xref: /openbmc/linux/arch/x86/mm/mem_encrypt.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /*
2  * AMD Memory Encryption Support
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define DISABLE_BRANCH_PROFILING
14 
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-direct.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32 
33 #include "mm_internal.h"
34 
35 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
36 static char sme_cmdline_on[]  __initdata = "on";
37 static char sme_cmdline_off[] __initdata = "off";
38 
39 /*
40  * Since SME related variables are set early in the boot process they must
41  * reside in the .data section so as not to be zeroed out when the .bss
42  * section is later cleared.
43  */
44 u64 sme_me_mask __section(.data) = 0;
45 EXPORT_SYMBOL(sme_me_mask);
46 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
47 EXPORT_SYMBOL_GPL(sev_enable_key);
48 
49 static bool sev_enabled __section(.data);
50 
51 /* Buffer used for early in-place encryption by BSP, no locking needed */
52 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
53 
54 /*
55  * This routine does not change the underlying encryption setting of the
56  * page(s) that map this memory. It assumes that eventually the memory is
57  * meant to be accessed as either encrypted or decrypted but the contents
58  * are currently not in the desired state.
59  *
60  * This routine follows the steps outlined in the AMD64 Architecture
61  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
62  */
63 static void __init __sme_early_enc_dec(resource_size_t paddr,
64 				       unsigned long size, bool enc)
65 {
66 	void *src, *dst;
67 	size_t len;
68 
69 	if (!sme_me_mask)
70 		return;
71 
72 	wbinvd();
73 
74 	/*
75 	 * There are limited number of early mapping slots, so map (at most)
76 	 * one page at time.
77 	 */
78 	while (size) {
79 		len = min_t(size_t, sizeof(sme_early_buffer), size);
80 
81 		/*
82 		 * Create mappings for the current and desired format of
83 		 * the memory. Use a write-protected mapping for the source.
84 		 */
85 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
86 			    early_memremap_encrypted_wp(paddr, len);
87 
88 		dst = enc ? early_memremap_encrypted(paddr, len) :
89 			    early_memremap_decrypted(paddr, len);
90 
91 		/*
92 		 * If a mapping can't be obtained to perform the operation,
93 		 * then eventual access of that area in the desired mode
94 		 * will cause a crash.
95 		 */
96 		BUG_ON(!src || !dst);
97 
98 		/*
99 		 * Use a temporary buffer, of cache-line multiple size, to
100 		 * avoid data corruption as documented in the APM.
101 		 */
102 		memcpy(sme_early_buffer, src, len);
103 		memcpy(dst, sme_early_buffer, len);
104 
105 		early_memunmap(dst, len);
106 		early_memunmap(src, len);
107 
108 		paddr += len;
109 		size -= len;
110 	}
111 }
112 
113 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
114 {
115 	__sme_early_enc_dec(paddr, size, true);
116 }
117 
118 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
119 {
120 	__sme_early_enc_dec(paddr, size, false);
121 }
122 
123 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
124 					     bool map)
125 {
126 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
127 	pmdval_t pmd_flags, pmd;
128 
129 	/* Use early_pmd_flags but remove the encryption mask */
130 	pmd_flags = __sme_clr(early_pmd_flags);
131 
132 	do {
133 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
134 		__early_make_pgtable((unsigned long)vaddr, pmd);
135 
136 		vaddr += PMD_SIZE;
137 		paddr += PMD_SIZE;
138 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
139 	} while (size);
140 
141 	__native_flush_tlb();
142 }
143 
144 void __init sme_unmap_bootdata(char *real_mode_data)
145 {
146 	struct boot_params *boot_data;
147 	unsigned long cmdline_paddr;
148 
149 	if (!sme_active())
150 		return;
151 
152 	/* Get the command line address before unmapping the real_mode_data */
153 	boot_data = (struct boot_params *)real_mode_data;
154 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
155 
156 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
