xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * AMD Memory Encryption Support
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/swiotlb.h>
18 #include <linux/mem_encrypt.h>
19 
20 #include <asm/tlbflush.h>
21 #include <asm/fixmap.h>
22 #include <asm/setup.h>
23 #include <asm/bootparam.h>
24 #include <asm/set_memory.h>
25 #include <asm/cacheflush.h>
26 #include <asm/sections.h>
27 #include <asm/processor-flags.h>
28 #include <asm/msr.h>
29 #include <asm/cmdline.h>
30 
31 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
32 static char sme_cmdline_on[]  __initdata = "on";
33 static char sme_cmdline_off[] __initdata = "off";
34 
35 /*
36  * Since SME related variables are set early in the boot process they must
37  * reside in the .data section so as not to be zeroed out when the .bss
38  * section is later cleared.
39  */
40 u64 sme_me_mask __section(.data) = 0;
41 EXPORT_SYMBOL_GPL(sme_me_mask);
42 
43 /* Buffer used for early in-place encryption by BSP, no locking needed */
44 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
45 
46 /*
47  * This routine does not change the underlying encryption setting of the
48  * page(s) that map this memory. It assumes that eventually the memory is
49  * meant to be accessed as either encrypted or decrypted but the contents
50  * are currently not in the desired state.
51  *
52  * This routine follows the steps outlined in the AMD64 Architecture
53  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
54  */
55 static void __init __sme_early_enc_dec(resource_size_t paddr,
56 				       unsigned long size, bool enc)
57 {
58 	void *src, *dst;
59 	size_t len;
60 
61 	if (!sme_me_mask)
62 		return;
63 
64 	local_flush_tlb();
65 	wbinvd();
66 
67 	/*
68 	 * There are limited number of early mapping slots, so map (at most)
69 	 * one page at time.
70 	 */
71 	while (size) {
72 		len = min_t(size_t, sizeof(sme_early_buffer), size);
73 
74 		/*
75 		 * Create mappings for the current and desired format of
76 		 * the memory. Use a write-protected mapping for the source.
77 		 */
78 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
79 			    early_memremap_encrypted_wp(paddr, len);
80 
81 		dst = enc ? early_memremap_encrypted(paddr, len) :
82 			    early_memremap_decrypted(paddr, len);
83 
84 		/*
85 		 * If a mapping can't be obtained to perform the operation,
86 		 * then eventual access of that area in the desired mode
87 		 * will cause a crash.
88 		 */
89 		BUG_ON(!src || !dst);
90 
91 		/*
92 		 * Use a temporary buffer, of cache-line multiple size, to
93 		 * avoid data corruption as documented in the APM.
94 		 */
95 		memcpy(sme_early_buffer, src, len);
96 		memcpy(dst, sme_early_buffer, len);
97 
98 		early_memunmap(dst, len);
99 		early_memunmap(src, len);
100 
101 		paddr += len;
102 		size -= len;
103 	}
104 }
105 
106 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
107 {
108 	__sme_early_enc_dec(paddr, size, true);
109 }
110 
111 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
112 {
113 	__sme_early_enc_dec(paddr, size, false);
114 }
115 
116 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
117 					     bool map)
118 {
119 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
120 	pmdval_t pmd_flags, pmd;
121 
122 	/* Use early_pmd_flags but remove the encryption mask */
123 	pmd_flags = __sme_clr(early_pmd_flags);
124 
125 	do {
126 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
127 		__early_make_pgtable((unsigned long)vaddr, pmd);
128 
129 		vaddr += PMD_SIZE;
130 		paddr += PMD_SIZE;
131 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
132 	} while (size);
133 
134 	__native_flush_tlb();
135 }
136 
137 void __init sme_unmap_bootdata(char *real_mode_data)
138 {
139 	struct boot_params *boot_data;
140 	unsigned long cmdline_paddr;
141 
142 	if (!sme_active())
143 		return;
144 
145 	/* Get the command line address before unmapping the real_mode_data */
146 	boot_data = (struct boot_params *)real_mode_data;
147 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
148 
149 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
150 
151 	if (!cmdline_paddr)
152 		return;
153 
154 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
155 }
156 
157 void __init sme_map_bootdata(char *real_mode_data)
158 {
159 	struct boot_params *boot_data;
160 	unsigned long cmdline_paddr;
161 
162 	if (!sme_active())
163 		return;
164 
165 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
166 
167 	/* Get the command line address after mapping the real_mode_data */
168 	boot_data = (struct boot_params *)real_mode_data;
