149 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
150 
151 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
152 
153 	if (!cmdline_paddr)
154 		return;
155 
156 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
157 }
158 
159 void __init sme_map_bootdata(char *real_mode_data)
160 {
161 	struct boot_params *boot_data;
162 	unsigned long cmdline_paddr;
163 
164 	if (!sme_active())
165 		return;
166 
167 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
168 
169 	/* Get the command line address after mapping the real_mode_data */
170 	boot_data = (struct boot_params *)real_mode_data;
171 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
172 
173 	if (!cmdline_paddr)
174 		return;
175 
176 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
177 }
178 
179 void __init sme_early_init(void)
180 {
181 	unsigned int i;
182 
183 	if (!sme_me_mask)
184 		return;
185 
186 	early_pmd_flags = __sme_set(early_pmd_flags);
187 
188 	__supported_pte_mask = __sme_set(__supported_pte_mask);
189 
190 	/* Update the protection map with memory encryption mask */
191 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
192 		protection_map[i] = pgprot_encrypted(protection_map[i]);
193 }
194 
195 /* Architecture __weak replacement functions */
196 void __init mem_encrypt_init(void)
197 {
198 	if (!sme_me_mask)
199 		return;
200 
201 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
202 	swiotlb_update_mem_attributes();
203 
204 	pr_info("AMD Secure Memory Encryption (SME) active\n");
205 }
206 
207 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
208 {
209 	WARN(PAGE_ALIGN(size) != size,
210 	     "size is not page-aligned (%#lx)\n", size);
211 
212 	/* Make the SWIOTLB buffer area decrypted */
213 	set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
214 }
215 
216 static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
217 				 unsigned long end)
218 {
219 	unsigned long pgd_start, pgd_end, pgd_size;
220 	pgd_t *pgd_p;
221 
222 	pgd_start = start & PGDIR_MASK;
223 	pgd_end = end & PGDIR_MASK;
224 
225 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
226 	pgd_size *= sizeof(pgd_t);
227 
228 	pgd_p = pgd_base + pgd_index(start);
229 
230 	memset(pgd_p, 0, pgd_size);
231 }
232 
233 #define PGD_FLAGS	_KERNPG_TABLE_NOENC
234 #define P4D_FLAGS	_KERNPG_TABLE_NOENC
235 #define PUD_FLAGS	_KERNPG_TABLE_NOENC
236 #define PMD_FLAGS	(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
237 
238 static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
239 				     unsigned long vaddr, pmdval_t pmd_val)
240 {
241 	pgd_t *pgd_p;
242 	p4d_t *p4d_p;
243 	pud_t *pud_p;
244 	pmd_t *pmd_p;
245 
246 	pgd_p = pgd_base + pgd_index(vaddr);
247 	if (native_pgd_val(*pgd_p)) {
248 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
249 			p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
250 		else
251 			pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
252 	} else {
253 		pgd_t pgd;
254 
255 		if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
256 			p4d_p = pgtable_area;
257 			memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
258 			pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
259 
260 			pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
261 		} else {
262 			pud_p = pgtable_area;
263 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
264 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
265 
266 			pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
267 		}
268 		native_set_pgd(pgd_p, pgd);
269 	}
270 
271 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
272 		p4d_p += p4d_index(vaddr);
273 		if (native_p4d_val(*p4d_p)) {
274 			pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
275 		} else {
276 			p4d_t p4d;
277 
278 			pud_p = pgtable_area;
279 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
280 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
281 
282 			p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
283 			native_set_p4d(p4d_p, p4d);
284 		}
285 	}
286 
287 	pud_p += pud_index(vaddr);
288 	if (native_pud_val(*pud_p)) {
289 		if (native_pud_val(*pud_p) & _PAGE_PSE)
290 			goto out;
291 
292 		pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
293 	} else {
294 		pud_t pud;
295 
296 		pmd_p = pgtable_area;
297 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
298 		pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
299 
300 		pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
301 		native_set_pud(pud_p, pud);
302 	}
303 
304 	pmd_p += pmd_index(vaddr);
305 	if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
306 		native_set_pmd(pmd_p, native_make_pmd(pmd_val));
307 
308 out:
309 	return pgtable_area;
310 }
311 
312 static unsigned long __init sme_pgtable_calc(unsigned long len)
313 {
314 	unsigned long p4d_size, pud_size, pmd_size;
315 	unsigned long total;
316 
317 	/*
318 	 * Perform a relatively simplistic calculation of the pagetable
319 	 * entries that are needed. That mappings will be covered by 2MB
320 	 * PMD entries so we can conservatively calculate the required
321 	 * number of P4D, PUD and PMD structures needed to perform the
322 	 * mappings. Incrementing the count for each covers the case where
323 	 * the addresses cross entries.
