xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32 
33 #include "mm_internal.h"
34 
35 /*
36  * Since SME related variables are set early in the boot process they must
37  * reside in the .data section so as not to be zeroed out when the .bss
38  * section is later cleared.
39  */
40 u64 sme_me_mask __section(.data) = 0;
41 EXPORT_SYMBOL(sme_me_mask);
42 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
43 EXPORT_SYMBOL_GPL(sev_enable_key);
44 
45 bool sev_enabled __section(.data);
46 
47 /* Buffer used for early in-place encryption by BSP, no locking needed */
48 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
49 
50 /*
51  * This routine does not change the underlying encryption setting of the
52  * page(s) that map this memory. It assumes that eventually the memory is
53  * meant to be accessed as either encrypted or decrypted but the contents
54  * are currently not in the desired state.
55  *
56  * This routine follows the steps outlined in the AMD64 Architecture
57  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
58  */
59 static void __init __sme_early_enc_dec(resource_size_t paddr,
60 				       unsigned long size, bool enc)
61 {
62 	void *src, *dst;
63 	size_t len;
64 
65 	if (!sme_me_mask)
66 		return;
67 
68 	wbinvd();
69 
70 	/*
71 	 * There are limited number of early mapping slots, so map (at most)
72 	 * one page at time.
73 	 */
74 	while (size) {
75 		len = min_t(size_t, sizeof(sme_early_buffer), size);
76 
77 		/*
78 		 * Create mappings for the current and desired format of
79 		 * the memory. Use a write-protected mapping for the source.
80 		 */
81 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
82 			    early_memremap_encrypted_wp(paddr, len);
83 
84 		dst = enc ? early_memremap_encrypted(paddr, len) :
85 			    early_memremap_decrypted(paddr, len);
86 
87 		/*
88 		 * If a mapping can't be obtained to perform the operation,
89 		 * then eventual access of that area in the desired mode
90 		 * will cause a crash.
91 		 */
92 		BUG_ON(!src || !dst);
93 
94 		/*
95 		 * Use a temporary buffer, of cache-line multiple size, to
96 		 * avoid data corruption as documented in the APM.
97 		 */
98 		memcpy(sme_early_buffer, src, len);
99 		memcpy(dst, sme_early_buffer, len);
100 
101 		early_memunmap(dst, len);
102 		early_memunmap(src, len);
103 
104 		paddr += len;
105 		size -= len;
106 	}
107 }
108 
109 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
110 {
111 	__sme_early_enc_dec(paddr, size, true);
112 }
113 
114 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
115 {
116 	__sme_early_enc_dec(paddr, size, false);
117 }
118 
119 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
120 					     bool map)
121 {
122 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
123 	pmdval_t pmd_flags, pmd;
124 
125 	/* Use early_pmd_flags but remove the encryption mask */
126 	pmd_flags = __sme_clr(early_pmd_flags);
127 
128 	do {
129 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
130 		__early_make_pgtable((unsigned long)vaddr, pmd);
131 
132 		vaddr += PMD_SIZE;
133 		paddr += PMD_SIZE;
134 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
135 	} while (size);
136 
137 	flush_tlb_local();
138 }
139 
140 void __init sme_unmap_bootdata(char *real_mode_data)
141 {
142 	struct boot_params *boot_data;
143 	unsigned long cmdline_paddr;
144 
145 	if (!sme_active())
146 		return;
147 
148 	/* Get the command line address before unmapping the real_mode_data */
149 	boot_data = (struct boot_params *)real_mode_data;
150 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
151 
152 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
153 
154 	if (!cmdline_paddr)
155 		return;
156 
157 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
158 }
159 
160 void __init sme_map_bootdata(char *real_mode_data)
161 {
162 	struct boot_params *boot_data;
163 	unsigned long cmdline_paddr;
