xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 680ef72a)
1 /*
2  * AMD Memory Encryption Support
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define DISABLE_BRANCH_PROFILING
14 
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32 
33 #include "mm_internal.h"
34 
35 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
36 static char sme_cmdline_on[]  __initdata = "on";
37 static char sme_cmdline_off[] __initdata = "off";
38 
39 /*
40  * Since SME related variables are set early in the boot process they must
41  * reside in the .data section so as not to be zeroed out when the .bss
42  * section is later cleared.
43  */
44 u64 sme_me_mask __section(.data) = 0;
45 EXPORT_SYMBOL(sme_me_mask);
46 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
47 EXPORT_SYMBOL_GPL(sev_enable_key);
48 
49 static bool sev_enabled __section(.data);
50 
51 /* Buffer used for early in-place encryption by BSP, no locking needed */
52 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
53 
54 /*
55  * This routine does not change the underlying encryption setting of the
56  * page(s) that map this memory. It assumes that eventually the memory is
57  * meant to be accessed as either encrypted or decrypted but the contents
58  * are currently not in the desired state.
59  *
60  * This routine follows the steps outlined in the AMD64 Architecture
61  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
62  */
63 static void __init __sme_early_enc_dec(resource_size_t paddr,
64 				       unsigned long size, bool enc)
65 {
66 	void *src, *dst;
67 	size_t len;
68 
69 	if (!sme_me_mask)
70 		return;
71 
72 	wbinvd();
73 
74 	/*
75 	 * There are limited number of early mapping slots, so map (at most)
76 	 * one page at time.
77 	 */
78 	while (size) {
79 		len = min_t(size_t, sizeof(sme_early_buffer), size);
80 
81 		/*
82 		 * Create mappings for the current and desired format of
83 		 * the memory. Use a write-protected mapping for the source.
84 		 */
85 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
86 			    early_memremap_encrypted_wp(paddr, len);
87 
88 		dst = enc ? early_memremap_encrypted(paddr, len) :
89 			    early_memremap_decrypted(paddr, len);
90 
91 		/*
92 		 * If a mapping can't be obtained to perform the operation,
93 		 * then eventual access of that area in the desired mode
94 		 * will cause a crash.
95 		 */
96 		BUG_ON(!src || !dst);
97 
98 		/*
99 		 * Use a temporary buffer, of cache-line multiple size, to
100 		 * avoid data corruption as documented in the APM.
101 		 */
102 		memcpy(sme_early_buffer, src, len);
103 		memcpy(dst, sme_early_buffer, len);
104 
105 		early_memunmap(dst, len);
106 		early_memunmap(src, len);
107 
108 		paddr += len;
109 		size -= len;
110 	}
111 }
112 
113 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
114 {
115 	__sme_early_enc_dec(paddr, size, true);
116 }
117 
118 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
119 {
120 	__sme_early_enc_dec(paddr, size, false);
121 }
122 
123 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
124 					     bool map)
125 {
126 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
127 	pmdval_t pmd_flags, pmd;
128 
129 	/* Use early_pmd_flags but remove the encryption mask */
130 	pmd_flags = __sme_clr(early_pmd_flags);
131 
132 	do {
133 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
134 		__early_make_pgtable((unsigned long)vaddr, pmd);
135 
136 		vaddr += PMD_SIZE;
137 		paddr += PMD_SIZE;
138 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
139 	} while (size);
140 
141 	__native_flush_tlb();
142 }
143 
144 void __init sme_unmap_bootdata(char *real_mode_data)
145 {
146 	struct boot_params *boot_data;
147 	unsigned long cmdline_paddr;
148 
149 	if (!sme_active())
150 		return;
151 
152 	/* Get the command line address before unmapping the real_mode_data */
153 	boot_data = (struct boot_params *)real_mode_data;
154 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
155 
156 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
157 
158 	if (!cmdline_paddr)
159 		return;
160 
161 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
162 }
163 
164 void __init sme_map_bootdata(char *real_mode_data)
165 {
166 	struct boot_params *boot_data;
167 	unsigned long cmdline_paddr;
168 
169 	if (!sme_active())
170 		return;
171 
172 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
173 
174 	/* Get the command line address after mapping the real_mode_data */
175 	boot_data = (struct boot_params *)real_mode_data;
176 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
177 
178 	if (!cmdline_paddr)
179 		return;
180 
181 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
182 }
183 
184 void __init sme_early_init(void)
185 {
186 	unsigned int i;
187 
188 	if (!sme_me_mask)
189 		return;
190 
191 	early_pmd_flags = __sme_set(early_pmd_flags);
192 
193 	__supported_pte_mask = __sme_set(__supported_pte_mask);
194 
195 	/* Update the protection map with memory encryption mask */
196 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
197 		protection_map[i] = pgprot_encrypted(protection_map[i]);
198 
199 	if (sev_active())
200 		swiotlb_force = SWIOTLB_FORCE;
201 }
202 
203 static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
204 		       gfp_t gfp, unsigned long attrs)
205 {
206 	unsigned long dma_mask;
207 	unsigned int order;
208 	struct page *page;
209 	void *vaddr = NULL;
210 
211 	dma_mask = dma_alloc_coherent_mask(dev, gfp);
212 	order = get_order(size);
213 
214 	/*
215 	 * Memory will be memset to zero after marking decrypted, so don't
216 	 * bother clearing it before.
