xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32 
33 #include "mm_internal.h"
34 
35 /*
36  * Since SME related variables are set early in the boot process they must
37  * reside in the .data section so as not to be zeroed out when the .bss
38  * section is later cleared.
39  */
40 u64 sme_me_mask __section(".data") = 0;
41 u64 sev_status __section(".data") = 0;
42 EXPORT_SYMBOL(sme_me_mask);
43 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
44 EXPORT_SYMBOL_GPL(sev_enable_key);
45 
46 bool sev_enabled __section(".data");
47 
48 /* Buffer used for early in-place encryption by BSP, no locking needed */
49 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
50 
51 /*
52  * This routine does not change the underlying encryption setting of the
53  * page(s) that map this memory. It assumes that eventually the memory is
54  * meant to be accessed as either encrypted or decrypted but the contents
55  * are currently not in the desired state.
56  *
57  * This routine follows the steps outlined in the AMD64 Architecture
58  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
59  */
60 static void __init __sme_early_enc_dec(resource_size_t paddr,
61 				       unsigned long size, bool enc)
62 {
63 	void *src, *dst;
64 	size_t len;
65 
66 	if (!sme_me_mask)
67 		return;
68 
69 	wbinvd();
70 
71 	/*
72 	 * There are limited number of early mapping slots, so map (at most)
73 	 * one page at time.
74 	 */
75 	while (size) {
76 		len = min_t(size_t, sizeof(sme_early_buffer), size);
77 
78 		/*
79 		 * Create mappings for the current and desired format of
80 		 * the memory. Use a write-protected mapping for the source.
81 		 */
82 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
83 			    early_memremap_encrypted_wp(paddr, len);
84 
85 		dst = enc ? early_memremap_encrypted(paddr, len) :
86 			    early_memremap_decrypted(paddr, len);
87 
88 		/*
89 		 * If a mapping can't be obtained to perform the operation,
90 		 * then eventual access of that area in the desired mode
91 		 * will cause a crash.
92 		 */
93 		BUG_ON(!src || !dst);
94 
95 		/*
96 		 * Use a temporary buffer, of cache-line multiple size, to
97 		 * avoid data corruption as documented in the APM.
98 		 */
99 		memcpy(sme_early_buffer, src, len);
100 		memcpy(dst, sme_early_buffer, len);
101 
102 		early_memunmap(dst, len);
103 		early_memunmap(src, len);
104 
105 		paddr += len;
106 		size -= len;
107 	}
108 }
109 
110 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
111 {
112 	__sme_early_enc_dec(paddr, size, true);
113 }
114 
115 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
116 {
117 	__sme_early_enc_dec(paddr, size, false);
118 }
119 
120 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
121 					     bool map)
122 {
123 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
124 	pmdval_t pmd_flags, pmd;
125 
126 	/* Use early_pmd_flags but remove the encryption mask */
127 	pmd_flags = __sme_clr(early_pmd_flags);
128 
129 	do {
130 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
131 		__early_make_pgtable((unsigned long)vaddr, pmd);
132 
133 		vaddr += PMD_SIZE;
134 		paddr += PMD_SIZE;
135 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
136 	} while (size);
137 
138 	flush_tlb_local();
139 }
140 
141 void __init sme_unmap_bootdata(char *real_mode_data)
142 {
143 	struct boot_params *boot_data;
144 	unsigned long cmdline_paddr;
145 
146 	if (!sme_active())
147 		return;
148 
149 	/* Get the command line address before unmapping the real_mode_data */
150 	boot_data = (struct boot_params *)real_mode_data;
151 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
152 
153 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
154 
155 	if (!cmdline_paddr)
156 		return;
157 
158 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
159 }
160 
161 void __init sme_map_bootdata(char *real_mode_data)
162 {
163 	struct boot_params *boot_data;
164 	unsigned long cmdline_paddr;
165 
166 	if (!sme_active())
167 		return;
168 
169 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