164 
165 	if (!sme_active())
166 		return;
167 
168 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
169 
170 	/* Get the command line address after mapping the real_mode_data */
171 	boot_data = (struct boot_params *)real_mode_data;
172 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
173 
174 	if (!cmdline_paddr)
175 		return;
176 
177 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
178 }
179 
180 void __init sme_early_init(void)
181 {
182 	unsigned int i;
183 
184 	if (!sme_me_mask)
185 		return;
186 
187 	early_pmd_flags = __sme_set(early_pmd_flags);
188 
189 	__supported_pte_mask = __sme_set(__supported_pte_mask);
190 
191 	/* Update the protection map with memory encryption mask */
192 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
193 		protection_map[i] = pgprot_encrypted(protection_map[i]);
194 
195 	if (sev_active())
196 		swiotlb_force = SWIOTLB_FORCE;
197 }
198 
199 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
200 {
201 	pgprot_t old_prot, new_prot;
202 	unsigned long pfn, pa, size;
203 	pte_t new_pte;
204 
205 	switch (level) {
206 	case PG_LEVEL_4K:
207 		pfn = pte_pfn(*kpte);
208 		old_prot = pte_pgprot(*kpte);
209 		break;
210 	case PG_LEVEL_2M:
211 		pfn = pmd_pfn(*(pmd_t *)kpte);
212 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
213 		break;
214 	case PG_LEVEL_1G:
215 		pfn = pud_pfn(*(pud_t *)kpte);
216 		old_prot = pud_pgprot(*(pud_t *)kpte);
217 		break;
218 	default:
219 		return;
220 	}
221 
222 	new_prot = old_prot;
223 	if (enc)
224 		pgprot_val(new_prot) |= _PAGE_ENC;
225 	else
226 		pgprot_val(new_prot) &= ~_PAGE_ENC;
227 
228 	/* If prot is same then do nothing. */
229 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
230 		return;
231 
232 	pa = pfn << page_level_shift(level);
233 	size = page_level_size(level);
234 
235 	/*
236 	 * We are going to perform in-place en-/decryption and change the
237 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
238 	 * caches to ensure that data gets accessed with the correct C-bit.
239 	 */
240 	clflush_cache_range(__va(pa), size);
241 
242 	/* Encrypt/decrypt the contents in-place */
243 	if (enc)
244 		sme_early_encrypt(pa, size);
245 	else
246 		sme_early_decrypt(pa, size);
247 
248 	/* Change the page encryption mask. */
249 	new_pte = pfn_pte(pfn, new_prot);
250 	set_pte_atomic(kpte, new_pte);
251 }
252 
253 static int __init early_set_memory_enc_dec(unsigned long vaddr,
254 					   unsigned long size, bool enc)
255 {
256 	unsigned long vaddr_end, vaddr_next;
257 	unsigned long psize, pmask;
258 	int split_page_size_mask;
259 	int level, ret;
260 	pte_t *kpte;
261 
262 	vaddr_next = vaddr;
263 	vaddr_end = vaddr + size;
264 
265 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
266 		kpte = lookup_address(vaddr, &level);
267 		if (!kpte || pte_none(*kpte)) {
268 			ret = 1;
269 			goto out;
270 		}
271 
272 		if (level == PG_LEVEL_4K) {
273 			__set_clr_pte_enc(kpte, level, enc);
274 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
275 			continue;
276 		}
277 
278 		psize = page_level_size(level);
279 		pmask = page_level_mask(level);
280 
281 		/*
282 		 * Check whether we can change the large page in one go.
283 		 * We request a split when the address is not aligned and
284 		 * the number of pages to set/clear encryption bit is smaller
285 		 * than the number of pages in the large page.
286 		 */
287 		if (vaddr == (vaddr & pmask) &&
288 		    ((vaddr_end - vaddr) >= psize)) {
289 			__set_clr_pte_enc(kpte, level, enc);
290 			vaddr_next = (vaddr & pmask) + psize;
291 			continue;
292 		}
293 
294 		/*
295 		 * The virtual address is part of a larger page, create the next
296 		 * level page table mapping (4K or 2M). If it is part of a 2M
297 		 * page then we request a split of the large page into 4K
298 		 * chunks. A 1GB large page is split into 2M pages, resp.