217 	 */
218 	gfp &= ~__GFP_ZERO;
219 
220 	page = alloc_pages_node(dev_to_node(dev), gfp, order);
221 	if (page) {
222 		dma_addr_t addr;
223 
224 		/*
225 		 * Since we will be clearing the encryption bit, check the
226 		 * mask with it already cleared.
227 		 */
228 		addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
229 		if ((addr + size) > dma_mask) {
230 			__free_pages(page, get_order(size));
231 		} else {
232 			vaddr = page_address(page);
233 			*dma_handle = addr;
234 		}
235 	}
236 
237 	if (!vaddr)
238 		vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
239 
240 	if (!vaddr)
241 		return NULL;
242 
243 	/* Clear the SME encryption bit for DMA use if not swiotlb area */
244 	if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
245 		set_memory_decrypted((unsigned long)vaddr, 1 << order);
246 		memset(vaddr, 0, PAGE_SIZE << order);
247 		*dma_handle = __sme_clr(*dma_handle);
248 	}
249 
250 	return vaddr;
251 }
252 
253 static void sev_free(struct device *dev, size_t size, void *vaddr,
254 		     dma_addr_t dma_handle, unsigned long attrs)
255 {
256 	/* Set the SME encryption bit for re-use if not swiotlb area */
257 	if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
258 		set_memory_encrypted((unsigned long)vaddr,
259 				     1 << get_order(size));
260 
261 	swiotlb_free_coherent(dev, size, vaddr, dma_handle);
262 }
263 
264 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
265 {
266 	pgprot_t old_prot, new_prot;
267 	unsigned long pfn, pa, size;
268 	pte_t new_pte;
269 
270 	switch (level) {
271 	case PG_LEVEL_4K:
272 		pfn = pte_pfn(*kpte);
273 		old_prot = pte_pgprot(*kpte);
274 		break;
275 	case PG_LEVEL_2M:
276 		pfn = pmd_pfn(*(pmd_t *)kpte);
277 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
278 		break;
279 	case PG_LEVEL_1G:
280 		pfn = pud_pfn(*(pud_t *)kpte);
281 		old_prot = pud_pgprot(*(pud_t *)kpte);
282 		break;
283 	default:
284 		return;
285 	}
286 
287 	new_prot = old_prot;
288 	if (enc)
289 		pgprot_val(new_prot) |= _PAGE_ENC;
290 	else
291 		pgprot_val(new_prot) &= ~_PAGE_ENC;
292 
293 	/* If prot is same then do nothing. */
294 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
295 		return;
296 
297 	pa = pfn << page_level_shift(level);
298 	size = page_level_size(level);
299 
300 	/*
301 	 * We are going to perform in-place en-/decryption and change the
302 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
303 	 * caches to ensure that data gets accessed with the correct C-bit.
304 	 */
305 	clflush_cache_range(__va(pa), size);
306 
307 	/* Encrypt/decrypt the contents in-place */
308 	if (enc)
309 		sme_early_encrypt(pa, size);
310 	else
311 		sme_early_decrypt(pa, size);
312 
313 	/* Change the page encryption mask. */
314 	new_pte = pfn_pte(pfn, new_prot);
315 	set_pte_atomic(kpte, new_pte);
316 }
317 
318 static int __init early_set_memory_enc_dec(unsigned long vaddr,
319 					   unsigned long size, bool enc)
320 {
321 	unsigned long vaddr_end, vaddr_next;
322 	unsigned long psize, pmask;
323 	int split_page_size_mask;
324 	int level, ret;
325 	pte_t *kpte;
326 
327 	vaddr_next = vaddr;
328 	vaddr_end = vaddr + size;
329 
330 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
331 		kpte = lookup_address(vaddr, &level);
332 		if (!kpte || pte_none(*kpte)) {
333 			ret = 1;
334 			goto out;
335 		}
336 
337 		if (level == PG_LEVEL_4K) {
338 			__set_clr_pte_enc(kpte, level, enc);
339 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
340 			continue;
341 		}
342 
343 		psize = page_level_size(level);
344 		pmask = page_level_mask(level);
345 
346 		/*
347 		 * Check whether we can change the large page in one go.