170 
171 	/* Get the command line address after mapping the real_mode_data */
172 	boot_data = (struct boot_params *)real_mode_data;
173 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
174 
175 	if (!cmdline_paddr)
176 		return;
177 
178 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
179 }
180 
181 void __init sme_early_init(void)
182 {
183 	unsigned int i;
184 
185 	if (!sme_me_mask)
186 		return;
187 
188 	early_pmd_flags = __sme_set(early_pmd_flags);
189 
190 	__supported_pte_mask = __sme_set(__supported_pte_mask);
191 
192 	/* Update the protection map with memory encryption mask */
193 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
194 		protection_map[i] = pgprot_encrypted(protection_map[i]);
195 
196 	if (sev_active())
197 		swiotlb_force = SWIOTLB_FORCE;
198 }
199 
200 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
201 {
202 	pgprot_t old_prot, new_prot;
203 	unsigned long pfn, pa, size;
204 	pte_t new_pte;
205 
206 	switch (level) {
207 	case PG_LEVEL_4K:
208 		pfn = pte_pfn(*kpte);
209 		old_prot = pte_pgprot(*kpte);
210 		break;
211 	case PG_LEVEL_2M:
212 		pfn = pmd_pfn(*(pmd_t *)kpte);
213 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
214 		break;
215 	case PG_LEVEL_1G:
216 		pfn = pud_pfn(*(pud_t *)kpte);
217 		old_prot = pud_pgprot(*(pud_t *)kpte);
218 		break;
219 	default:
220 		return;
221 	}
222 
223 	new_prot = old_prot;
224 	if (enc)
225 		pgprot_val(new_prot) |= _PAGE_ENC;
226 	else
227 		pgprot_val(new_prot) &= ~_PAGE_ENC;
228 
229 	/* If prot is same then do nothing. */
230 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
231 		return;
232 
233 	pa = pfn << page_level_shift(level);
234 	size = page_level_size(level);
235 
236 	/*
237 	 * We are going to perform in-place en-/decryption and change the
238 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
239 	 * caches to ensure that data gets accessed with the correct C-bit.
240 	 */
241 	clflush_cache_range(__va(pa), size);
242 
243 	/* Encrypt/decrypt the contents in-place */
244 	if (enc)
245 		sme_early_encrypt(pa, size);
246 	else
247 		sme_early_decrypt(pa, size);
248 
249 	/* Change the page encryption mask. */
250 	new_pte = pfn_pte(pfn, new_prot);
251 	set_pte_atomic(kpte, new_pte);
252 }
253 
254 static int __init early_set_memory_enc_dec(unsigned long vaddr,
255 					   unsigned long size, bool enc)
256 {
257 	unsigned long vaddr_end, vaddr_next;
258 	unsigned long psize, pmask;
259 	int split_page_size_mask;
260 	int level, ret;
261 	pte_t *kpte;
262 
263 	vaddr_next = vaddr;
264 	vaddr_end = vaddr + size;
265 
266 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
267 		kpte = lookup_address(vaddr, &level);
268 		if (!kpte || pte_none(*kpte)) {
269 			ret = 1;
270 			goto out;
271 		}
272 
273 		if (level == PG_LEVEL_4K) {
274 			__set_clr_pte_enc(kpte, level, enc);
275 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
276 			continue;
277 		}
278 
279 		psize = page_level_size(level);
280 		pmask = page_level_mask(level);
281 
282 		/*
283 		 * Check whether we can change the large page in one go.
284 		 * We request a split when the address is not aligned and
285 		 * the number of pages to set/clear encryption bit is smaller
286 		 * than the number of pages in the large page.
287 		 */
288 		if (vaddr == (vaddr & pmask) &&
289 		    ((vaddr_end - vaddr) >= psize)) {
290 			__set_clr_pte_enc(kpte, level, enc);
291 			vaddr_next = (vaddr & pmask) + psize;
292 			continue;
293 		}
294 
295 		/*
296 		 * The virtual address is part of a larger page, create the next
297 		 * level page table mapping (4K or 2M). If it is part of a 2M
298 		 * page then we request a split of the large page into 4K
299 		 * chunks. A 1GB large page is split into 2M pages, resp.
300 		 */
301 		if (level == PG_LEVEL_2M)
302 			split_page_size_mask = 0;
303 		else
304 			split_page_size_mask = 1 << PG_LEVEL_2M;
305 
306 		/*
307 		 * kernel_physical_mapping_change() does not flush the TLBs, so
308 		 * a TLB flush is required after we exit from the for loop.