299 		 */
300 		if (level == PG_LEVEL_2M)
301 			split_page_size_mask = 0;
302 		else
303 			split_page_size_mask = 1 << PG_LEVEL_2M;
304 
305 		/*
306 		 * kernel_physical_mapping_change() does not flush the TLBs, so
307 		 * a TLB flush is required after we exit from the for loop.
308 		 */
309 		kernel_physical_mapping_change(__pa(vaddr & pmask),
310 					       __pa((vaddr_end & pmask) + psize),
311 					       split_page_size_mask);
312 	}
313 
314 	ret = 0;
315 
316 out:
317 	__flush_tlb_all();
318 	return ret;
319 }
320 
321 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
322 {
323 	return early_set_memory_enc_dec(vaddr, size, false);
324 }
325 
326 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
327 {
328 	return early_set_memory_enc_dec(vaddr, size, true);
329 }
330 
331 /*
332  * SME and SEV are very similar but they are not the same, so there are
333  * times that the kernel will need to distinguish between SME and SEV. The
334  * sme_active() and sev_active() functions are used for this.  When a
335  * distinction isn't needed, the mem_encrypt_active() function can be used.
336  *
337  * The trampoline code is a good example for this requirement.  Before
338  * paging is activated, SME will access all memory as decrypted, but SEV
339  * will access all memory as encrypted.  So, when APs are being brought
340  * up under SME the trampoline area cannot be encrypted, whereas under SEV
341  * the trampoline area must be encrypted.
342  */
343 bool sme_active(void)
344 {
345 	return sme_me_mask && !sev_enabled;
346 }
347 
348 bool sev_active(void)
349 {
350 	return sme_me_mask && sev_enabled;
351 }
352 
353 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
354 bool force_dma_unencrypted(struct device *dev)
355 {
356 	/*
357 	 * For SEV, all DMA must be to unencrypted addresses.
358 	 */
359 	if (sev_active())
360 		return true;
361 
362 	/*
363 	 * For SME, all DMA must be to unencrypted addresses if the
364 	 * device does not support DMA to addresses that include the
365 	 * encryption mask.
366 	 */
367 	if (sme_active()) {
368 		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
369 		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
370 						dev->bus_dma_limit);
371 
372 		if (dma_dev_mask <= dma_enc_mask)
373 			return true;
374 	}
375 
376 	return false;
377 }
378 
379 /* Architecture __weak replacement functions */
380 void __init mem_encrypt_free_decrypted_mem(void)
381 {
382 	unsigned long vaddr, vaddr_end, npages;
383 	int r;
384 
385 	vaddr = (unsigned long)__start_bss_decrypted_unused;
386 	vaddr_end = (unsigned long)__end_bss_decrypted;
387 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
388 
389 	/*
390 	 * The unused memory range was mapped decrypted, change the encryption
391 	 * attribute from decrypted to encrypted before freeing it.
392 	 */
393 	if (mem_encrypt_active()) {
394 		r = set_memory_encrypted(vaddr, npages);
395 		if (r) {
396 			pr_warn("failed to free unused decrypted pages\n");
397 			return;
398 		}
399 	}
400 
401 	free_init_pages("unused decrypted", vaddr, vaddr_end);
402 }
403 
404 void __init mem_encrypt_init(void)
405 {
406 	if (!sme_me_mask)
407 		return;
408 
409 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
410 	swiotlb_update_mem_attributes();
411 
412 	/*
413 	 * With SEV, we need to unroll the rep string I/O instructions.
414 	 */
415 	if (sev_active())
416 		static_branch_enable(&sev_enable_key);
417 
418 	pr_info("AMD %s active\n",
419 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
420 			     : "Secure Memory Encryption (SME)");
421 }
422 
423