348 		 * We request a split when the address is not aligned and
349 		 * the number of pages to set/clear encryption bit is smaller
350 		 * than the number of pages in the large page.
351 		 */
352 		if (vaddr == (vaddr & pmask) &&
353 		    ((vaddr_end - vaddr) >= psize)) {
354 			__set_clr_pte_enc(kpte, level, enc);
355 			vaddr_next = (vaddr & pmask) + psize;
356 			continue;
357 		}
358 
359 		/*
360 		 * The virtual address is part of a larger page, create the next
361 		 * level page table mapping (4K or 2M). If it is part of a 2M
362 		 * page then we request a split of the large page into 4K
363 		 * chunks. A 1GB large page is split into 2M pages, resp.
364 		 */
365 		if (level == PG_LEVEL_2M)
366 			split_page_size_mask = 0;
367 		else
368 			split_page_size_mask = 1 << PG_LEVEL_2M;
369 
370 		kernel_physical_mapping_init(__pa(vaddr & pmask),
371 					     __pa((vaddr_end & pmask) + psize),
372 					     split_page_size_mask);
373 	}
374 
375 	ret = 0;
376 
377 out:
378 	__flush_tlb_all();
379 	return ret;
380 }
381 
382 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
383 {
384 	return early_set_memory_enc_dec(vaddr, size, false);
385 }
386 
387 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
388 {
389 	return early_set_memory_enc_dec(vaddr, size, true);
390 }
391 
392 /*
393  * SME and SEV are very similar but they are not the same, so there are
394  * times that the kernel will need to distinguish between SME and SEV. The
395  * sme_active() and sev_active() functions are used for this.  When a
396  * distinction isn't needed, the mem_encrypt_active() function can be used.
397  *
398  * The trampoline code is a good example for this requirement.  Before
399  * paging is activated, SME will access all memory as decrypted, but SEV
400  * will access all memory as encrypted.  So, when APs are being brought
401  * up under SME the trampoline area cannot be encrypted, whereas under SEV
402  * the trampoline area must be encrypted.
403  */
404 bool sme_active(void)
405 {
406 	return sme_me_mask && !sev_enabled;
407 }
408 EXPORT_SYMBOL_GPL(sme_active);
409 
410 bool sev_active(void)
411 {
412 	return sme_me_mask && sev_enabled;
413 }
414 EXPORT_SYMBOL_GPL(sev_active);
415 
416 static const struct dma_map_ops sev_dma_ops = {
417 	.alloc                  = sev_alloc,
418 	.free                   = sev_free,
419 	.map_page               = swiotlb_map_page,
420 	.unmap_page             = swiotlb_unmap_page,
421 	.map_sg                 = swiotlb_map_sg_attrs,
422 	.unmap_sg               = swiotlb_unmap_sg_attrs,
423 	.sync_single_for_cpu    = swiotlb_sync_single_for_cpu,
424 	.sync_single_for_device = swiotlb_sync_single_for_device,
425 	.sync_sg_for_cpu        = swiotlb_sync_sg_for_cpu,
426 	.sync_sg_for_device     = swiotlb_sync_sg_for_device,
427 	.mapping_error          = swiotlb_dma_mapping_error,
428 };
429 
430 /* Architecture __weak replacement functions */
431 void __init mem_encrypt_init(void)
432 {
433 	if (!sme_me_mask)
434 		return;
435 
436 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
437 	swiotlb_update_mem_attributes();
438 
439 	/*
440 	 * With SEV, DMA operations cannot use encryption. New DMA ops
441 	 * are required in order to mark the DMA areas as decrypted or
442 	 * to use bounce buffers.
443 	 */
444 	if (sev_active())
445 		dma_ops = &sev_dma_ops;
446 
447 	/*
448 	 * With SEV, we need to unroll the rep string I/O instructions.