169 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
170 
171 	if (!cmdline_paddr)
172 		return;
173 
174 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
175 }
176 
177 void __init sme_early_init(void)
178 {
179 	unsigned int i;
180 
181 	if (!sme_me_mask)
182 		return;
183 
184 	early_pmd_flags = __sme_set(early_pmd_flags);
185 
186 	__supported_pte_mask = __sme_set(__supported_pte_mask);
187 
188 	/* Update the protection map with memory encryption mask */
189 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
190 		protection_map[i] = pgprot_encrypted(protection_map[i]);
191 }
192 
193 /* Architecture __weak replacement functions */
194 void __init mem_encrypt_init(void)
195 {
196 	if (!sme_me_mask)
197 		return;
198 
199 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
200 	swiotlb_update_mem_attributes();
201 
202 	pr_info("AMD Secure Memory Encryption (SME) active\n");
203 }
204 
205 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
206 {
207 	WARN(PAGE_ALIGN(size) != size,
208 	     "size is not page-aligned (%#lx)\n", size);
209 
210 	/* Make the SWIOTLB buffer area decrypted */
211 	set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
212 }
213 
214 static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
215 				 unsigned long end)
216 {
217 	unsigned long pgd_start, pgd_end, pgd_size;
218 	pgd_t *pgd_p;
219 
220 	pgd_start = start & PGDIR_MASK;
221 	pgd_end = end & PGDIR_MASK;
222 
223 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
224 	pgd_size *= sizeof(pgd_t);
225 
226 	pgd_p = pgd_base + pgd_index(start);
227 
228 	memset(pgd_p, 0, pgd_size);
229 }
230 
231 #define PGD_FLAGS	_KERNPG_TABLE_NOENC
232 #define P4D_FLAGS	_KERNPG_TABLE_NOENC
233 #define PUD_FLAGS	_KERNPG_TABLE_NOENC
234 #define PMD_FLAGS	(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
235 
236 static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
237 				     unsigned long vaddr, pmdval_t pmd_val)
238 {
239 	pgd_t *pgd_p;
240 	p4d_t *p4d_p;
241 	pud_t *pud_p;
242 	pmd_t *pmd_p;
243 
244 	pgd_p = pgd_base + pgd_index(vaddr);
245 	if (native_pgd_val(*pgd_p)) {
246 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
247 			p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
248 		else
249 			pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
250 	} else {
251 		pgd_t pgd;
252 
253 		if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
254 			p4d_p = pgtable_area;
255 			memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
256 			pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
257 
258 			pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
259 		} else {
260 			pud_p = pgtable_area;
261 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
262 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
263 
264 			pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
265 		}
266 		native_set_pgd(pgd_p, pgd);
267 	}
268 
269 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
270 		p4d_p += p4d_index(vaddr);
271 		if (native_p4d_val(*p4d_p)) {
272 			pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
273 		} else {
274 			p4d_t p4d;
275 
276 			pud_p = pgtable_area;
277 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
278 			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
279 
280 			p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
281 			native_set_p4d(p4d_p, p4d);
282 		}
283 	}
284 
285 	pud_p += pud_index(vaddr);
286 	if (native_pud_val(*pud_p)) {
287 		if (native_pud_val(*pud_p) & _PAGE_PSE)
288 			goto out;
289 
290 		pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
291 	} else {
292 		pud_t pud;
293 
294 		pmd_p = pgtable_area;
295 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
296 		pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
297 
298 		pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
299 		native_set_pud(pud_p, pud);
300 	}
301 
302 	pmd_p += pmd_index(vaddr);
303 	if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
304 		native_set_pmd(pmd_p, native_make_pmd(pmd_val));
305 
306 out:
307 	return pgtable_area;
308 }
309 
310 static unsigned long __init sme_pgtable_calc(unsigned long len)
311 {
312 	unsigned long p4d_size, pud_size, pmd_size;
313 	unsigned long total;
314 
315 	/*
316 	 * Perform a relatively simplistic calculation of the pagetable
317 	 * entries that are needed. That mappings will be covered by 2MB
318 	 * PMD entries so we can conservatively calculate the required
319 	 * number of P4D, PUD and PMD structures needed to perform the
320 	 * mappings. Incrementing the count for each covers the case where
321 	 * the addresses cross entries.