157 
158 	if (!cmdline_paddr)
159 		return;
160 
161 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
162 }
163 
164 void __init sme_map_bootdata(char *real_mode_data)
165 {
166 	struct boot_params *boot_data;
167 	unsigned long cmdline_paddr;
168 
169 	if (!sme_active())
170 		return;
171 
172 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
173 
174 	/* Get the command line address after mapping the real_mode_data */
175 	boot_data = (struct boot_params *)real_mode_data;
176 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
177 
178 	if (!cmdline_paddr)
179 		return;
180 
181 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
182 }
183 
184 void __init sme_early_init(void)
185 {
186 	unsigned int i;
187 
188 	if (!sme_me_mask)
189 		return;
190 
191 	early_pmd_flags = __sme_set(early_pmd_flags);
192 
193 	__supported_pte_mask = __sme_set(__supported_pte_mask);
194 
195 	/* Update the protection map with memory encryption mask */
196 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
197 		protection_map[i] = pgprot_encrypted(protection_map[i]);
198 
199 	if (sev_active())
200 		swiotlb_force = SWIOTLB_FORCE;
201 }
202 
203 static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
204 		       gfp_t gfp, unsigned long attrs)
205 {
206 	unsigned long dma_mask;
207 	unsigned int order;
208 	struct page *page;
209 	void *vaddr = NULL;
210 
211 	dma_mask = dma_alloc_coherent_mask(dev, gfp);
212 	order = get_order(size);
213 
214 	/*
215 	 * Memory will be memset to zero after marking decrypted, so don't
216 	 * bother clearing it before.
217 	 */
218 	gfp &= ~__GFP_ZERO;
219 
220 	page = alloc_pages_node(dev_to_node(dev), gfp, order);
221 	if (page) {
222 		dma_addr_t addr;
223 
224 		/*
225 		 * Since we will be clearing the encryption bit, check the
226 		 * mask with it already cleared.
227 		 */
228 		addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
229 		if ((addr + size) > dma_mask) {
230 			__free_pages(page, get_order(size));
231 		} else {
232 			vaddr = page_address(page);
233 			*dma_handle = addr;
234 		}
235 	}
236 
237 	if (!vaddr)
238 		vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
239 
240 	if (!vaddr)
241 		return NULL;
242 
243 	/* Clear the SME encryption bit for DMA use if not swiotlb area */
244 	if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
245 		set_memory_decrypted((unsigned long)vaddr, 1 << order);
246 		memset(vaddr, 0, PAGE_SIZE << order);
247 		*dma_handle = __sme_clr(*dma_handle);
248 	}
249 
250 	return vaddr;
251 }
252 
253 static void sev_free(struct device *dev, size_t size, void *vaddr,
254 		     dma_addr_t dma_handle, unsigned long attrs)
255 {
256 	/* Set the SME encryption bit for re-use if not swiotlb area */
257 	if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
258 		set_memory_encrypted((unsigned long)vaddr,
259 				     1 << get_order(size));
260 
261 	swiotlb_free_coherent(dev, size, vaddr, dma_handle);
262 }
263 
264 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
265 {
266 	pgprot_t old_prot, new_prot;
267 	unsigned long pfn, pa, size;
268 	pte_t new_pte;
269 
270 	switch (level) {
271 	case PG_LEVEL_4K:
272 		pfn = pte_pfn(*kpte);
273 		old_prot = pte_pgprot(*kpte);
274 		break;
275 	case PG_LEVEL_2M:
276 		pfn = pmd_pfn(*(pmd_t *)kpte);
277 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
278 		break;
279 	case PG_LEVEL_1G:
280 		pfn = pud_pfn(*(pud_t *)kpte);
281 		old_prot = pud_pgprot(*(pud_t *)kpte);
282 		break;
283 	default:
284 		return;
285 	}
286 
287 	new_prot = old_prot;
288 	if (enc)
289 		pgprot_val(new_prot) |= _PAGE_ENC;
290 	else
291 		pgprot_val(new_prot) &= ~_PAGE_ENC;
292 
293 	/* If prot is same then do nothing. */
294 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
295 		return;
296 
297 	pa = pfn << page_level_shift(level);
298 	size = page_level_size(level);
299 
300 	/*
301 	 * We are going to perform in-place en-/decryption and change the
302 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
303 	 * caches to ensure that data gets accessed with the correct C-bit.