449 	 */
450 	if (sev_active())
451 		static_branch_enable(&sev_enable_key);
452 
453 	pr_info("AMD %s active\n",
454 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
455 			     : "Secure Memory Encryption (SME)");
456 }
457 
458 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
459 {
460 	WARN(PAGE_ALIGN(size) != size,
461 	     "size is not page-aligned (%#lx)\n", size);
462 
463 	/* Make the SWIOTLB buffer area decrypted */
464 	set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
465 }
466 
467 static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
468 				 unsigned long end)
469 {
470 	unsigned long pgd_start, pgd_end, pgd_size;
471 	pgd_t *pgd_p;
472 
473 	pgd_start = start & PGDIR_MASK;
474 	pgd_end = end & PGDIR_MASK;
475 
476 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
477 	pgd_size *= sizeof(pgd_t);
478 
479 	pgd_p = pgd_base + pgd_index(start);
480 
481 	memset(pgd_p, 0, pgd_size);
482 }
483 
484 #define PGD_FLAGS	_KERNPG_TABLE_NOENC
485 #define P4D_FLAGS	_KERNPG_TABLE_NOENC
486 #define PUD_FLAGS	_KERNPG_TABLE_NOENC
487 #define PMD_FLAGS	(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
488 
489 static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
490 				     unsigned long vaddr, pmdval_t pmd_val)
491 {
492 	pgd_t *pgd_p;
493 	p4d_t *p4d_p;
494 	pud_t *pud_p;
495 	pmd_t *pmd_p;
496 
497 	pgd_p = pgd_base + pgd_index(vaddr);
498 	if (native_pgd_val(*pgd_p)) {
499 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
500 			p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
501 		else
502 			pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
503 	} else {
504 		pgd_t pgd;
505 
506 		if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
507 			p4d_p = pgtable_area;
508 			memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
509 			pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
510 
511 			pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
512 		} else {
513 			pud_p = pgtable_area;
514 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
515 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
516 
517 			pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
518 		}
519 		native_set_pgd(pgd_p, pgd);
520 	}
521 
522 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
523 		p4d_p += p4d_index(vaddr);
524 		if (native_p4d_val(*p4d_p)) {
525 			pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
526 		} else {
527 			p4d_t p4d;
528 
529 			pud_p = pgtable_area;
530 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
531 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
532 
533 			p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
534 			native_set_p4d(p4d_p, p4d);
535 		}
536 	}
537 
538 	pud_p += pud_index(vaddr);
539 	if (native_pud_val(*pud_p)) {
540 		if (native_pud_val(*pud_p) & _PAGE_PSE)
541 			goto out;
542 
543 		pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
544 	} else {
545 		pud_t pud;
546 
547 		pmd_p = pgtable_area;
548 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
549 		pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
550 
551 		pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
552 		native_set_pud(pud_p, pud);
553 	}
554 
555 	pmd_p += pmd_index(vaddr);
556 	if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
557 		native_set_pmd(pmd_p, native_make_pmd(pmd_val));
558 
559 out:
560 	return pgtable_area;
561 }
562 
563 static unsigned long __init sme_pgtable_calc(unsigned long len)
564 {
565 	unsigned long p4d_size, pud_size, pmd_size;
566 	unsigned long total;
567 
568 	/*
569 	 * Perform a relatively simplistic calculation of the pagetable
570 	 * entries that are needed. That mappings will be covered by 2MB
571 	 * PMD entries so we can conservatively calculate the required
572 	 * number of P4D, PUD and PMD structures needed to perform the
573 	 * mappings. Incrementing the count for each covers the case where
574 	 * the addresses cross entries.
575 	 */
576 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
577 		p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
578 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
579 		pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
580 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
581 	} else {
582 		p4d_size = 0;
583 		pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
584 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
585 	}
586 	pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
587 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
588 
589 	total = p4d_size + pud_size + pmd_size;
590 
591 	/*
592 	 * Now calculate the added pagetable structures needed to populate
593 	 * the new pagetables.
