1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 23 #include <asm/tlbflush.h> 24 #include <asm/fixmap.h> 25 #include <asm/setup.h> 26 #include <asm/bootparam.h> 27 #include <asm/set_memory.h> 28 #include <asm/cacheflush.h> 29 #include <asm/processor-flags.h> 30 #include <asm/msr.h> 31 #include <asm/cmdline.h> 32 33 #include "mm_internal.h" 34 35 /* 36 * Since SME related variables are set early in the boot process they must 37 * reside in the .data section so as not to be zeroed out when the .bss 38 * section is later cleared. 39 */ 40 u64 sme_me_mask __section(.data) = 0; 41 EXPORT_SYMBOL(sme_me_mask); 42 DEFINE_STATIC_KEY_FALSE(sev_enable_key); 43 EXPORT_SYMBOL_GPL(sev_enable_key); 44 45 bool sev_enabled __section(.data); 46 47 /* Buffer used for early in-place encryption by BSP, no locking needed */ 48 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 49 50 /* 51 * This routine does not change the underlying encryption setting of the 52 * page(s) that map this memory. It assumes that eventually the memory is 53 * meant to be accessed as either encrypted or decrypted but the contents 54 * are currently not in the desired state. 55 * 56 * This routine follows the steps outlined in the AMD64 Architecture 57 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 58 */ 59 static void __init __sme_early_enc_dec(resource_size_t paddr, 60 unsigned long size, bool enc) 61 { 62 void *src, *dst; 63 size_t len; 64 65 if (!sme_me_mask) 66 return; 67 68 wbinvd(); 69 70 /* 71 * There are limited number of early mapping slots, so map (at most) 72 * one page at time. 73 */ 74 while (size) { 75 len = min_t(size_t, sizeof(sme_early_buffer), size); 76 77 /* 78 * Create mappings for the current and desired format of 79 * the memory. Use a write-protected mapping for the source. 80 */ 81 src = enc ? early_memremap_decrypted_wp(paddr, len) : 82 early_memremap_encrypted_wp(paddr, len); 83 84 dst = enc ? early_memremap_encrypted(paddr, len) : 85 early_memremap_decrypted(paddr, len); 86 87 /* 88 * If a mapping can't be obtained to perform the operation, 89 * then eventual access of that area in the desired mode 90 * will cause a crash. 91 */ 92 BUG_ON(!src || !dst); 93 94 /* 95 * Use a temporary buffer, of cache-line multiple size, to 96 * avoid data corruption as documented in the APM. 97 */ 98 memcpy(sme_early_buffer, src, len); 99 memcpy(dst, sme_early_buffer, len); 100 101 early_memunmap(dst, len); 102 early_memunmap(src, len); 103 104 paddr += len; 105 size -= len; 106 } 107 } 108 109 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 110 { 111 __sme_early_enc_dec(paddr, size, true); 112 } 113 114 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 115 { 116 __sme_early_enc_dec(paddr, size, false); 117 } 118 119 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 120 bool map) 121 { 122 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 123 pmdval_t pmd_flags, pmd; 124 125 /* Use early_pmd_flags but remove the encryption mask */ 126 pmd_flags = __sme_clr(early_pmd_flags); 127 128 do { 129 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 130 __early_make_pgtable((unsigned long)vaddr, pmd); 131 132 vaddr += PMD_SIZE; 133 paddr += PMD_SIZE; 134 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 135 } while (size); 136 137 flush_tlb_local(); 138 } 139 140 void __init sme_unmap_bootdata(char *real_mode_data) 141 { 142 struct boot_params *boot_data; 143 unsigned long cmdline_paddr; 144 145 if (!sme_active()) 146 return; 147 148 /* Get the command line address before unmapping the real_mode_data */ 149 boot_data = (struct boot_params *)real_mode_data; 150 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 151 152 