304 	 */
305 	clflush_cache_range(__va(pa), size);
306 
307 	/* Encrypt/decrypt the contents in-place */
308 	if (enc)
309 		sme_early_encrypt(pa, size);
310 	else
311 		sme_early_decrypt(pa, size);
312 
313 	/* Change the page encryption mask. */
314 	new_pte = pfn_pte(pfn, new_prot);
315 	set_pte_atomic(kpte, new_pte);
316 }
317 
318 static int __init early_set_memory_enc_dec(unsigned long vaddr,
319 					   unsigned long size, bool enc)
320 {
321 	unsigned long vaddr_end, vaddr_next;
322 	unsigned long psize, pmask;
323 	int split_page_size_mask;
324 	int level, ret;
325 	pte_t *kpte;
326 
327 	vaddr_next = vaddr;
328 	vaddr_end = vaddr + size;
329 
330 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
331 		kpte = lookup_address(vaddr, &level);
332 		if (!kpte || pte_none(*kpte)) {
333 			ret = 1;
334 			goto out;
335 		}
336 
337 		if (level == PG_LEVEL_4K) {
338 			__set_clr_pte_enc(kpte, level, enc);
339 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
340 			continue;
341 		}
342 
343 		psize = page_level_size(level);
344 		pmask = page_level_mask(level);
345 
346 		/*
347 		 * Check whether we can change the large page in one go.
348 		 * We request a split when the address is not aligned and
349 		 * the number of pages to set/clear encryption bit is smaller
350 		 * than the number of pages in the large page.
351 		 */
352 		if (vaddr == (vaddr & pmask) &&
353 		    ((vaddr_end - vaddr) >= psize)) {
354 			__set_clr_pte_enc(kpte, level, enc);
355 			vaddr_next = (vaddr & pmask) + psize;
356 			continue;
357 		}
358 
359 		/*
360 		 * The virtual address is part of a larger page, create the next
361 		 * level page table mapping (4K or 2M). If it is part of a 2M
362 		 * page then we request a split of the large page into 4K
363 		 * chunks. A 1GB large page is split into 2M pages, resp.
364 		 */
365 		if (level == PG_LEVEL_2M)
366 			split_page_size_mask = 0;
367 		else
368 			split_page_size_mask = 1 << PG_LEVEL_2M;
369 
370 		kernel_physical_mapping_init(__pa(vaddr & pmask),
371 					     __pa((vaddr_end & pmask) + psize),
372 					     split_page_size_mask);
373 	}
374 
375 	ret = 0;
376 
377 out:
378 	__flush_tlb_all();
379 	return ret;
380 }
381 
382 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
383 {
384 	return early_set_memory_enc_dec(vaddr, size, false);
385 }
386 
387 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
388 {
389 	return early_set_memory_enc_dec(vaddr, size, true);
390 }
391 
392 /*
393  * SME and SEV are very similar but they are not the same, so there are
394  * times that the kernel will need to distinguish between SME and SEV. The
395  * sme_active() and sev_active() functions are used for this.  When a
396  * distinction isn't needed, the mem_encrypt_active() function can be used.
397  *
398  * The trampoline code is a good example for this requirement.  Before
399  * paging is activated, SME will access all memory as decrypted, but SEV
400  * will access all memory as encrypted.  So, when APs are being brought
401  * up under SME the trampoline area cannot be encrypted, whereas under SEV
402  * the trampoline area must be encrypted.