594 	 */
595 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
596 		p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
597 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
598 		pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
599 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
600 	} else {
601 		p4d_size = 0;
602 		pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
603 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
604 	}
605 	pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
606 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
607 
608 	total += p4d_size + pud_size + pmd_size;
609 
610 	return total;
611 }
612 
613 void __init sme_encrypt_kernel(void)
614 {
615 	unsigned long workarea_start, workarea_end, workarea_len;
616 	unsigned long execute_start, execute_end, execute_len;
617 	unsigned long kernel_start, kernel_end, kernel_len;
618 	unsigned long pgtable_area_len;
619 	unsigned long paddr, pmd_flags;
620 	unsigned long decrypted_base;
621 	void *pgtable_area;
622 	pgd_t *pgd;
623 
624 	if (!sme_active())
625 		return;
626 
627 	/*
628 	 * Prepare for encrypting the kernel by building new pagetables with
629 	 * the necessary attributes needed to encrypt the kernel in place.
630 	 *
631 	 *   One range of virtual addresses will map the memory occupied
632 	 *   by the kernel as encrypted.
633 	 *
634 	 *   Another range of virtual addresses will map the memory occupied
635 	 *   by the kernel as decrypted and write-protected.
636 	 *
637 	 *     The use of write-protect attribute will prevent any of the
638 	 *     memory from being cached.
639 	 */
640 
641 	/* Physical addresses gives us the identity mapped virtual addresses */
642 	kernel_start = __pa_symbol(_text);
643 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
644 	kernel_len = kernel_end - kernel_start;
645 
646 	/* Set the encryption workarea to be immediately after the kernel */
647 	workarea_start = kernel_end;
648 
649 	/*
650 	 * Calculate required number of workarea bytes needed:
651 	 *   executable encryption area size:
652 	 *     stack page (PAGE_SIZE)
653 	 *     encryption routine page (PAGE_SIZE)
654 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
655 	 *   pagetable structures for the encryption of the kernel
656 	 *   pagetable structures for workarea (in case not currently mapped)
657 	 */
658 	execute_start = workarea_start;
659 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
660 	execute_len = execute_end - execute_start;
661 
662 	/*
663 	 * One PGD for both encrypted and decrypted mappings and a set of
664 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
665 	 */
666 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
667 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
668 
669 	/* PUDs and PMDs needed in the current pagetables for the workarea */
670 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
671 
672 	/*
673 	 * The total workarea includes the executable encryption area and
674 	 * the pagetable area.
675 	 */
676 	workarea_len = execute_len + pgtable_area_len;
677 	workarea_end = workarea_start + workarea_len;
678 
679 	/*
680 	 * Set the address to the start of where newly created pagetable
681 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
682 	 * structures are created when the workarea is added to the current
683 	 * pagetables and when the new encrypted and decrypted kernel
684 	 * mappings are populated.
685 	 */
686 	pgtable_area = (void *)execute_end;
687 
688 	/*
689 	 * Make sure the current pagetable structure has entries for
690 	 * addressing the workarea.
691 	 */
692 	pgd = (pgd_t *)native_read_cr3_pa();
693 	paddr = workarea_start;
694 	while (paddr < workarea_end) {
695 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
696 						paddr,
697 						paddr + PMD_FLAGS);
698 
699 		paddr += PMD_PAGE_SIZE;
700 	}
701 
702 	/* Flush the TLB - no globals so cr3 is enough */
703 	native_write_cr3(__native_read_cr3());
704 
705 	/*
706 	 * A new pagetable structure is being built to allow for the kernel
707 	 * to be encrypted. It starts with an empty PGD that will then be
708 	 * populated with new PUDs and PMDs as the encrypted and decrypted
709 	 * kernel mappings are created.
710 	 */
711 	pgd = pgtable_area;
712 	memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
713 	pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
714 
715 	/* Add encrypted kernel (identity) mappings */
716 	pmd_flags = PMD_FLAGS | _PAGE_ENC;
717 	paddr = kernel_start;
718 	while (paddr < kernel_end) {
719 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
720 						paddr,
721 						paddr + pmd_flags);
722 
723 		paddr += PMD_PAGE_SIZE;
724 	}
725 
726 	/*
727 	 * A different PGD index/entry must be used to get different
728 	 * pagetable entries for the decrypted mapping. Choose the next
729 	 * PGD index and convert it to a virtual address to be used as
730 	 * the base of the mapping.