324 	 */
325 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
326 		p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
327 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
328 		pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
329 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
330 	} else {
331 		p4d_size = 0;
332 		pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
333 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
334 	}
335 	pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
336 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
337 
338 	total = p4d_size + pud_size + pmd_size;
339 
340 	/*
341 	 * Now calculate the added pagetable structures needed to populate
342 	 * the new pagetables.
343 	 */
344 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
345 		p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
346 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
347 		pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
348 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
349 	} else {
350 		p4d_size = 0;
351 		pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
352 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
353 	}
354 	pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
355 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
356 
357 	total += p4d_size + pud_size + pmd_size;
358 
359 	return total;
360 }
361 
362 void __init sme_encrypt_kernel(void)
363 {
364 	unsigned long workarea_start, workarea_end, workarea_len;
365 	unsigned long execute_start, execute_end, execute_len;
366 	unsigned long kernel_start, kernel_end, kernel_len;
367 	unsigned long pgtable_area_len;
368 	unsigned long paddr, pmd_flags;
369 	unsigned long decrypted_base;
370 	void *pgtable_area;
371 	pgd_t *pgd;
372 
373 	if (!sme_active())
374 		return;
375 
376 	/*
377 	 * Prepare for encrypting the kernel by building new pagetables with
378 	 * the necessary attributes needed to encrypt the kernel in place.
379 	 *
380 	 *   One range of virtual addresses will map the memory occupied
381 	 *   by the kernel as encrypted.
382 	 *
383 	 *   Another range of virtual addresses will map the memory occupied
384 	 *   by the kernel as decrypted and write-protected.
385 	 *
386 	 *     The use of write-protect attribute will prevent any of the
387 	 *     memory from being cached.
388 	 */
389 
390 	/* Physical addresses gives us the identity mapped virtual addresses */
391 	kernel_start = __pa_symbol(_text);
392 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
393 	kernel_len = kernel_end - kernel_start;
394 
395 	/* Set the encryption workarea to be immediately after the kernel */
396 	workarea_start = kernel_end;
397 
398 	/*
399 	 * Calculate required number of workarea bytes needed:
400 	 *   executable encryption area size:
401 	 *     stack page (PAGE_SIZE)
402 	 *     encryption routine page (PAGE_SIZE)
403 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
404 	 *   pagetable structures for the encryption of the kernel
405 	 *   pagetable structures for workarea (in case not currently mapped)
406 	 */
407 	execute_start = workarea_start;
408 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
409 	execute_len = execute_end - execute_start;
410 
411 	/*
412 	 * One PGD for both encrypted and decrypted mappings and a set of
413 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
414 	 */
415 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
416 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
417 
418 	/* PUDs and PMDs needed in the current pagetables for the workarea */
419 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
420 
421 	/*
422 	 * The total workarea includes the executable encryption area and
423 	 * the pagetable area.
424 	 */
425 	workarea_len = execute_len + pgtable_area_len;
426 	workarea_end = workarea_start + workarea_len;
427 
428 	/*
429 	 * Set the address to the start of where newly created pagetable
430 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
431 	 * structures are created when the workarea is added to the current
432 	 * pagetables and when the new encrypted and decrypted kernel
433 	 * mappings are populated.
434 	 */
435 	pgtable_area = (void *)execute_end;
436 
437 	/*
438 	 * Make sure the current pagetable structure has entries for
439 	 * addressing the workarea.
440 	 */
441 	pgd = (pgd_t *)native_read_cr3_pa();
442 	paddr = workarea_start;
443 	while (paddr < workarea_end) {
444 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
445 						paddr,
446 						paddr + PMD_FLAGS);
447 
448 		paddr += PMD_PAGE_SIZE;
449 	}
450 
451 	/* Flush the TLB - no globals so cr3 is enough */
452 	native_write_cr3(__native_read_cr3());
453 
454 	/*
455 	 * A new pagetable structure is being built to allow for the kernel
456 	 * to be encrypted. It starts with an empty PGD that will then be
457 	 * populated with new PUDs and PMDs as the encrypted and decrypted
458 	 * kernel mappings are created.