403  */
404 bool sme_active(void)
405 {
406 	return sme_me_mask && !sev_enabled;
407 }
408 EXPORT_SYMBOL(sme_active);
409 
410 bool sev_active(void)
411 {
412 	return sme_me_mask && sev_enabled;
413 }
414 EXPORT_SYMBOL(sev_active);
415 
416 static const struct dma_map_ops sev_dma_ops = {
417 	.alloc                  = sev_alloc,
418 	.free                   = sev_free,
419 	.map_page               = swiotlb_map_page,
420 	.unmap_page             = swiotlb_unmap_page,
421 	.map_sg                 = swiotlb_map_sg_attrs,
422 	.unmap_sg               = swiotlb_unmap_sg_attrs,
423 	.sync_single_for_cpu    = swiotlb_sync_single_for_cpu,
424 	.sync_single_for_device = swiotlb_sync_single_for_device,
425 	.sync_sg_for_cpu        = swiotlb_sync_sg_for_cpu,
426 	.sync_sg_for_device     = swiotlb_sync_sg_for_device,
427 	.mapping_error          = swiotlb_dma_mapping_error,
428 };
429 
430 /* Architecture __weak replacement functions */
431 void __init mem_encrypt_init(void)
432 {
433 	if (!sme_me_mask)
434 		return;
435 
436 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
437 	swiotlb_update_mem_attributes();
438 
439 	/*
440 	 * With SEV, DMA operations cannot use encryption. New DMA ops
441 	 * are required in order to mark the DMA areas as decrypted or
442 	 * to use bounce buffers.
443 	 */
444 	if (sev_active())
445 		dma_ops = &sev_dma_ops;
446 
447 	/*
448 	 * With SEV, we need to unroll the rep string I/O instructions.
449 	 */
450 	if (sev_active())
451 		static_branch_enable(&sev_enable_key);
452 
453 	pr_info("AMD %s active\n",
454 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
455 			     : "Secure Memory Encryption (SME)");
456 }
457 
458 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
459 {
460 	WARN(PAGE_ALIGN(size) != size,
461 	     "size is not page-aligned (%#lx)\n", size);
462 
463 	/* Make the SWIOTLB buffer area decrypted */
464 	set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
465 }
466 
467 struct sme_populate_pgd_data {
468 	void	*pgtable_area;
469 	pgd_t	*pgd;
470 
471 	pmdval_t pmd_flags;
472 	pteval_t pte_flags;
473 	unsigned long paddr;
474 
475 	unsigned long vaddr;
476 	unsigned long vaddr_end;
477 };
478 
479 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
480 {
481 	unsigned long pgd_start, pgd_end, pgd_size;
482 	pgd_t *pgd_p;
483 
484 	pgd_start = ppd->vaddr & PGDIR_MASK;
485 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
486 
487 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
488 
489 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
490 
491 	memset(pgd_p, 0, pgd_size);
492 }
493 
494 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
495 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
496 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
497 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
498 
499 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
500 
501 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
502 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
503 				 (_PAGE_PAT | _PAGE_PWT))
504 
505 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
506 
507 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
508 
509 #define PTE_FLAGS_DEC		PTE_FLAGS
510 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
511 				 (_PAGE_PAT | _PAGE_PWT))
512 
513 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
514 
515 static pmd_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
516 {
517 	pgd_t *pgd_p;
518 	p4d_t *p4d_p;
519 	pud_t *pud_p;
520 	pmd_t *pmd_p;
521 
522 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
523 	if (native_pgd_val(*pgd_p)) {
524 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
525 			p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
526 		else
527 			pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
528 	} else {
529 		pgd_t pgd;
530 
531 		if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
532 			p4d_p = ppd->pgtable_area;
533 			memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
534 			ppd->pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
535 
536 			pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
537 		} else {
538 			pud_p = ppd->pgtable_area;
539 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
540 			ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
541 
542 			pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
543 		}
544 		native_set_pgd(pgd_p, pgd);
545 	}
546 
547 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