322 	 */
323 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
324 		p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
325 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
326 		pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
327 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
328 	} else {
329 		p4d_size = 0;
330 		pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
331 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
332 	}
333 	pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
334 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
335 
336 	total = p4d_size + pud_size + pmd_size;
337 
338 	/*
339 	 * Now calculate the added pagetable structures needed to populate
340 	 * the new pagetables.
341 	 */
342 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
343 		p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
344 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
345 		pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
346 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
347 	} else {
348 		p4d_size = 0;
349 		pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
350 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
351 	}
352 	pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
353 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
354 
355 	total += p4d_size + pud_size + pmd_size;
356 
357 	return total;
358 }
359 
360 void __init sme_encrypt_kernel(void)
361 {
362 	unsigned long workarea_start, workarea_end, workarea_len;
363 	unsigned long execute_start, execute_end, execute_len;
364 	unsigned long kernel_start, kernel_end, kernel_len;
365 	unsigned long pgtable_area_len;
366 	unsigned long paddr, pmd_flags;
367 	unsigned long decrypted_base;
368 	void *pgtable_area;
369 	pgd_t *pgd;
370 
371 	if (!sme_active())
372 		return;
373 
374 	/*
375 	 * Prepare for encrypting the kernel by building new pagetables with
376 	 * the necessary attributes needed to encrypt the kernel in place.
377 	 *
378 	 *   One range of virtual addresses will map the memory occupied
379 	 *   by the kernel as encrypted.
380 	 *
381 	 *   Another range of virtual addresses will map the memory occupied
382 	 *   by the kernel as decrypted and write-protected.
383 	 *
384 	 *     The use of write-protect attribute will prevent any of the
385 	 *     memory from being cached.
386 	 */
387 
388 	/* Physical addresses gives us the identity mapped virtual addresses */
389 	kernel_start = __pa_symbol(_text);
390 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
391 	kernel_len = kernel_end - kernel_start;
392 
393 	/* Set the encryption workarea to be immediately after the kernel */
394 	workarea_start = kernel_end;
395 
396 	/*
397 	 * Calculate required number of workarea bytes needed:
398 	 *   executable encryption area size:
399 	 *     stack page (PAGE_SIZE)
400 	 *     encryption routine page (PAGE_SIZE)
401 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
402 	 *   pagetable structures for the encryption of the kernel
403 	 *   pagetable structures for workarea (in case not currently mapped)
404 	 */
405 	execute_start = workarea_start;
406 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
407 	execute_len = execute_end - execute_start;
408 
409 	/*
410 	 * One PGD for both encrypted and decrypted mappings and a set of
411 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
412 	 */
413 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
414 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
415 
416 	/* PUDs and PMDs needed in the current pagetables for the workarea */
417 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
418 
419 	/*
420 	 * The total workarea includes the executable encryption area and
421 	 * the pagetable area.
422 	 */
423 	workarea_len = execute_len + pgtable_area_len;
424 	workarea_end = workarea_start + workarea_len;
425 
426 	/*
427 	 * Set the address to the start of where newly created pagetable
428 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
429 	 * structures are created when the workarea is added to the current
430 	 * pagetables and when the new encrypted and decrypted kernel
431 	 * mappings are populated.
432 	 */
433 	pgtable_area = (void *)execute_end;
434 
435 	/*
436 	 * Make sure the current pagetable structure has entries for
437 	 * addressing the workarea.
438 	 */
439 	pgd = (pgd_t *)native_read_cr3_pa();
440 	paddr = workarea_start;
441 	while (paddr < workarea_end) {
442 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
443 						paddr,
444 						paddr + PMD_FLAGS);
445 
446 		paddr += PMD_PAGE_SIZE;
447 	}
448 
449 	/* Flush the TLB - no globals so cr3 is enough */
450 	native_write_cr3(__native_read_cr3());
451 
452 	/*
453 	 * A new pagetable structure is being built to allow for the kernel
454 	 * to be encrypted. It starts with an empty PGD that will then be
455 	 * populated with new PUDs and PMDs as the encrypted and decrypted
456 	 * kernel mappings are created.