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 153 154 if (!cmdline_paddr) 155 return; 156 157 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 158 } 159 160 void __init sme_map_bootdata(char *real_mode_data) 161 { 162 struct boot_params *boot_data; 163 unsigned long cmdline_paddr; 164 165 if (!sme_active()) 166 return; 167 168 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 169 170 /* Get the command line address after mapping the real_mode_data */ 171 boot_data = (struct boot_params *)real_mode_data; 172 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 173 174 if (!cmdline_paddr) 175 return; 176 177 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 178 } 179 180 void __init sme_early_init(void) 181 { 182 unsigned int i; 183 184 if (!sme_me_mask) 185 return; 186 187 early_pmd_flags = __sme_set(early_pmd_flags); 188 189 __supported_pte_mask = __sme_set(__supported_pte_mask); 190 191 /* Update the protection map with memory encryption mask */ 192 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 193 protection_map[i] = pgprot_encrypted(protection_map[i]); 194 195 if (sev_active()) 196 swiotlb_force = SWIOTLB_FORCE; 197 } 198 199 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 200 { 201 pgprot_t old_prot, new_prot; 202 unsigned long pfn, pa, size; 203 pte_t new_pte; 204 205 switch (level) { 206 case PG_LEVEL_4K: 207 pfn = pte_pfn(*kpte); 208 old_prot = pte_pgprot(*kpte); 209 break; 210 case PG_LEVEL_2M: 211 pfn = pmd_pfn(*(pmd_t *)kpte); 212 old_prot = pmd_pgprot(*(pmd_t *)kpte); 213 break; 214 case PG_LEVEL_1G: 215 pfn = pud_pfn(*(pud_t *)kpte); 216 old_prot = pud_pgprot(*(pud_t *)kpte); 217 break; 218 default: 219 return; 220 } 221 222 new_prot = old_prot; 223 if (enc) 224 pgprot_val(new_prot) |= _PAGE_ENC; 225 else 226 pgprot_val(new_prot) &= ~_PAGE_ENC; 227 228 /* If prot is same then do nothing. */ 229 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 230 return; 231 232 pa = pfn << page_level_shift(level); 233 size = page_level_size(level); 234 235 /* 236 * We are going to perform in-place en-/decryption and change the 237 * physical page attribute from C=1 to C=0 or vice versa. Flush the 238 * caches to ensure that data gets accessed with the correct C-bit. 239 */ 240 clflush_cache_range(__va(pa), size); 241 242 /* Encrypt/decrypt the contents in-place */ 243 if (enc) 244 sme_early_encrypt(pa, size); 245 else 246 sme_early_decrypt(pa, size); 247 248 /* Change the page encryption mask. */ 249 new_pte = pfn_pte(pfn, new_prot); 250 set_pte_atomic(kpte, new_pte); 251 } 252 253 static int __init early_set_memory_enc_dec(unsigned long vaddr, 254 unsigned long size, bool enc) 255 { 256 unsigned long vaddr_end, vaddr_next; 257 unsigned long psize, pmask; 258 int split_page_size_mask; 259 int level, ret; 260 pte_t *kpte; 261 262 vaddr_next = vaddr; 263 vaddr_end = vaddr + size; 264 265 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 266 kpte = lookup_address(vaddr, &level); 267 if (!kpte || pte_none(*kpte)) { 268 ret = 1; 269 goto out; 270 } 271 272 if (level == PG_LEVEL_4K) { 273 __set_clr_pte_enc(kpte, level, enc); 274 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 275 continue; 276 } 277 278 psize = page_level_size(level); 279 pmask = page_level_mask(level); 280 281 /* 282 * Check whether we can change the large page in one go. 283 * We request a split when the address is not aligned and 284 * the number of pages to set/clear encryption bit is smaller 285 * than the number of pages in the large page. 286 */ 287 if (vaddr == (vaddr & pmask) && 288 ((vaddr_end - vaddr) >= psize)) { 289 __set_clr_pte_enc(kpte, level, enc); 290 vaddr_next = (vaddr & pmask) + psize; 291 continue; 292 } 293 294 /* 295 * The virtual address is part of a larger page, create the next 296 * level page table mapping (4K or 2M). If it is part of a 2M 297 * page then we request a split of the large page into 4K 298 * chunks. A 1GB large page is split into 2M pages, resp. 299 */ 300 if (level == PG_LEVEL_2M) 301 split_page_size_mask = 0; 302 else 303 split_page_size_mask = 1 << PG_LEVEL_2M; 304 305 /* 306 * kernel_physical_mapping_change() does not flush the TLBs, so 307 * a TLB flush is required after we exit from the for loop. 308 */ 309 kernel_physical_mapping_change(__pa(vaddr & pmask), 310 __pa((vaddr_end & pmask) + psize), 311 split_page_size_mask); 312 } 313 314 ret = 0; 315 316 out: 317 __flush_tlb_all(); 318 return ret; 319 } 320 321 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 322 { 323 return early_set_memory_enc_dec(vaddr, size, false); 324 } 325 326 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 327 { 328 return early_set_memory_enc_dec(vaddr, size, true); 329 } 330 331 /* 332 * SME and SEV are very similar but they are not the same, so there are 333 * times that the kernel will need to distinguish between SME and SEV. The 334 * sme_active() and sev_active() functions are used for this. When a 335 * distinction isn't needed, the mem_encrypt_active() function can be used. 336 * 337 * The trampoline code is a good example for this requirement. Before 338 * paging is activated, SME will access all memory as decrypted, but SEV 339 * will access all memory as encrypted. So, when APs are being brought 340 * up under SME the trampoline area cannot be encrypted, whereas under SEV 341 * the trampoline area must be encrypted. 342 */ 343 bool sme_active(void) 344 { 345 return sme_me_mask && !sev_enabled; 346 } 347 348 bool sev_active(void) 349 { 350 return sme_me_mask && sev_enabled; 351 } 352 353 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 354 bool force_dma_unencrypted(struct device *dev) 355 { 356 /* 357 * For SEV, all DMA must be to unencrypted addresses. 358 */ 359 if (sev_active()) 360 return true; 361 362 /* 363 * For SME, all DMA must be to unencrypted addresses if the 364 * device does not support DMA to addresses that include the 365 * encryption mask. 366 */ 367 if (sme_active()) { 368 u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); 369 u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, 370 dev->bus_dma_limit); 371 372 if (dma_dev_mask <= dma_enc_mask) 373 return true; 374 } 375 376 return false; 377 } 378 379 void __init mem_encrypt_free_decrypted_mem(void) 380 { 381 unsigned long vaddr, vaddr_end, npages; 382 int r; 383 384 vaddr = (unsigned long)__start_bss_decrypted_unused; 385 vaddr_end = (unsigned long)__end_bss_decrypted; 386 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 387 388 /* 389 * The unused memory range was mapped decrypted, change the encryption 390 * attribute from decrypted to encrypted before freeing it. 391 */ 392 if (mem_encrypt_active()) { 393 r = set_memory_encrypted(vaddr, npages); 394 if (r) { 395 pr_warn("failed to free unused decrypted pages\n"); 396 return; 397 } 398 } 399 400 free_init_pages("unused decrypted", vaddr, vaddr_end); 401 } 402 403 /* Architecture __weak replacement functions */ 404 void __init mem_encrypt_init(void) 405 { 406 if (!sme_me_mask) 407 return; 408 409 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 410 swiotlb_update_mem_attributes(); 411 412 /* 413 * With SEV, we need to unroll the rep string I/O instructions. 414 */ 415 if (sev_active()) 416 static_branch_enable(&sev_enable_key); 417 418 pr_info("AMD %s active\n", 419 sev_active() ? "Secure Encrypted Virtualization (SEV)" 420 : "Secure Memory Encryption (SME)"); 421 } 422 423