309 		 */
310 		kernel_physical_mapping_change(__pa(vaddr & pmask),
311 					       __pa((vaddr_end & pmask) + psize),
312 					       split_page_size_mask);
313 	}
314 
315 	ret = 0;
316 
317 out:
318 	__flush_tlb_all();
319 	return ret;
320 }
321 
322 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
323 {
324 	return early_set_memory_enc_dec(vaddr, size, false);
325 }
326 
327 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
328 {
329 	return early_set_memory_enc_dec(vaddr, size, true);
330 }
331 
332 /*
333  * SME and SEV are very similar but they are not the same, so there are
334  * times that the kernel will need to distinguish between SME and SEV. The
335  * sme_active() and sev_active() functions are used for this.  When a
336  * distinction isn't needed, the mem_encrypt_active() function can be used.
337  *
338  * The trampoline code is a good example for this requirement.  Before
339  * paging is activated, SME will access all memory as decrypted, but SEV
340  * will access all memory as encrypted.  So, when APs are being brought
341  * up under SME the trampoline area cannot be encrypted, whereas under SEV
342  * the trampoline area must be encrypted.
343  */
344 bool sme_active(void)
345 {
346 	return sme_me_mask && !sev_enabled;
347 }
348 
349 bool sev_active(void)
350 {
351 	return sev_status & MSR_AMD64_SEV_ENABLED;
352 }
353 
354 /* Needs to be called from non-instrumentable code */
355 bool noinstr sev_es_active(void)
356 {
357 	return sev_status & MSR_AMD64_SEV_ES_ENABLED;
358 }
359 
360 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
361 bool force_dma_unencrypted(struct device *dev)
362 {
363 	/*
364 	 * For SEV, all DMA must be to unencrypted addresses.
365 	 */
366 	if (sev_active())
367 		return true;
368 
369 	/*
370 	 * For SME, all DMA must be to unencrypted addresses if the
371 	 * device does not support DMA to addresses that include the
372 	 * encryption mask.
373 	 */
374 	if (sme_active()) {
375 		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
376 		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
377 						dev->bus_dma_limit);
378 
379 		if (dma_dev_mask <= dma_enc_mask)
380 			return true;
381 	}
382 
383 	return false;
384 }
385 
386 void __init mem_encrypt_free_decrypted_mem(void)
387 {
388 	unsigned long vaddr, vaddr_end, npages;
389 	int r;
390 
391 	vaddr = (unsigned long)__start_bss_decrypted_unused;
392 	vaddr_end = (unsigned long)__end_bss_decrypted;
393 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
394 
395 	/*
396 	 * The unused memory range was mapped decrypted, change the encryption
397 	 * attribute from decrypted to encrypted before freeing it.
398 	 */
399 	if (mem_encrypt_active()) {
400 		r = set_memory_encrypted(vaddr, npages);
401 		if (r) {
402 			pr_warn("failed to free unused decrypted pages\n");
403 			return;
404 		}
405 	}
406 
407 	free_init_pages("unused decrypted", vaddr, vaddr_end);
408 }
409 
410 static void print_mem_encrypt_feature_info(void)
411 {
412 	pr_info("AMD Memory Encryption Features active:");
413 
414 	/* Secure Memory Encryption */
415 	if (sme_active()) {
416 		/*
417 		 * SME is mutually exclusive with any of the SEV
418 		 * features below.
419 		 */
420 		pr_cont(" SME\n");
421 		return;
422 	}
423 
424 	/* Secure Encrypted Virtualization */
425 	if (sev_active())
426 		pr_cont(" SEV");
427 
428 	/* Encrypted Register State */
429 	if (sev_es_active())
430 		pr_cont(" SEV-ES");
431 
432 	pr_cont("\n");
433 }
434 
435 /* Architecture __weak replacement functions */
436 void __init mem_encrypt_init(void)
437 {
438 	if (!sme_me_mask)
439 		return;
440 
441 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
442 	swiotlb_update_mem_attributes();
443 
444 	/*
445 	 * With SEV, we need to unroll the rep string I/O instructions.
446 	 */
447 	if (sev_active())
448 		static_branch_enable(&sev_enable_key);
449 
450 	print_mem_encrypt_feature_info();
451 }
452 
453