457 	 */
458 	pgd = pgtable_area;
459 	memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
460 	pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
461 
462 	/* Add encrypted kernel (identity) mappings */
463 	pmd_flags = PMD_FLAGS | _PAGE_ENC;
464 	paddr = kernel_start;
465 	while (paddr < kernel_end) {
466 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
467 						paddr,
468 						paddr + pmd_flags);
469 
470 		paddr += PMD_PAGE_SIZE;
471 	}
472 
473 	/*
474 	 * A different PGD index/entry must be used to get different
475 	 * pagetable entries for the decrypted mapping. Choose the next
476 	 * PGD index and convert it to a virtual address to be used as
477 	 * the base of the mapping.
478 	 */
479 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
480 	decrypted_base <<= PGDIR_SHIFT;
481 
482 	/* Add decrypted, write-protected kernel (non-identity) mappings */
483 	pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
484 	paddr = kernel_start;
485 	while (paddr < kernel_end) {
486 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
487 						paddr + decrypted_base,
488 						paddr + pmd_flags);
489 
490 		paddr += PMD_PAGE_SIZE;
491 	}
492 
493 	/* Add decrypted workarea mappings to both kernel mappings */
494 	paddr = workarea_start;
495 	while (paddr < workarea_end) {
496 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
497 						paddr,
498 						paddr + PMD_FLAGS);
499 
500 		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
501 						paddr + decrypted_base,
502 						paddr + PMD_FLAGS);
503 
504 		paddr += PMD_PAGE_SIZE;
505 	}
506 
507 	/* Perform the encryption */
508 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
509 			    kernel_len, workarea_start, (unsigned long)pgd);
510 
511 	/*
512 	 * At this point we are running encrypted.  Remove the mappings for
513 	 * the decrypted areas - all that is needed for this is to remove
514 	 * the PGD entry/entries.
515 	 */
516 	sme_clear_pgd(pgd, kernel_start + decrypted_base,
517 		      kernel_end + decrypted_base);
518 
519 	sme_clear_pgd(pgd, workarea_start + decrypted_base,
520 		      workarea_end + decrypted_base);
521 
522 	/* Flush the TLB - no globals so cr3 is enough */
523 	native_write_cr3(__native_read_cr3());
524 }
525 
526 void __init __nostackprotector sme_enable(struct boot_params *bp)
527 {
528 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
529 	unsigned int eax, ebx, ecx, edx;
530 	bool active_by_default;
531 	unsigned long me_mask;
532 	char buffer[16];
533 	u64 msr;
534 
535 	/* Check for the SME support leaf */
536 	eax = 0x80000000;
537 	ecx = 0;
538 	native_cpuid(&eax, &ebx, &ecx, &edx);
539 	if (eax < 0x8000001f)
540 		return;
541 
542 	/*
543 	 * Check for the SME feature:
544 	 *   CPUID Fn8000_001F[EAX] - Bit 0
545 	 *     Secure Memory Encryption support
546 	 *   CPUID Fn8000_001F[EBX] - Bits 5:0
547 	 *     Pagetable bit position used to indicate encryption
548 	 */
549 	eax = 0x8000001f;
550 	ecx = 0;
551 	native_cpuid(&eax, &ebx, &ecx, &edx);
552 	if (!(eax & 1))
553 		return;
554 
555 	me_mask = 1UL << (ebx & 0x3f);
556 
557 	/* Check if SME is enabled */
558 	msr = __rdmsr(MSR_K8_SYSCFG);
559 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
560 		return;
561 
562 	/*
563 	 * Fixups have not been applied to phys_base yet and we're running
564 	 * identity mapped, so we must obtain the address to the SME command
565 	 * line argument data using rip-relative addressing.
566 	 */
567 	asm ("lea sme_cmdline_arg(%%rip), %0"
568 	     : "=r" (cmdline_arg)
569 	     : "p" (sme_cmdline_arg));
570 	asm ("lea sme_cmdline_on(%%rip), %0"
571 	     : "=r" (cmdline_on)
572 	     : "p" (sme_cmdline_on));
573 	asm ("lea sme_cmdline_off(%%rip), %0"
574 	     : "=r" (cmdline_off)
575 	     : "p" (sme_cmdline_off));
576 
577 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
578 		active_by_default = true;
579 	else
580 		active_by_default = false;
581 
582 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
583 				     ((u64)bp->ext_cmd_line_ptr << 32));
584 
585 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
586 
587 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
588 		sme_me_mask = me_mask;
589 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
590 		sme_me_mask = 0;
591 	else
592 		sme_me_mask = active_by_default ? me_mask : 0;
593 }
594