459 	 */
460 	pgd = pgtable_area;
461 	memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
462 	pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
463 
464 	/* Add encrypted kernel (identity) mappings */
465 	pmd_flags = PMD_FLAGS | _PAGE_ENC;
466 	paddr = kernel_start;
467 	while (paddr < kernel_end) {
468 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
469 						paddr,
470 						paddr + pmd_flags);
471 
472 		paddr += PMD_PAGE_SIZE;
473 	}
474 
475 	/*
476 	 * A different PGD index/entry must be used to get different
477 	 * pagetable entries for the decrypted mapping. Choose the next
478 	 * PGD index and convert it to a virtual address to be used as
479 	 * the base of the mapping.
480 	 */
481 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
482 	decrypted_base <<= PGDIR_SHIFT;
483 
484 	/* Add decrypted, write-protected kernel (non-identity) mappings */
485 	pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
486 	paddr = kernel_start;
487 	while (paddr < kernel_end) {
488 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
489 						paddr + decrypted_base,
490 						paddr + pmd_flags);
491 
492 		paddr += PMD_PAGE_SIZE;
493 	}
494 
495 	/* Add decrypted workarea mappings to both kernel mappings */
496 	paddr = workarea_start;
497 	while (paddr < workarea_end) {
498 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
499 						paddr,
500 						paddr + PMD_FLAGS);
501 
502 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
503 						paddr + decrypted_base,
504 						paddr + PMD_FLAGS);
505 
506 		paddr += PMD_PAGE_SIZE;
507 	}
508 
509 	/* Perform the encryption */
510 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
511 			    kernel_len, workarea_start, (unsigned long)pgd);
512 
513 	/*
514 	 * At this point we are running encrypted.  Remove the mappings for
515 	 * the decrypted areas - all that is needed for this is to remove
516 	 * the PGD entry/entries.
517 	 */
518 	sme_clear_pgd(pgd, kernel_start + decrypted_base,
519 		      kernel_end + decrypted_base);
520 
521 	sme_clear_pgd(pgd, workarea_start + decrypted_base,
522 		      workarea_end + decrypted_base);
523 
524 	/* Flush the TLB - no globals so cr3 is enough */
525 	native_write_cr3(__native_read_cr3());
526 }
527 
528 void __init __nostackprotector sme_enable(struct boot_params *bp)
529 {
530 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
531 	unsigned int eax, ebx, ecx, edx;
532 	bool active_by_default;
533 	unsigned long me_mask;
534 	char buffer[16];
535 	u64 msr;
536 
537 	/* Check for the SME support leaf */
538 	eax = 0x80000000;
539 	ecx = 0;
540 	native_cpuid(&eax, &ebx, &ecx, &edx);
541 	if (eax < 0x8000001f)
542 		return;
543 
544 	/*
545 	 * Check for the SME feature:
546 	 *   CPUID Fn8000_001F[EAX] - Bit 0
547 	 *     Secure Memory Encryption support
548 	 *   CPUID Fn8000_001F[EBX] - Bits 5:0
549 	 *     Pagetable bit position used to indicate encryption
550 	 */
551 	eax = 0x8000001f;
552 	ecx = 0;
553 	native_cpuid(&eax, &ebx, &ecx, &edx);
554 	if (!(eax & 1))
555 		return;
556 
557 	me_mask = 1UL << (ebx & 0x3f);
558 
559 	/* Check if SME is enabled */
560 	msr = __rdmsr(MSR_K8_SYSCFG);
561 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
562 		return;
563 
564 	/*
565 	 * Fixups have not been applied to phys_base yet and we're running
566 	 * identity mapped, so we must obtain the address to the SME command
567 	 * line argument data using rip-relative addressing.
568 	 */
569 	asm ("lea sme_cmdline_arg(%%rip), %0"
570 	     : "=r" (cmdline_arg)
571 	     : "p" (sme_cmdline_arg));
572 	asm ("lea sme_cmdline_on(%%rip), %0"
573 	     : "=r" (cmdline_on)
574 	     : "p" (sme_cmdline_on));
575 	asm ("lea sme_cmdline_off(%%rip), %0"
576 	     : "=r" (cmdline_off)
577 	     : "p" (sme_cmdline_off));
578 
579 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
580 		active_by_default = true;
581 	else
582 		active_by_default = false;
583 
584 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
585 				     ((u64)bp->ext_cmd_line_ptr << 32));
586 
587 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
588 
589 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
590 		sme_me_mask = me_mask;
591 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
592 		sme_me_mask = 0;
593 	else
594 		sme_me_mask = active_by_default ? me_mask : 0;
595 }
596