548 		p4d_p += p4d_index(ppd->vaddr);
549 		if (native_p4d_val(*p4d_p)) {
550 			pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
551 		} else {
552 			p4d_t p4d;
553 
554 			pud_p = ppd->pgtable_area;
555 			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
556 			ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
557 
558 			p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
559 			native_set_p4d(p4d_p, p4d);
560 		}
561 	}
562 
563 	pud_p += pud_index(ppd->vaddr);
564 	if (native_pud_val(*pud_p)) {
565 		if (native_pud_val(*pud_p) & _PAGE_PSE)
566 			return NULL;
567 
568 		pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
569 	} else {
570 		pud_t pud;
571 
572 		pmd_p = ppd->pgtable_area;
573 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
574 		ppd->pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
575 
576 		pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
577 		native_set_pud(pud_p, pud);
578 	}
579 
580 	return pmd_p;
581 }
582 
583 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
584 {
585 	pmd_t *pmd_p;
586 
587 	pmd_p = sme_prepare_pgd(ppd);
588 	if (!pmd_p)
589 		return;
590 
591 	pmd_p += pmd_index(ppd->vaddr);
592 	if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
593 		native_set_pmd(pmd_p, native_make_pmd(ppd->paddr | ppd->pmd_flags));
594 }
595 
596 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
597 {
598 	pmd_t *pmd_p;
599 	pte_t *pte_p;
600 
601 	pmd_p = sme_prepare_pgd(ppd);
602 	if (!pmd_p)
603 		return;
604 
605 	pmd_p += pmd_index(ppd->vaddr);
606 	if (native_pmd_val(*pmd_p)) {
607 		if (native_pmd_val(*pmd_p) & _PAGE_PSE)
608 			return;
609 
610 		pte_p = (pte_t *)(native_pmd_val(*pmd_p) & ~PTE_FLAGS_MASK);
611 	} else {
612 		pmd_t pmd;
613 
614 		pte_p = ppd->pgtable_area;
615 		memset(pte_p, 0, sizeof(*pte_p) * PTRS_PER_PTE);
616 		ppd->pgtable_area += sizeof(*pte_p) * PTRS_PER_PTE;
617 
618 		pmd = native_make_pmd((pteval_t)pte_p + PMD_FLAGS);
619 		native_set_pmd(pmd_p, pmd);
620 	}
621 
622 	pte_p += pte_index(ppd->vaddr);
623 	if (!native_pte_val(*pte_p))
624 		native_set_pte(pte_p, native_make_pte(ppd->paddr | ppd->pte_flags));
625 }
626 
627 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
628 {
629 	while (ppd->vaddr < ppd->vaddr_end) {
630 		sme_populate_pgd_large(ppd);
631 
632 		ppd->vaddr += PMD_PAGE_SIZE;
633 		ppd->paddr += PMD_PAGE_SIZE;
634 	}
635 }
636 
637 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
638 {
639 	while (ppd->vaddr < ppd->vaddr_end) {
640 		sme_populate_pgd(ppd);
641 
642 		ppd->vaddr += PAGE_SIZE;
643 		ppd->paddr += PAGE_SIZE;
644 	}
645 }
646 
647 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
648 				   pmdval_t pmd_flags, pteval_t pte_flags)
649 {
650 	unsigned long vaddr_end;
651 
652 	ppd->pmd_flags = pmd_flags;
653 	ppd->pte_flags = pte_flags;
654 
655 	/* Save original end value since we modify the struct value */
656 	vaddr_end = ppd->vaddr_end;
657 
658 	/* If start is not 2MB aligned, create PTE entries */
659 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
660 	__sme_map_range_pte(ppd);
661 
662 	/* Create PMD entries */
663 	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
664 	__sme_map_range_pmd(ppd);
665 
666 	/* If end is not 2MB aligned, create PTE entries */
667 	ppd->vaddr_end = vaddr_end;
668 	__sme_map_range_pte(ppd);
669 }
670 
671 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
672 {
673 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
674 }
675 
676 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
677 {
678 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
679 }
680 
681 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
682 {
683 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
684 }
685 
686 static unsigned long __init sme_pgtable_calc(unsigned long len)
687 {
688 	unsigned long p4d_size, pud_size, pmd_size, pte_size;
689 	unsigned long total;
690 
691 	/*
692 	 * Perform a relatively simplistic calculation of the pagetable
693 	 * entries that are needed. Those mappings will be covered mostly
694 	 * by 2MB PMD entries so we can conservatively calculate the required
695 	 * number of P4D, PUD and PMD structures needed to perform the
696 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
697 	 * would be needed for the start and end portion of the address range
698 	 * that fall outside of the 2MB alignment.  This results in, at most,
699 	 * two extra pages to hold PTE entries for each range that is mapped.