731 	 */
732 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
733 	decrypted_base <<= PGDIR_SHIFT;
734 
735 	/* Add decrypted, write-protected kernel (non-identity) mappings */
736 	pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
737 	paddr = kernel_start;
738 	while (paddr < kernel_end) {
739 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
740 						paddr + decrypted_base,
741 						paddr + pmd_flags);
742 
743 		paddr += PMD_PAGE_SIZE;
744 	}
745 
746 	/* Add decrypted workarea mappings to both kernel mappings */
747 	paddr = workarea_start;
748 	while (paddr < workarea_end) {
749 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
750 						paddr,
751 						paddr + PMD_FLAGS);
752 
753 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
754 						paddr + decrypted_base,
755 						paddr + PMD_FLAGS);
756 
757 		paddr += PMD_PAGE_SIZE;
758 	}
759 
760 	/* Perform the encryption */
761 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
762 			    kernel_len, workarea_start, (unsigned long)pgd);
763 
764 	/*
765 	 * At this point we are running encrypted.  Remove the mappings for
766 	 * the decrypted areas - all that is needed for this is to remove
767 	 * the PGD entry/entries.
768 	 */
769 	sme_clear_pgd(pgd, kernel_start + decrypted_base,
770 		      kernel_end + decrypted_base);
771 
772 	sme_clear_pgd(pgd, workarea_start + decrypted_base,
773 		      workarea_end + decrypted_base);
774 
775 	/* Flush the TLB - no globals so cr3 is enough */
776 	native_write_cr3(__native_read_cr3());
777 }
778 
779 void __init __nostackprotector sme_enable(struct boot_params *bp)
780 {
781 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
782 	unsigned int eax, ebx, ecx, edx;
783 	unsigned long feature_mask;
784 	bool active_by_default;
785 	unsigned long me_mask;
786 	char buffer[16];
787 	u64 msr;
788 
789 	/* Check for the SME/SEV support leaf */
790 	eax = 0x80000000;
791 	ecx = 0;
792 	native_cpuid(&eax, &ebx, &ecx, &edx);
793 	if (eax < 0x8000001f)
794 		return;
795 
796 #define AMD_SME_BIT	BIT(0)
797 #define AMD_SEV_BIT	BIT(1)
798 	/*
799 	 * Set the feature mask (SME or SEV) based on whether we are
800 	 * running under a hypervisor.
801 	 */
802 	eax = 1;
803 	ecx = 0;
804 	native_cpuid(&eax, &ebx, &ecx, &edx);
805 	feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
806 
807 	/*
808 	 * Check for the SME/SEV feature:
809 	 *   CPUID Fn8000_001F[EAX]
810 	 *   - Bit 0 - Secure Memory Encryption support
811 	 *   - Bit 1 - Secure Encrypted Virtualization support
812 	 *   CPUID Fn8000_001F[EBX]
813 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
814 	 */
815 	eax = 0x8000001f;
816 	ecx = 0;
817 	native_cpuid(&eax, &ebx, &ecx, &edx);
818 	if (!(eax & feature_mask))
819 		return;
820 
821 	me_mask = 1UL << (ebx & 0x3f);
822 
823 	/* Check if memory encryption is enabled */
824 	if (feature_mask == AMD_SME_BIT) {
825 		/* For SME, check the SYSCFG MSR */
826 		msr = __rdmsr(MSR_K8_SYSCFG);
827 		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
828 			return;
829 	} else {
830 		/* For SEV, check the SEV MSR */
831 		msr = __rdmsr(MSR_AMD64_SEV);
832 		if (!(msr & MSR_AMD64_SEV_ENABLED))
833 			return;
834 
835 		/* SEV state cannot be controlled by a command line option */
836 		sme_me_mask = me_mask;
837 		sev_enabled = true;
838 		return;
839 	}
840 
841 	/*
842 	 * Fixups have not been applied to phys_base yet and we're running
843 	 * identity mapped, so we must obtain the address to the SME command
844 	 * line argument data using rip-relative addressing.
845 	 */
846 	asm ("lea sme_cmdline_arg(%%rip), %0"
847 	     : "=r" (cmdline_arg)
848 	     : "p" (sme_cmdline_arg));
849 	asm ("lea sme_cmdline_on(%%rip), %0"
850 	     : "=r" (cmdline_on)
851 	     : "p" (sme_cmdline_on));
852 	asm ("lea sme_cmdline_off(%%rip), %0"
853 	     : "=r" (cmdline_off)
854 	     : "p" (sme_cmdline_off));
855 
856 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
857 		active_by_default = true;
858 	else
859 		active_by_default = false;
860 
861 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
862 				     ((u64)bp->ext_cmd_line_ptr << 32));
863 
864 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
865 
866 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
867 		sme_me_mask = me_mask;
868 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
869 		sme_me_mask = 0;
870 	else
871 		sme_me_mask = active_by_default ? me_mask : 0;
872 }
873