700 	 * Incrementing the count for each covers the case where the addresses
701 	 * cross entries.
702 	 */
703 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
704 		p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
705 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
706 		pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
707 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
708 	} else {
709 		p4d_size = 0;
710 		pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
711 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
712 	}
713 	pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
714 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
715 	pte_size = 2 * sizeof(pte_t) * PTRS_PER_PTE;
716 
717 	total = p4d_size + pud_size + pmd_size + pte_size;
718 
719 	/*
720 	 * Now calculate the added pagetable structures needed to populate
721 	 * the new pagetables.
722 	 */
723 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
724 		p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
725 		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
726 		pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
727 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
728 	} else {
729 		p4d_size = 0;
730 		pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
731 		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
732 	}
733 	pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
734 	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
735 
736 	total += p4d_size + pud_size + pmd_size;
737 
738 	return total;
739 }
740 
741 void __init __nostackprotector sme_encrypt_kernel(struct boot_params *bp)
742 {
743 	unsigned long workarea_start, workarea_end, workarea_len;
744 	unsigned long execute_start, execute_end, execute_len;
745 	unsigned long kernel_start, kernel_end, kernel_len;
746 	unsigned long initrd_start, initrd_end, initrd_len;
747 	struct sme_populate_pgd_data ppd;
748 	unsigned long pgtable_area_len;
749 	unsigned long decrypted_base;
750 
751 	if (!sme_active())
752 		return;
753 
754 	/*
755 	 * Prepare for encrypting the kernel and initrd by building new
756 	 * pagetables with the necessary attributes needed to encrypt the
757 	 * kernel in place.
758 	 *
759 	 *   One range of virtual addresses will map the memory occupied
760 	 *   by the kernel and initrd as encrypted.
761 	 *
762 	 *   Another range of virtual addresses will map the memory occupied
763 	 *   by the kernel and initrd as decrypted and write-protected.
764 	 *
765 	 *     The use of write-protect attribute will prevent any of the
766 	 *     memory from being cached.
767 	 */
768 
769 	/* Physical addresses gives us the identity mapped virtual addresses */
770 	kernel_start = __pa_symbol(_text);
771 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
772 	kernel_len = kernel_end - kernel_start;
773 
774 	initrd_start = 0;
775 	initrd_end = 0;
776 	initrd_len = 0;
777 #ifdef CONFIG_BLK_DEV_INITRD
778 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
779 		     ((unsigned long)bp->ext_ramdisk_size << 32);
780 	if (initrd_len) {
781 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
782 			       ((unsigned long)bp->ext_ramdisk_image << 32);
783 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
784 		initrd_len = initrd_end - initrd_start;
785 	}
786 #endif
787 
788 	/* Set the encryption workarea to be immediately after the kernel */
789 	workarea_start = kernel_end;
790 
791 	/*
792 	 * Calculate required number of workarea bytes needed:
793 	 *   executable encryption area size:
794 	 *     stack page (PAGE_SIZE)
795 	 *     encryption routine page (PAGE_SIZE)
796 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
797 	 *   pagetable structures for the encryption of the kernel
798 	 *   pagetable structures for workarea (in case not currently mapped)
799 	 */
800 	execute_start = workarea_start;
801 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
802 	execute_len = execute_end - execute_start;
803 
804 	/*
805 	 * One PGD for both encrypted and decrypted mappings and a set of
806 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
807 	 */
808 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
809 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
810 	if (initrd_len)
811 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
812 
813 	/* PUDs and PMDs needed in the current pagetables for the workarea */
814 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
815 
816 	/*
817 	 * The total workarea includes the executable encryption area and
818 	 * the pagetable area. The start of the workarea is already 2MB
819 	 * aligned, align the end of the workarea on a 2MB boundary so that
820 	 * we don't try to create/allocate PTE entries from the workarea
821 	 * before it is mapped.
822 	 */
823 	workarea_len = execute_len + pgtable_area_len;
824 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
825 
826 	/*
827 	 * Set the address to the start of where newly created pagetable
828 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
829 	 * structures are created when the workarea is added to the current
830 	 * pagetables and when the new encrypted and decrypted kernel
831 	 * mappings are populated.
832 	 */
833 	ppd.pgtable_area = (void *)execute_end;
834 
835 	/*
836 	 * Make sure the current pagetable structure has entries for
837 	 * addressing the workarea.
838 	 */
839 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
840 	ppd.paddr = workarea_start;
841 	ppd.vaddr = workarea_start;
842 	ppd.vaddr_end = workarea_end;
843 	sme_map_range_decrypted(&ppd);
844 
845 	/* Flush the TLB - no globals so cr3 is enough */
846 	native_write_cr3(__native_read_cr3());
847 
848 	/*
849 	 * A new pagetable structure is being built to allow for the kernel
850 	 * and initrd to be encrypted. It starts with an empty PGD that will
851 	 * then be populated with new PUDs and PMDs as the encrypted and
852 	 * decrypted kernel mappings are created.
853 	 */
854 	ppd.pgd = ppd.pgtable_area;
855 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
856 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
857 
858 	/*
859 	 * A different PGD index/entry must be used to get different
860 	 * pagetable entries for the decrypted mapping. Choose the next
861 	 * PGD index and convert it to a virtual address to be used as
862 	 * the base of the mapping.
863 	 */
864 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
865 	if (initrd_len) {
866 		unsigned long check_base;
867 
868 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
869 		decrypted_base = max(decrypted_base, check_base);
870 	}
871 	decrypted_base <<= PGDIR_SHIFT;
872 
873 	/* Add encrypted kernel (identity) mappings */
874 	ppd.paddr = kernel_start;
875 	ppd.vaddr = kernel_start;
876 	ppd.vaddr_end = kernel_end;
877 	sme_map_range_encrypted(&ppd);
878 
879 	/* Add decrypted, write-protected kernel (non-identity) mappings */
880 	ppd.paddr = kernel_start;
881 	ppd.vaddr = kernel_start + decrypted_base;
882 	ppd.vaddr_end = kernel_end + decrypted_base;
883 	sme_map_range_decrypted_wp(&ppd);
884 
885 	if (initrd_len) {
886 		/* Add encrypted initrd (identity) mappings */
887 		ppd.paddr = initrd_start;
888 		ppd.vaddr = initrd_start;
889 		ppd.vaddr_end = initrd_end;
890 		sme_map_range_encrypted(&ppd);
891 		/*
892 		 * Add decrypted, write-protected initrd (non-identity) mappings
893 		 */
894 		ppd.paddr = initrd_start;
895 		ppd.vaddr = initrd_start + decrypted_base;
896 		ppd.vaddr_end = initrd_end + decrypted_base;
897 		sme_map_range_decrypted_wp(&ppd);
898 	}
899 
900 	/* Add decrypted workarea mappings to both kernel mappings */
901 	ppd.paddr = workarea_start;
902 	ppd.vaddr = workarea_start;
903 	ppd.vaddr_end = workarea_end;
904 	sme_map_range_decrypted(&ppd);
905 
906 	ppd.paddr = workarea_start;
907 	ppd.vaddr = workarea_start + decrypted_base;
908 	ppd.vaddr_end = workarea_end + decrypted_base;
909 	sme_map_range_decrypted(&ppd);
910 
911 	/* Perform the encryption */
912 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
913 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
914 
915 	if (initrd_len)
916 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
917 				    initrd_len, workarea_start,
918 				    (unsigned long)ppd.pgd);
919 
920 	/*
921 	 * At this point we are running encrypted.  Remove the mappings for
922 	 * the decrypted areas - all that is needed for this is to remove
923 	 * the PGD entry/entries.
924 	 */
925 	ppd.vaddr = kernel_start + decrypted_base;
926 	ppd.vaddr_end = kernel_end + decrypted_base;
927 	sme_clear_pgd(&ppd);
928 
929 	if (initrd_len) {
930 		ppd.vaddr = initrd_start + decrypted_base;
931 		ppd.vaddr_end = initrd_end + decrypted_base;
932 		sme_clear_pgd(&ppd);
933 	}
934 
935 	ppd.vaddr = workarea_start + decrypted_base;
936 	ppd.vaddr_end = workarea_end + decrypted_base;
937 	sme_clear_pgd(&ppd);
938 
939 	/* Flush the TLB - no globals so cr3 is enough */
940 	native_write_cr3(__native_read_cr3());
941 }
942 
943 void __init __nostackprotector sme_enable(struct boot_params *bp)
944 {
945 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
946 	unsigned int eax, ebx, ecx, edx;
947 	unsigned long feature_mask;
948 	bool active_by_default;
949 	unsigned long me_mask;
950 	char buffer[16];
951 	u64 msr;
952 
953 	/* Check for the SME/SEV support leaf */
954 	eax = 0x80000000;
955 	ecx = 0;
956 	native_cpuid(&eax, &ebx, &ecx, &edx);
957 	if (eax < 0x8000001f)
958 		return;
959 
960 #define AMD_SME_BIT	BIT(0)
961 #define AMD_SEV_BIT	BIT(1)
962 	/*
963 	 * Set the feature mask (SME or SEV) based on whether we are
964 	 * running under a hypervisor.
965 	 */
966 	eax = 1;
967 	ecx = 0;
968 	native_cpuid(&eax, &ebx, &ecx, &edx);
969 	feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
970 
971 	/*
972 	 * Check for the SME/SEV feature:
973 	 *   CPUID Fn8000_001F[EAX]
974 	 *   - Bit 0 - Secure Memory Encryption support
975 	 *   - Bit 1 - Secure Encrypted Virtualization support
976 	 *   CPUID Fn8000_001F[EBX]
977 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
978 	 */
979 	eax = 0x8000001f;
980 	ecx = 0;
981 	native_cpuid(&eax, &ebx, &ecx, &edx);
982 	if (!(eax & feature_mask))
983 		return;
984 
985 	me_mask = 1UL << (ebx & 0x3f);
986 
987 	/* Check if memory encryption is enabled */
988 	if (feature_mask == AMD_SME_BIT) {
989 		/* For SME, check the SYSCFG MSR */
990 		msr = __rdmsr(MSR_K8_SYSCFG);
991 		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
992 			return;
993 	} else {
994 		/* For SEV, check the SEV MSR */
995 		msr = __rdmsr(MSR_AMD64_SEV);
996 		if (!(msr & MSR_AMD64_SEV_ENABLED))
997 			return;
998 
999 		/* SEV state cannot be controlled by a command line option */
1000 		sme_me_mask = me_mask;
1001 		sev_enabled = true;
1002 		return;
1003 	}
1004 
1005 	/*
1006 	 * Fixups have not been applied to phys_base yet and we're running
1007 	 * identity mapped, so we must obtain the address to the SME command
1008 	 * line argument data using rip-relative addressing.
1009 	 */
1010 	asm ("lea sme_cmdline_arg(%%rip), %0"
1011 	     : "=r" (cmdline_arg)
1012 	     : "p" (sme_cmdline_arg));
1013 	asm ("lea sme_cmdline_on(%%rip), %0"
1014 	     : "=r" (cmdline_on)
1015 	     : "p" (sme_cmdline_on));
1016 	asm ("lea sme_cmdline_off(%%rip), %0"
1017 	     : "=r" (cmdline_off)
1018 	     : "p" (sme_cmdline_off));
1019 
1020 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
1021 		active_by_default = true;
1022 	else
1023 		active_by_default = false;
1024 
1025 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
1026 				     ((u64)bp->ext_cmd_line_ptr << 32));
1027 
1028 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
1029 
1030 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
1031 		sme_me_mask = me_mask;
1032 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
1033 		sme_me_mask = 0;
1034 	else
1035 		sme_me_mask = active_by_default ? me_mask : 0;
1036 }
1037